protected:
static TLimitDataSource* Fluctuate(TLimitDataSource* input, bool init, TRandom*) static Double_t LogLikelihood(Double_t s, Double_t b, Double_t d) public:
TLimit TLimit() TLimit TLimit(const TLimit&) virtual void ~TLimit() static TClass* Class() static TConfidenceLevel* ComputeLimit(TLimitDataSource* data, Int_t nmc = 50000, TRandom* generator = NULL, Double_t (*) (Double_t, Double_t,Double_t) statistic = &(TLimit::LogLikelihood)) virtual TClass* IsA() const virtual void ShowMembers(TMemberInspector& insp, char* parent) virtual void Streamer(TBuffer& b) void StreamerNVirtual(TBuffer& b)
private:
static TArrayD* fgTable a log table... just to speed up calculation static TOrdCollection* fgSystNames Collection of systematics names
TLimit Class to compute 95% CL limits
class TLimit ------------ Algorithm to compute 95% C.L. limits using the Likelihood ratio semi-bayesian method. It takes signal, background and data histograms wrapped in a TLimitDataSource as input and runs a set of Monte Carlo experiments in order to compute the limits. If needed, inputs are fluctuated according to systematics. The output is a TConfidenceLevel. class TLimitDataSource ---------------------- Takes the signal, background and data histograms as well as different systematics sources to form the TLimit input. class TConfidenceLevel ---------------------- Final result of the TLimit algorithm. It is created just after the time-consuming part and can be stored in a TFile for further processing. It contains light methods to return CLs, CLb and other interesting quantities. The actual algorithm... From an input (TLimitDataSource) it produces an output TConfidenceLevel. For this, nmc Monte Carlo experiments are performed. As usual, the larger this number, the longer the compute time, but the better the result. /*Supposing that there is a plotfile.root file containing 3 histograms (signal, background and data), you can imagine doing things like:
TFile* infile=new TFile("plotfile.root","READ"); infile->cd(); TH1D* sh=(TH1D*)infile->Get("signal"); TH1D* bh=(TH1D*)infile->Get("background"); TH1D* dh=(TH1D*)infile->Get("data"); TLimitDataSource* mydatasource = new TLimitDataSource(sh,bh,dh); TConfidenceLevel *myconfidence = TLimit::ComputeLimit(mydatasource,50000); cout << " CLs : " << myconfidence->CLs() << endl; cout << " CLsb : " << myconfidence->CLsb() << endl; cout << " CLb : " << myconfidence->CLb() << endl; cout << "< CLs > : " << myconfidence->GetExpectedCLs_b() << endl; cout << "< CLsb > : " << myconfidence->GetExpectedCLsb_b() << endl; cout << "< CLb > : " << myconfidence->GetExpectedCLb_b() << endl; delete myconfidence; delete mydatasource; infile->Close();
More informations can still be found on this page.
*/initialisation: create a sorted list of all the names of systematics
TLimit TLimit() Double_t LogLikelihood(Double_t s, Double_t b, Double_t d) TClass* Class() TClass* IsA() const void ShowMembers(TMemberInspector& insp, char* parent) void Streamer(TBuffer& b) void StreamerNVirtual(TBuffer& b) TLimit TLimit(const TLimit&) void ~TLimit()