next up previous
Next: ²æ¡¹¤¬Ãµµá¤¹¤Ù¤­¼¡¤ÎÂоÎÀ­¤Ï²¿¤Ê¤Î¤«¡© Up: ¥²¡¼¥¸¸¶Íý¤È¤Ï¡© Previous: ¶É½ê¥²¡¼¥¸ÂоÎÀ­¤ÈÎÏ

¼«È¯ÅªÂоÎÀ­¤ÎÇˤì

¼°¡Ê23¡Ë¤Ç ¤â¤¦°ì¤ÄÃíÌܤ¹¤Ù¤­¤Ê¤Î¤Ï¡¢${\cal L}_G$ ¤¬¥²¡¼¥¸Î³»Ò¤Î¼ÁÎ̹à¤ò ´Þ¤Þ¤Ê¤¤ÅÀ¤Ç¤¢¤ë¡£ ¼ÂºÝ¡¢¼ÁÎ̹à
\begin{displaymath}
{\cal L}_M = M^2 W_\mu W^\mu \end{displaymath} (26)
¤Ï¡¢¥²¡¼¥¸Î³»Ò¤ËÂФ¹¤ë¥²¡¼¥¸ÊÑ´¹¡Ê16¡Ë¤ËÂФ·¡¢ÌÀ¤é¤«¤Ë ÉÔÊѤǤʤ¤¡£ ¤Ä¤Þ¤ê¡¢¥²¡¼¥¸ÂоÎÀ­¤Ï¡¢¥²¡¼¥¸Î³»Ò¤¬¼ÁÎ̤ò»ý¤Ä¤³¤È¤ò ¶Ø»ß¤·¤Æ¤¤¤ë¤Î¤Ç¤¢¤ë¡£ ²æ¡¹¤¬ÃΤäƤ¤¤ë¼ÁÎ̤ò»ý¤¿¤Ê¤¤¥Ù¥¯¥È¥ëγ»Ò¤Ï¸÷»Ò¤À¤±¤Ê¤Î¤Ç¡¢ ¤³¤Î¤Þ¤Þ¤Ç¤Ï¡¢¥²¡¼¥¸ÍýÏÀ¤ÏÅŵ¤Îϳؤˤ·¤«Å¬ÍѤǤ­¤Ê¤¤¡£ ¤³¤ì¤ÏÅö½é¡¢ÍýÏÀ¤ÎÃ×̿Ū¤Ê·ç´Ù¤À¤È»×¤ï¤ì¤Æ¤¤¤¿¡£

¥é¥°¥é¥ó¥¸¥¢¥ó¤Î¥²¡¼¥¸ÂоÎÀ­¤òÊݤÁ¤Ä¤Ä¡¢¥²¡¼¥¸Î³»Ò¤Ë¼ÁÎ̤òÍ¿¤¨¤ë¤³¤È¤ò ²Äǽ¤È¤·¤¿¤Î¤¬¡Ö¼«È¯ÅªÂоÎÀ­¤ÎÇˤì¡×¤Î¹Í¤¨Êý¤Ç¤¢¤ë¡£ ´ðËÜŪ¤Ê¥¢¥¤¥Ç¥¢¤Ï¡¢¡Ö¾ì¤ÎÍýÏÀ¤¬Ìµ¸Â¼«Í³Å٤Ǥ¢¤ë¤¿¤á¤Ë¡¢ ¥é¥°¥é¥ó¥¸¥¢¥ó¤ÎÂоÎÀ­¤¬É¬¤º¤·¤â¸½¾Ý¤ÎÂоÎÀ­¤ò°ÕÌ£¤·¤Ê¤¤¡×¤³¤È¤Ë ÃíÌܤ¹¤ë¤³¤È¤Ç¤¢¤ë¡£ ¤Þ¤º¡¢¥²¡¼¥¸Î³»Ò¤È¥²¡¼¥¸Áê¸ßºîÍѤ¹¤ë¥¹¥«¥é¡¼¾ì ¡ÊÊ£ÁÇ£²¼¡¸µ¤Î¥Ò¥Ã¥°¥¹¾ì:$\Phi$¡Ë¤ò ƳÆþ¤¹¤ë¡£ ¥Ò¥Ã¥°¥¹¾ì¤Î¥Ý¥Æ¥ó¥·¥ã¥ë $V(\Phi)$ ¤¬¡¢ ¿Þ-2 ¤Î¤è¤¦¤Ê·Á¤ò¤·¤Æ¤¤¤ë¾ì¹ç¡¢  
 \begin{displaymath}
\begin{array}
{lll}
 V(\Phi) & = & \mu^2 \vert\Phi\vert^2 + \lambda \vert\Phi\vert^4\end{array}\end{displaymath} (27)
¡Ê¤¿¤À¤·¡¢$\mu^2 < 0$¡Ë ¤ò¹Í¤¨¤ë¡£

 
Figure 2:  ¥Ò¥Ã¥°¥¹¥Ý¥Æ¥ó¥·¥ã¥ë
\begin{figure}
\centerline{

\epsfig {file=panf/potential.eps,width=6cm}
}\end{figure}

¥é¥°¥é¥ó¥¸¥¢¥ó¤ÎÂоÎÀ­¤Ï¡¢¤³¤Î¥Ò¥Ã¥°¥¹¾ì¤Î¥Ý¥Æ¥ó¥·¥ã¥ë¤¬ $V(\Phi)$ ¼´¤Î²ó¤ê¤ÇÂоΤǤ¢¤ë¤³¤È¤ò°ÕÌ£¤·¤Æ¤¤¤ë¡£ ¤³¤Î¾ì¹ç¤Ï¤·¤«¤·¡¢ ¿¿¶õ(¥¨¥Í¥ë¥®¡¼ºÇÄã¤Î¾õÂ֡ˤ¬¥ê¥ó¥°¾õ¤Ë½ÌÂष¤Æ¤¤¤ë¡£

¼ÂºÝ¤Ë¼Â¸½¤·¤Æ¤¤¤ë¿¿¶õ¤Ï¤½¤ì¤é¤Î£±¤Ä¤Ç¤¢¤ë¤¿¤á¡¢ ¤½¤ì¤òÁª¤ó¤À½Ö´Ö¤ËÂоÎÀ­¤¬Çˤì¤ë ¡Ê¤³¤Î¿¿¶õ¤Ï¡¢$V(\Phi)$ ¼´¤Î²ó¤ê¤Î²óž¤Ç¥ê¥ó¥°¾å¤ÎÊ̤ÎÅÀ¤Ø°Ü¤êÉÔÊѤǤʤ¤¡Ë¡£ ½ÅÍפʤΤϡ¢¤³¤Î¾ì¹ç¤Î¿¿¶õ¤¬Í­¸Â¤Î¥Ò¥Ã¥°¥¹¾ì ($\left<\Phi\right\gt \equiv v/\sqrt{2} = \sqrt{-\mu^2/2\lambda}$)¤ÇËþ¤¿¤µ¤ì¤Æ¤¤¤ë¤³¤È¤Ç¤¢¤ë ¡Ê¥¹¥«¥é¡¼¾ì¤ò¤È¤Ã¤¿¤Î¤Ï¡¢¿¿¶õ¤ÈƱ¤¸Î̻ҿô¤ò»ý¤Ã¤Æ¤¤¤Ê¤¤¤È¡¢ ¿¿¶õÃæ¤Ë¶Å½Ì¤Ç¤­¤Ê¤¤¤«¤é¤Ç¤¢¤ë¡Ë¡£

°ìÊý¡¢¥Ò¥Ã¥°¥¹Î³»Ò¤È¥²¡¼¥¸Î³»Ò¤ÎÁê¸ßºîÍѤϡ¢¥²¡¼¥¸¸¶Íý¤Ç·èÄꤵ¤ì¡¢ ¥¹¥«¥é¡¼Î³»Ò¤Î¥é¥°¥é¥ó¥¸¥¢¥ó¤Ç¡¢$\partial_\mu$ ¤ò ${\cal D}_\mu$¤ÇÃÖ¤­´¹¤¨¤¿¤â¤Î
\begin{displaymath}
\begin{array}
{lll}
 {\cal L}_S & = & ({\cal D}_\mu \Phi)^\dagger ({\cal D}^\mu \Phi)
 - V(\Phi)\end{array}\end{displaymath} (28)
¤«¤éƳ¤«¤ì¤ë¡£ ½ÅÍפʤΤϡ¢¿Þ-3 ¤Ë¼¨¤·¤¿Áê¸ßºîÍѤǤ¢¤ë¡£

 
Figure 3:  ¥Ò¥Ã¥°¥¹¾ì¤È¥²¡¼¥¸¾ì¡ÊW¡Ë¤Î£´ÅÀ¥²¡¼¥¸Áê¸ßºîÍÑ
\begin{figure}
\centerline{

\epsfig {file=panf/wwhh.eps,width=3cm}
}\end{figure}


¤³¤Î¿Þ¤Ç¥Ò¥Ã¥°¥¹¾ì¤ÎÉôʬ¡Ê$\Phi$¡Ë¤ò¤½¤Î¿¿¶õ´üÂÔÃÍ ¡Ê$v/\sqrt{2}$¡Ë¤ÇÃÖ¤­´¹¤¨¤ë¤È¡¢
\begin{displaymath}
\left( \frac{gv}{2} \right)^2 W_\mu W^\mu\end{displaymath} (29)
·¿¤Î¼ÁÎ̹ब¸½¤ì¤ë¡£ ¤Ä¤Þ¤ê¡¢¥²¡¼¥¸Î³»Ò $W_\mu$ ¤¬¡¢
\begin{displaymath}
M = \left( \frac{1}{2} g v \right)\end{displaymath} (30)
¤Ê¤ë¼ÁÎ̤ò³ÍÆÀ¤·¤¿¤³¤È¤Ë¤Ê¤ë¡£ ¼ÁÎ̤Τʤ¤¥Ù¥¯¥È¥ëγ»Ò¤Ë¤Ï½ÄÇÈÀ®Ê¬¤¬Ìµ¤¯¼«Í³Å٤ϣ²¤Ç¤¢¤ë¤¬¡¢ ¼ÁÎ̤ò³ÍÆÀ¤¹¤ë¤È½ÄÇÈÀ®Ê¬¤¬À¸¤¸¼«Í³ÅÙ¤¬£³¤Ë¤Ê¤ë¡£ ¤³¤Î;ʬ¤Î¼«Í³Å٤ϡ¢¥Ò¥Ã¥°¥¹¥Ý¥Æ¥ó¥·¥ã¥ë¤Î Ê¿¤é¤ÊÊý¸þ¤Î¡Ê½¾¤Ã¤Æ¼ÁÎ̤ò»ý¤¿¤Ê¤¤¡Ë¥Ò¥Ã¥°¥¹¾ì¤Î ¼«Í³ÅÙ¡Ê¿Þ-2¡Ë¤Ë¤è¤Ã¤Æ¶¡µë¤µ¤ì¤ë¡£ Ê¿¤é¤ÊÊý¸þ¤Î¼«Í³ÅÙ¤ÏÇˤ줿ÂоÎÀ­¤Î¿ô¡Ê¤½¤ÎÊý¸þ¤Ø¤ÎÊÑ´¹¤Î À¸À®»Ò¤Î¿ô¡Ë¤À¤±¤¢¤ë¡£ ²¿¸Î¤Ê¤é¤½¤ÎÊý¸þ¤Ø¤ÎÊÑ´¹¤Ç¿¿¶õ¤ÏÉÔÊѤǤʤ¤¤«¤é¤Ç¤¢¤ë¡£ ¤³¤Î¼«Í³ÅÙ¤òÄ̾若¡¼¥ë¥É¥¹¥È¡¼¥ó¥â¡¼¥É¤È¸Æ¤Ö¡£ Ê¿¤é¤Ç¤Ê¤¤Êý¸þ¤Î¼«Í³Å٤ϼÁÎ̤ò»ý¤Ã¤¿ÊªÍýŪ ¥Ò¥Ã¥°¥¹Î³»Ò¤È¤Ê¤ë¡£ ¤³¤Î¥Ò¥Ã¥°¥¹Î³»Ò¤Î¼ÁÎ̤ϡ¢¥Ý¥Æ¥ó¥·¥ã¥ë¤Î¶ÊΨ¤Ç·è¤Þ¤ê¡¢  
 \begin{displaymath}
m_H = \sqrt{2\lambda} v\end{displaymath} (31)
¤ÇÍ¿¤¨¤é¤ì¤ë¡£

°Ê¾å¤Î¼ÁÎÌÀ¸À®µ¡¹½¤Ï¡¢Ä¾´ÑŪ¤Ë¤Ï¼¡¤Î¤è¤¦¤Ë²ò¼á¤Ç¤­¤ë¡£ ¼ÁÎ̤Ȥϡ¢²Ã®¤µ¤ì¤Ë¤¯¤µ¤òɽ¤¹Î̤Ǥ¢¤ë¡£ ¿¿¶õ¤Ë¶Å½Ì¤·¤¿¥Ò¥Ã¥°¥¹¾ì¤Î³¤¤ÎÃæ¤Ç¡¢¥²¡¼¥¸Î³»Ò¤ò²Ã®¤·¤è¤¦¤È¤¹¤ë¤È ¥Ò¥Ã¥°¥¹¾ì¤Ë¤Ö¤Ä¤«¤Ã¤ÆÄñ¹³¤ò¼õ¤±¤ë¡£ ¤³¤ÎÄñ¹³¤Ï¥²¡¼¥¸¾ì¤¬£±¸Ä¤Î¥Ò¥Ã¥°¥¹¤È¾×Æͤ¹¤ëÉÑÅÙ¤òɽ¤¹ ·ë¹çÄê¿ô(g)¤È¡¢¿¿¶õÃæ¤Î¥Ò¥Ã¥°¥¹¤ÎÌ©ÅÙ(v)¤ËÈæÎ㤹¤ë¤Ï¤º¤Ç¤¢¤ë¡£ ½¾¤Ã¤Æ¡¢
\begin{displaymath}
M \sim g\mbox{¡Ê¾×ÆÍÉÑÅÙ¡Ë} \times v \mbox{¡Ê¥Ò¥Ã¥°¥¹¤ÎÌ©ÅÙ¡Ë}\end{displaymath} (32)
¤È¤Ê¤ë¡Ê¿Þ-4¡Ë¡£

 
Figure 4:  ¥Ò¥Ã¥°¥¹µ¡¹½¤Ë¤è¤ë¼ÁÎÌÀ¸À®
\begin{figure}
\centerline{

\epsfig {file=panf/higgs.eps,width=6cm}
}\end{figure}

¤³¤Î¤è¤¦¤Ê¼ÁÎÌÀ¸À®µ¡¹½¤ò¡Ö¥Ò¥Ã¥°¥¹µ¡¹½¡×¤È¸Æ¤Ö¡£

¥²¡¼¥¸Î³»Ò¤Î¼ÁÎ̤À¤±¤Ç¤Ê¤¯Êª¼Áγ»Ò¤Î¼ÁÎ̤⡢¥Ò¥Ã¥°¥¹µ¡¹½¤ÇÀ¸¤¸¤ë¤È ¤¹¤ë¤Î¤¬É¸½àÍýÏÀ¤Î¹Í¤¨Êý¤Ç¤¢¤ë¡£ ¼Â¤Ï¡¢É¸½àÍýÏÀ¤Î¾ì¹ç¡¢Êª¼Áγ»Ò¤â¥é¥°¥é¥ó¥¸¥¢¥ó¤ÎÃʳ¬¤Ç¤Ï¼ÁÎ̤ò »ý¤Æ¤Ê¤¤¡£ ¥é¥°¥é¥ó¥¸¥¢¥ó¡Ê24¡Ë¤Ç¡¢¼ÁÎÌ¹à  
 \begin{displaymath}
{\cal L}_m = - m \bar{\Psi} \Psi\end{displaymath} (33)
¤¬µö¤µ¤ì¤¿¤Î¤Ï¡¢º¸´¬¤­Î³»Ò¾ì¡Ê$\Psi_L$¡Ë¤È±¦´¬¤­Î³»Ò¾ì¡Ê$\Psi_R$¡Ë¤¬¡¢ Ʊ¤¸¥²¡¼¥¸ÂоÎÀ­¤ò»ý¤Ä¤È°Å¤Ë²¾Äꤷ¤Æ¤­¤¿¤«¤é¤Ç¤¢¤ë¡£ ¤¿¤À¤·¡¢$\Psi$ ¤Ï
\begin{displaymath}
\Psi = \Psi_L + \Psi_R\end{displaymath} (34)
¤ÇÍ¿¤¨¤é¤ì¡¢ $\Psi_L$ ¤È $\Psi_R$ ¤Ï¡¢  
 \begin{displaymath}
\gamma_5 \equiv \gamma^5 \equiv i \gamma^0 \gamma^1 \gamma^2 \gamma^3\end{displaymath} (35)
¤È¤·¤Æ¡¢  
 \begin{displaymath}
\begin{array}
{lll}
 \left\{ \begin{array}
{lll}
 \Psi_L & =...
 ...rac{1+\gamma_5}{2} \right) \Psi
 \end{array} \right.\end{array}\end{displaymath} (36)
¤ÇÄêµÁ¤µ¤ì¤ë¡£ $\Psi_L$ ¤È $\Psi_R$ ¤òÍѤ¤¤ë¤È¡¢¼°¡Ê33¡Ë¤Ï¡¢  
 \begin{displaymath}
{\cal L}_m = - m \left( 
 \bar{\Psi}_R \Psi_L + \bar{\Psi}_L \Psi_R
 \right)\end{displaymath} (37)
¤È¤Ê¤ë¡£ ¤³¤³¤Ç¡¢  
 \begin{displaymath}
\begin{array}
{lll}
 \{ \gamma_5, \gamma_\mu \} = 0 \cr
 (\gamma_5)^2 = 1\end{array}\end{displaymath} (38)
¤ò»È¤Ã¤¿¡£ ¼°¡Ê37¡Ë¤Ï¡¢¼ÁÎ̹बº¸´¬¤­Î³»Ò¾ì¤ò±¦´¬¤­Î³»Ò¾ì¤Ø¡¢±¦´¬¤­Î³»Ò¾ì¤ò º¸´¬¤­Î³»Ò¾ì¤Ø¤È¡¢Å¾´¹¤¹¤ë¤³¤È¤ò°ÕÌ£¤·¤Æ¤¤¤ë¡£

¤³¤ì¤Ï¡¢Ä¾´ÑŪ¤Ë¤Ï¼¡¤Î¤è¤¦¤ËÀâÌÀ¤Ç¤­¤ë¡£ ¼ÁÎ̤ò»ý¤¿¤Ê¤¤Î³»Ò¤Ï¾ï¤Ë¸÷®¤Ç±¿Æ°¤¹¤ë¡£ ¸÷®¤Ç±¿Æ°¤¹¤ëγ»Ò¤òÄɤ¤±Û¤¹¤³¤È¤Ï½ÐÍè¤Ê¤¤¡£ °ìÊý¡¢¼ÁÎ̤ò»ý¤Ã¤¿Î³»Ò¤ÏÄɤ¤±Û¤»¤ë¡£ Äɤ¤±Û¤·¤Æ¤«¤é¤½¤Îγ»Ò¤ò¸«¤ë¤È¡¢ ±¿Æ°Êý¸þ¤¬µÕž¤¹¤ë¤Î¤Ç¡Ê¥¹¥Ô¥ó¤Î¸þ¤­¤Ï¤½¤Î¤Þ¤Þ¡Ë¡¢ ±¦´¬¤­¤Èº¸´¬¤­¤¬Æþ¤ìÂå¤ï¤ë¡£ Äɤ¤±Û¤»¤Ê¤±¤ì¤Ð¤½¤Î¤Þ¤Þ¤Ç¤¢¤ë¡£

¤µ¤Æ¡¢¼ÁÎ̹ब±¦´¬¤­¤Èº¸´¬¤­¤òž´¹¤¹¤ë¤Î¤ËÂФ·¡¢ ¥é¥°¥é¥ó¥¸¥¢¥ó¡Ê24¡Ë¤Îʪ¼Áγ»Ò¾ì¤ò´Þ¤à¾¤ÎÉôʬ  
 \begin{displaymath}
{\cal L}_p = \bar{\Psi}_L i \not{\! {\cal D}} \Psi_L
 + \bar{\Psi}_R i \not{\! {\cal D}} \Psi_R\end{displaymath} (39)
¤Ï±¦´¬¤­¤Èº¸´¬¤­¤òº®¤¼¹ç¤ï¤»¤ë¤³¤È¤Ï¤Ê¤¤¡£ ¤½¤³¤Ç¡¢¼ÁÎ̹ब̵¤±¤ì¤Ð¡¢ ±¦´¬¤­¤Èº¸´¬¤­¤ËÂФ·¤Æ¡¢ÊÌ¡¹¤Î°ÌÁêÊÑ´¹¤ò»Ü¤·¤Æ¤â¡¢ ¥é¥°¥é¥ó¥¸¥¢¥ó¤ÏÉÔÊѤȤʤë¡Ê¥«¥¤¥é¥ëÂоÎÀ­¡Ë¡£ ¤Ä¤Þ¤ê¡¢±¦´¬¤­Î³»Ò¾ì¤Èº¸´¬¤­Î³»Ò¾ì¤È¤Ï¡¢Ê̤Îγ»Ò¤È¸«¤Ê¤»¡¢½¾¤Ã¤Æ¡¢Ê̤ΠÂоÎÀ­¤ò»ý¤¿¤»¤é¤ì¤ë¡£

µÕ¤Ë¡¢±¦´¬¤­¤Èº¸´¬¤­¤¬¡¢ÊÌ¡¹¤ÎÂоÎÀ­¤ò»ý¤Ä¤¿¤á¤Ë¤Ï¡¢ ¥é¥°¥é¥ó¥¸¥¢¥óÃæ¤Îʪ¼Áγ»Ò¤Î¼ÁÎ̹à¤Ï¶Ø»ß¤µ¤ì¤ë¡£ ɸ½àÍýÏÀ¤Ï¡¢¤Þ¤µ¤Ë¤½¤Î¤è¤¦¤ÊÍýÏÀ¤Ç¤¢¤Ã¤Æ¡¢ ¼°¡Ê12¡Ë¤Ë¼¨¤·¤¿£²½Å¹à¤Ë°¤¹¤ë¤Î¤Ï¡¢ º¸´¬¤­Î³»Ò¡Êź»ú¤Î L¡Ë¤Î¤ß¤Ç¡¢Âбþ¤¹¤ë±¦´¬¤­Î³»Ò¤Ï£±½Å¹à ¤Ë°¤·¤Æ¤¤¤ë¡£ ¸½¼Â¤Îʪ¼Áγ»Ò¤Ï¼ÁÎ̤ò»ý¤Ã¤Æ¤¤¤ë¤Î¤Ç¡¢¥é¥°¥é¥ó¥¸¥¢¥ó¤Î¥²¡¼¥¸ÂоÎÀ­¤ò Êݤ俤ޤÞʪ¼Áγ»Ò¤Î¼ÁÎ̤òƳÆþ¤¹¤ë¤Ë¤Ï¡¢¥Ò¥Ã¥°¥¹µ¡¹½¤¬É¬ÍפȤʤë¤Î¤Ç¤¢¤ë¡£

½ÅÍפʤΤϡ¢¥²¡¼¥¸Î³»Ò¤Î¼ÁÎÌÀ¸À®¤Ï¥Ò¥Ã¥°¥¹Î³»Ò¤È¥²¡¼¥¸Î³»Ò¤Î´Ö¤Î ÉáÊ×Ū¤Ê¥²¡¼¥¸Áê¸ßºîÍѤˤè¤ë¤â¤Î¤Ç¤¢¤ë¤Î¤ËÂФ·¡¢ ʪ¼Áγ»Ò¤Î¼ÁÎÌÀ¸À®¤Ë¤Ï¡¢¥Ò¥Ã¥°¥¹Î³»Ò¤È¤Î´Ö¤ËÅòÀîÁê¸ßºîÍѤȸƤФì¤ë ¿·¤¿¤ÊÁê¸ßºîÍѤòƳÆþ¤·¤Ê¤±¤ì¤Ð¤Ê¤é¤Ê¤¤ÅÀ¤Ç¤¢¤ë¡£ ¤³¤ÎÅòÀîÁê¸ßºîÍѤϡ¢Êª¼Áγ»Ò¤Î¼ÁÎÌÀ¸À®¤äº®¹ç¤ò°ú¤­µ¯¤³¤¹¤¬¡¢ ¥²¡¼¥¸Áê¸ßºîÍѤΤ褦¤ÊɬÁ³À­¤ò»ý¤¿¤Ê¤¤¤Î¤Ç¡¢Â¬Äꤵ¤ì¤¿ ʪ¼Áγ»Ò¤Î°Û¤Ê¤ë¼ÁÎ̤亮¹ç³Ñ¤ËÂбþ¤·¤Æγ»Ò¤Î¿ô¤ä¡¢º®¹ç³Ñ¤Î¿ô¤À¤± °Û¤Ê¤Ã¤¿·ë¹çÄê¿ô¤ò²¾Äꤷ¤Ê¤¯¤Æ¤Ï¤Ê¤é¤Ê¤¤¡£

¤Þ¤È¤á¤ë¤È  
 \begin{displaymath}
\begin{array}
{lll}
\begin{array}
{lll}
\mbox{¥²¡¼¥¸ÂоÎÀ­} ...
 ...²¡¼¥¸Î³»Ò¤ª¤è¤Óʪ¼Áγ»Ò¤Î¼ÁÎÌÀ¸À®} ~~~~~~\end{array}\end{array}\end{displaymath} (40)
¤È¤Ê¤ë¡£


next up previous
Next: ²æ¡¹¤¬Ãµµá¤¹¤Ù¤­¼¡¤ÎÂоÎÀ­¤Ï²¿¤Ê¤Î¤«¡© Up: ¥²¡¼¥¸¸¶Íý¤È¤Ï¡© Previous: ¶É½ê¥²¡¼¥¸ÂоÎÀ­¤ÈÎÏ
Keisuke Fujii
5/2/2000