// @(#)root/hist:$Name: $:$Id: TLimit.cxx,v 1.5 2003/03/21 14:53:49 brun Exp $ // Author: Christophe.Delaere@cern.ch 21/08/2002 /////////////////////////////////////////////////////////////////////////// // // TLimit // // Class to compute 95% CL limits // /////////////////////////////////////////////////////////////////////////// /************************************************************************* * C.Delaere * * adapted from the mclimit code from Tom Junk * * see http://cern.ch/thomasj/searchlimits/ecl.html * *************************************************************************/ #include "TLimit.h" #include "TArrayD.h" #include "TOrdCollection.h" #include "TConfidenceLevel.h" #include "TLimitDataSource.h" #include "TRandom3.h" #include "TH1.h" #include "TObjArray.h" #include "TMath.h" #include "TIterator.h" #include "TObjString.h" #include "TClassTable.h" #include "Riostream.h" ClassImp(TLimit) TArrayD *TLimit::fgTable = new TArrayD(0); TOrdCollection *TLimit::fgSystNames = new TOrdCollection(); TConfidenceLevel *TLimit::ComputeLimit(TLimitDataSource * data, Int_t nmc, TRandom * generator, Double_t(*statistic) (Double_t, Double_t, Double_t)) { // class TLimit // ------------ // // Algorithm to compute 95% C.L. limits using the Likelihood ratio // semi-bayesian method. // It takes signal, background and data histograms wrapped in a // TLimitDataSource as input and runs a set of Monte Carlo experiments in // order to compute the limits. If needed, inputs are fluctuated according // to systematics. The output is a TConfidenceLevel. // // class TLimitDataSource // ---------------------- // // Takes the signal, background and data histograms as well as different // systematics sources to form the TLimit input. // // class TConfidenceLevel // ---------------------- // // Final result of the TLimit algorithm. It is created just after the // time-consuming part and can be stored in a TFile for further processing. // It contains light methods to return CLs, CLb and other interesting // quantities. // // The actual algorithm... // From an input (TLimitDataSource) it produces an output TConfidenceLevel. // For this, nmc Monte Carlo experiments are performed. // As usual, the larger this number, the longer the compute time, // but the better the result. // /*Supposing that there is a plotfile.root file containing 3 histograms (signal, background and data), you can imagine doing things like:
TFile* infile=new TFile("plotfile.root","READ"); infile->cd(); TH1D* sh=(TH1D*)infile->Get("signal"); TH1D* bh=(TH1D*)infile->Get("background"); TH1D* dh=(TH1D*)infile->Get("data"); TLimitDataSource* mydatasource = new TLimitDataSource(sh,bh,dh); TConfidenceLevel *myconfidence = TLimit::ComputeLimit(mydatasource,50000); cout << " CLs : " << myconfidence->CLs() << endl; cout << " CLsb : " << myconfidence->CLsb() << endl; cout << " CLb : " << myconfidence->CLb() << endl; cout << "< CLs > : " << myconfidence->GetExpectedCLs_b() << endl; cout << "< CLsb > : " << myconfidence->GetExpectedCLsb_b() << endl; cout << "< CLb > : " << myconfidence->GetExpectedCLb_b() << endl; delete myconfidence; delete mydatasource; infile->Close();
More informations can still be found on this page.
*/ // // The final object returned... TConfidenceLevel *result = new TConfidenceLevel(nmc); // The random generator used... TRandom *myrandom = generator ? generator : new TRandom3; // Compute some total quantities on all the channels Int_t nbins = 0; Int_t maxbins = 0; Double_t nsig = 0; Double_t nbg = 0; Int_t ncand = 0; Int_t i; for (i = 0; i <= data->GetSignal()->GetLast(); i++) { nbins += ((TH1D *) (data->GetSignal()->At(i)))->GetNbinsX(); maxbins = ((TH1D *) (data->GetSignal()->At(i)))->GetNbinsX() > maxbins ? ((TH1D *) (data->GetSignal()->At(i)))->GetNbinsX() + 1 : maxbins; nsig += ((TH1D *) (data->GetSignal()->At(i)))->Integral(); nbg += ((TH1D *) (data->GetBackground()->At(i)))->Integral(); ncand += (Int_t) ((TH1D *) (data->GetCandidates()->At(i)))->Integral(); } result->SetBtot(nbg); result->SetStot(nsig); result->SetDtot(ncand); Double_t buffer = 0; fgTable->Set(maxbins * (data->GetSignal()->GetLast() + 1)); for (Int_t channel = 0; channel <= data->GetSignal()->GetLast(); channel++) for (Int_t bin = 0; bin <= ((TH1D *) (data->GetSignal()->At(channel)))->GetNbinsX(); bin++) { Double_t s = (Double_t) ((TH1D *) (data->GetSignal()->At(channel)))->GetBinContent(bin); Double_t b = (Double_t) ((TH1D *) (data->GetBackground()->At(channel)))->GetBinContent(bin); Double_t d = (Double_t) ((TH1D *) (data->GetCandidates()->At(channel)))->GetBinContent(bin); // Compute the value of the "-2lnQ" for the actual data if ((b == 0) && (s > 0)) { cout << "WARNING: Ignoring bin " << bin << " of channel " << channel << " which has s=" << s << " but b=" << b << endl; cout << " Maybe the MC statistic has to be improved..." << endl; } if ((s > 0) && (b > 0)) buffer += statistic(s, b, d); // precompute the log(1+s/b)'s in an array to speed up computation // background-free bins are set to have a maximum t.s. value // for protection (corresponding to s/b of about 5E8) if ((s > 0) && (b > 0)) fgTable->AddAt(statistic(s, b, 1), (channel * maxbins) + bin); else if ((s > 0) && (b == 0)) fgTable->AddAt(20, (channel * maxbins) + bin); } result->SetTSD(buffer); // accumulate MC experiments. Hold the test statistic function fixed, but // fluctuate s and b within syst. errors for computing probabilities of // having that outcome. (Alex Read's prescription -- errors are on the ensemble, // not on the observed test statistic. This technique does not split outcomes.) // keep the tstats as sum log(1+s/b). convert to -2lnQ when preparing the results // (reason -- like to keep the < signs right) Double_t *tss = new Double_t[nmc]; Double_t *tsb = new Double_t[nmc]; Double_t *lrs = new Double_t[nmc]; Double_t *lrb = new Double_t[nmc]; for (i = 0; i < nmc; i++) { tss[i] = 0; tsb[i] = 0; lrs[i] = 0; lrb[i] = 0; // fluctuate signal and background TLimitDataSource *fluctuated = Fluctuate(data, !i, myrandom); for (Int_t channel = 0; channel <= fluctuated->GetSignal()->GetLast(); channel++) { for (Int_t bin = 0; bin <=((TH1D *) (fluctuated->GetSignal()->At(channel)))->GetNbinsX(); bin++) { if ((Double_t) ((TH1D *) (fluctuated->GetSignal()->At(channel)))->GetBinContent(bin) != 0) { // s+b hypothesis Double_t rate = (Double_t) ((TH1D *) (fluctuated->GetSignal()->At(channel)))->GetBinContent(bin) + (Double_t) ((TH1D *) (fluctuated->GetBackground()->At(channel)))->GetBinContent(bin); Double_t rand = myrandom->Poisson(rate); tss[i] += rand * fgTable->At((channel * maxbins) + bin); Double_t s = (Double_t) ((TH1D *) (fluctuated->GetSignal()->At(channel)))->GetBinContent(bin); Double_t b = (Double_t) ((TH1D *) (fluctuated->GetBackground()->At(channel)))->GetBinContent(bin); if ((s > 0) && (b > 0)) lrs[i] += statistic(s, b, rand) - s; else if ((s > 0) && (b == 0)) lrs[i] += 20 * rand - s; // b hypothesis rate = (Double_t) ((TH1D *) (fluctuated->GetBackground()->At(channel)))->GetBinContent(bin); rand = myrandom->Poisson(rate); tsb[i] += rand * fgTable->At((channel * maxbins) + bin); if ((s > 0) && (b > 0)) lrb[i] += statistic(s, b, rand) - s; else if ((s > 0) && (b == 0)) lrb[i] += 20 * rand - s; } } } lrs[i] = TMath::Exp(lrs[i]); lrb[i] = TMath::Exp(lrb[i]); if (data != fluctuated) delete fluctuated; } // lrs and lrb are the LR's (no logs) = prob(s+b)/prob(b) for // that choice of s and b within syst. errors in the ensemble. These are // the MC experiment weights for relating the s+b and b PDF's of the unsmeared // test statistic (in which cas one can use another test statistic if one likes). // Now produce the output object. // The final quantities are computed on-demand form the arrays tss, tsb, lrs and lrb. result->SetTSS(tss); result->SetTSB(tsb); result->SetLRS(lrs); result->SetLRB(lrb); if (!generator) delete myrandom; return result; } TLimitDataSource *TLimit::Fluctuate(TLimitDataSource * input, bool init, TRandom * generator) { // initialisation: create a sorted list of all the names of systematics if (init) { // create a "map" with the systematics names TIterator *errornames = input->GetErrorNames()->MakeIterator(); TObjArray *listofnames = 0; while ((listofnames = ((TObjArray *) errornames->Next()))) { TObjString *name = NULL; TIterator *loniter = listofnames->MakeIterator(); while ((name = (TObjString *) (loniter->Next()))) if ((fgSystNames->IndexOf(name)) < 0) fgSystNames->AddLast(name); } fgSystNames->Sort(); } // if there are no systematics, just returns the input as "fluctuated" output if (fgSystNames->GetSize() <= 0) return input; // Find a choice for the random variation and // re-toss all random numbers if any background or signal // goes negative. (background = 0 is bad too, so put a little protection // around it -- must have at least 10% of the bg estimate). bool retoss = kTRUE; Double_t *serrf = NULL; Double_t *berrf = NULL; do { Double_t *toss = new Double_t[fgSystNames->GetSize()]; for (Int_t i = 0; i < fgSystNames->GetSize(); i++) toss[i] = generator->Gaus(0, 1); retoss = kFALSE; serrf = new Double_t[(input->GetSignal()->GetLast()) + 1]; berrf = new Double_t[(input->GetSignal()->GetLast()) + 1]; for (Int_t channel = 0; channel <= input->GetSignal()->GetLast(); channel++) { serrf[channel] = 0; berrf[channel] = 0; for (Int_t bin = 0; bin <=((TH1D *) (input->GetErrorOnSignal()->At(channel)))->GetNbinsX(); bin++) { serrf[channel] += ((TH1D *) (input->GetErrorOnSignal()->At(channel)))->GetBinContent(bin) * toss[fgSystNames->BinarySearch((TObjString*) (((TObjArray *) (input->GetErrorNames()->At(channel)))->At(bin)))]; berrf[channel] += ((TH1D *) (input->GetErrorOnBackground()->At(channel)))->GetBinContent(bin) * toss[fgSystNames->BinarySearch((TObjString*) (((TObjArray *) (input->GetErrorNames()->At(channel)))->At(bin)))]; } if ((serrf[channel] < -1.0) || (berrf[channel] < -0.9)) { retoss = kTRUE; continue; } } delete[]toss; } while (retoss); // adjust the fluctuated signal and background counts with a legal set // of random fluctuations above. TLimitDataSource *result = new TLimitDataSource(); result->SetOwner(); for (Int_t channel = 0; channel <= input->GetSignal()->GetLast(); channel++) { TH1D *newsignal = new TH1D(*(TH1D *) (input->GetSignal()->At(channel))); newsignal->Scale(1 + serrf[channel]); newsignal->SetDirectory(0); TH1D *newbackground = new TH1D(*(TH1D *) (input->GetBackground()->At(channel))); newbackground->Scale(1 + berrf[channel]); newbackground->SetDirectory(0); TH1D *newcandidates = new TH1D(*(TH1D *) (input->GetCandidates())); newcandidates->SetDirectory(0); result->AddChannel(newsignal, newbackground, newcandidates); } delete[] serrf; delete[] berrf; return result; }