// @(#)root/geom:$Name: $:$Id: TGeoCone.cxx,v 1.19 2003/03/14 11:49:02 brun Exp $
// Author: Andrei Gheata 31/01/02
// TGeoCone::Contains() and DistToOut() implemented by Mihaela Gheata
/*************************************************************************
* Copyright (C) 1995-2000, Rene Brun and Fons Rademakers. *
* All rights reserved. *
* *
* For the licensing terms see $ROOTSYS/LICENSE. *
* For the list of contributors see $ROOTSYS/README/CREDITS. *
*************************************************************************/
#include "TROOT.h"
#include "TGeoManager.h"
#include "TGeoVolume.h"
#include "TVirtualGeoPainter.h"
#include "TGeoCone.h"
/*************************************************************************
* TGeoCone - conical tube class. It has 5 parameters :
* dz - half length in z
* Rmin1, Rmax1 - inside and outside radii at -dz
* Rmin2, Rmax2 - inside and outside radii at +dz
*
*************************************************************************/
//
/*
*/
//
/*************************************************************************
* TGeoConeSeg - a phi segment of a conical tube. Has 7 parameters :
* - the same 5 as a cone;
* - first phi limit (in degrees)
* - second phi limit
*
*************************************************************************/
//
/*
*/
//
ClassImp(TGeoCone)
//-----------------------------------------------------------------------------
TGeoCone::TGeoCone()
{
// Default constructor
SetBit(TGeoShape::kGeoCone);
fDz = 0.0;
fRmin1 = 0.0;
fRmax1 = 0.0;
fRmin2 = 0.0;
fRmax2 = 0.0;
}
//-----------------------------------------------------------------------------
TGeoCone::TGeoCone(Double_t dz, Double_t rmin1, Double_t rmax1,
Double_t rmin2, Double_t rmax2)
:TGeoBBox(0, 0, 0)
{
// Default constructor specifying minimum and maximum radius
SetBit(TGeoShape::kGeoCone);
SetConeDimensions(dz, rmin1, rmax1, rmin2, rmax2);
if ((dz<0) || (rmin1<0) || (rmax1<0) || (rmin2<0) || (rmax2<0)) {
SetBit(kGeoRunTimeShape);
}
else ComputeBBox();
}
//-----------------------------------------------------------------------------
TGeoCone::TGeoCone(const char *name, Double_t dz, Double_t rmin1, Double_t rmax1,
Double_t rmin2, Double_t rmax2)
:TGeoBBox(name, 0, 0, 0)
{
// Default constructor specifying minimum and maximum radius
SetBit(TGeoShape::kGeoCone);
SetConeDimensions(dz, rmin1, rmax1, rmin2, rmax2);
if ((dz<0) || (rmin1<0) || (rmax1<0) || (rmin2<0) || (rmax2<0)) {
SetBit(kGeoRunTimeShape);
}
else ComputeBBox();
}
//-----------------------------------------------------------------------------
TGeoCone::TGeoCone(Double_t *param)
:TGeoBBox(0, 0, 0)
{
// Default constructor specifying minimum and maximum radius
// param[0] = dz
// param[1] = Rmin1
// param[2] = Rmax1
// param[3] = Rmin2
// param[4] = Rmax2
SetBit(TGeoShape::kGeoCone);
SetDimensions(param);
if ((fDz<0) || (fRmin1<0) || (fRmax1<0) || (fRmin2<0) || (fRmax2<0))
SetBit(kGeoRunTimeShape);
else ComputeBBox();
}
//-----------------------------------------------------------------------------
TGeoCone::~TGeoCone()
{
// destructor
}
//-----------------------------------------------------------------------------
void TGeoCone::ComputeBBox()
{
// compute bounding box of the sphere
TGeoBBox *box = (TGeoBBox*)this;
box->SetBoxDimensions(TMath::Max(fRmax1, fRmax2), TMath::Max(fRmax1, fRmax2), fDz);
memset(fOrigin, 0, 3*sizeof(Double_t));
}
//-----------------------------------------------------------------------------
Bool_t TGeoCone::Contains(Double_t *point) const
{
// test if point is inside this cone
if (TMath::Abs(point[2]) > fDz) return kFALSE;
Double_t r2 = point[0]*point[0]+point[1]*point[1];
Double_t rl = 0.5*(fRmin2*(point[2]+fDz)+fRmin1*(fDz-point[2]))/fDz;
Double_t rh = 0.5*(fRmax2*(point[2]+fDz)+fRmax1*(fDz-point[2]))/fDz;
if ((r2<rl*rl) || (r2>rh*rh)) return kFALSE;
return kTRUE;
}
//-----------------------------------------------------------------------------
Double_t TGeoCone::DistToOutS(Double_t *point, Double_t *dir, Double_t dz,
Double_t rmin1, Double_t rmax1, Double_t rmin2, Double_t rmax2)
{
// compute distance from inside point to surface of the cone (static)
if (dz<=0) return kBig;
// compute distance to surface
// Do Z
Double_t sz = kBig;
if (dir[2]>0)
sz = (dz-point[2])/dir[2];
else
if (dir[2]<0) sz = -(dz+point[2])/dir[2];
// Do Rmin
Double_t sr1=kBig, sr2=kBig;
Double_t b,delta, znew;
Bool_t found = kFALSE;
if ((rmin1+rmin2)>0) {
TGeoCone::DistToCone(point, dir, rmin1, -dz, rmin2, dz, b, delta);
if (delta>0) {
sr1 = -b-delta;
if (sr1>0) {
znew = point[2]+sr1*dir[2];
if (TMath::Abs(znew)<dz) found=kTRUE;
}
if (!found) {
sr1 = -b+delta;
if (sr1>0) {
znew = point[2]+sr1*dir[2];
if (TMath::Abs(znew)>=dz) sr1=kBig;
} else {
sr1 = kBig;
}
}
}
}
// Do Rmax
found = kFALSE;
TGeoCone::DistToCone(point, dir, rmax1, -dz, rmax2, dz, b, delta);
if (delta>0) {
sr2 = -b-delta;
if (sr2>0) {
znew = point[2]+sr2*dir[2];
if (TMath::Abs(znew)<dz) found=kTRUE;
}
if (!found) {
sr2 = -b+delta;
if (sr2>0) {
znew = point[2]+sr2*dir[2];
if (TMath::Abs(znew)>=dz) sr2=kBig;
} else {
sr2 = kBig;
}
}
}
return TMath::Min(TMath::Min(sr1, sr2), sz);
}
//-----------------------------------------------------------------------------
Double_t TGeoCone::DistToOut(Double_t *point, Double_t *dir, Int_t iact, Double_t step, Double_t *safe) const
{
// compute distance from inside point to surface of the cone
if (iact<3 && safe) {
*safe = Safety(point, kTRUE);
if (iact==0) return kBig;
if ((iact==1) && (*safe>step)) return kBig;
}
// compute distance to surface
return TGeoCone::DistToOutS(point, dir, fDz, fRmin1, fRmax1, fRmin2, fRmax2);
}
//-----------------------------------------------------------------------------
Double_t TGeoCone::DistToInS(Double_t *point, Double_t *dir, Double_t dz,
Double_t rmin1, Double_t rmax1, Double_t rmin2, Double_t rmax2)
{
// compute distance from outside point to surface of the tube
// compute distance to Z planes
if (dz<=0) return kBig;
Double_t snxt = kBig;
Double_t ro1=0.5*(rmin1+rmin2);
Bool_t hasrmin = (ro1>0)?kTRUE:kFALSE;
Double_t ro2=0.5*(rmax1+rmax2);
Double_t tg2=0.5*(rmax2-rmax1)/dz;
Double_t r2=point[0]*point[0]+point[1]*point[1];
Double_t r=TMath::Sqrt(r2);
Double_t rout=tg2*point[2]+ro2;
Double_t xp, yp;
if ((point[2]<-dz) && (dir[2]>0)) {
snxt = (-dz-point[2])/dir[2];
xp = point[0]+snxt*dir[0];
yp = point[1]+snxt*dir[1];
r2 = xp*xp+yp*yp;
if ((r2>=rmin1*rmin1) && (r2<=rmax1*rmax1)) return snxt;
} else {
if ((point[2]>dz) && (dir[2]<0)) {
snxt = (dz-point[2])/dir[2];
xp = point[0]+snxt*dir[0];
yp = point[1]+snxt*dir[1];
r2 = xp*xp+yp*yp;
if ((r2>=rmin2*rmin2) && (r2<=rmax2*rmax2)) return snxt;
}
}
// compute distance to inner cone
Double_t din=kBig, dout=kBig;
Double_t b,delta,znew;
Bool_t found = kFALSE;
snxt = kBig;
if (hasrmin) {
TGeoCone::DistToCone(point, dir, rmin1, -dz, rmin2, dz, b, delta);
if (delta>0) {
din = -b-delta;
if (din>0) {
znew = point[2]+din*dir[2];
if (TMath::Abs(znew)<dz) found=kTRUE;
}
if (!found) {
din = -b+delta;
if (din>0) {
znew = point[2]+din*dir[2];
if (TMath::Abs(znew)>=dz) din=kBig;
} else {
din = kBig;
}
}
}
}
// compute distance to outer cone
if (r>rout) {
found = kFALSE;
TGeoCone::DistToCone(point, dir, rmax1, -dz, rmax2, dz, b, delta);
if (delta>0) {
dout = -b-delta;
if (dout>0) {
znew = point[2]+dout*dir[2];
if (TMath::Abs(znew)<dz) found=kTRUE;
}
if (!found) {
dout = -b+delta;
if (dout>0) {
znew = point[2]+dout*dir[2];
if (TMath::Abs(znew)>=dz) dout=kBig;
} else {
dout = kBig;
}
}
}
}
// printf("din=%f dout=%fn", din, dout);
snxt = TMath::Min(din, dout);
return snxt;
}
//-----------------------------------------------------------------------------
Double_t TGeoCone::DistToIn(Double_t *point, Double_t *dir, Int_t iact, Double_t step, Double_t *safe) const
{
// compute distance from outside point to surface of the tube
// compute safe radius
if (iact<3 && safe) {
*safe = Safety(point, kFALSE);
if (iact==0) return kBig;
if ((iact==1) && (*safe>step)) return kBig;
}
// compute distance to Z planes
return TGeoCone::DistToInS(point, dir, fDz, fRmin1, fRmax1, fRmin2, fRmax2);
}
//-----------------------------------------------------------------------------
void TGeoCone::DistToCone(Double_t *point, Double_t *dir, Double_t r1, Double_t z1, Double_t r2, Double_t z2,
Double_t &b, Double_t &delta)
{
// Static method to compute distance to a conical surface with :
// - r1, z1 - radius and Z position of lower base
// - r2, z2 - radius and Z position of upper base
Double_t dz = z2-z1;
delta = -1.;
if (dz<0) return;
Double_t ro0 = 0.5*(r1+r2);
Double_t fz = (r2-r1)/dz;
Double_t r0sq = point[0]*point[0] + point[1]*point[1];
Double_t rc = ro0 + fz*(point[2]-0.5*(z1+z2));
Double_t a = dir[0]*dir[0] + dir[1]*dir[1] - fz*fz*dir[2]*dir[2];
b = point[0]*dir[0] + point[1]*dir[1] - fz*rc*dir[2];
Double_t c = r0sq - rc*rc;
if (a==0) return;
a = 1./a;
b *= a;
c *= a;
delta = b*b - c;
if (delta>0) {
delta = TMath::Sqrt(delta);
} else {
delta = -1.;
}
}
//-----------------------------------------------------------------------------
Int_t TGeoCone::DistancetoPrimitive(Int_t px, Int_t py)
{
// compute closest distance from point px,py to each corner
Int_t n = gGeoManager->GetNsegments();
const Int_t numPoints = 4*n;
return ShapeDistancetoPrimitive(numPoints, px, py);
}
//-----------------------------------------------------------------------------
Double_t TGeoCone::DistToSurf(Double_t * /*point*/, Double_t * /*dir*/) const
{
// computes the distance to next surface of the sphere along a ray
// starting from given point to the given direction.
return kBig;
}
//-----------------------------------------------------------------------------
TGeoVolume *TGeoCone::Divide(TGeoVolume *voldiv, const char *divname, Int_t iaxis, Int_t ndiv,
Double_t start, Double_t step)
{
//--- Divide this cone shape belonging to volume "voldiv" into ndiv volumes
// called divname, from start position with the given step. Returns pointer
// to created division cell volume in case of Z divisions. For Z division
// creates all volumes with different shapes and returns pointer to volume that
// was divided. In case a wrong division axis is supplied, returns pointer to
// volume that was divided.
TGeoShape *shape; //--- shape to be created
TGeoVolume *vol; //--- division volume to be created
TGeoVolumeMulti *vmulti; //--- generic divided volume
TGeoPatternFinder *finder; //--- finder to be attached
TString opt = ""; //--- option to be attached
Int_t id;
Double_t end = start+ndiv*step;
switch (iaxis) {
case 1: //--- R division
Error("Divide","division of a cone on R not implemented");
return 0;
case 2: // --- Phi division
finder = new TGeoPatternCylPhi(voldiv, ndiv, start, end);
voldiv->SetFinder(finder);
finder->SetDivIndex(voldiv->GetNdaughters());
shape = new TGeoConeSeg(fDz, fRmin1, fRmax1, fRmin2, fRmax2, -step/2, step/2);
vol = new TGeoVolume(divname, shape, voldiv->GetMedium());
vmulti = gGeoManager->MakeVolumeMulti(divname, voldiv->GetMedium());
vmulti->AddVolume(vol);
opt = "Phi";
for (id=0; id<ndiv; id++) {
voldiv->AddNodeOffset(vol, id, start+id*step+step/2, opt.Data());
((TGeoNodeOffset*)voldiv->GetNodes()->At(voldiv->GetNdaughters()-1))->SetFinder(finder);
}
return vmulti;
case 3: //--- Z division
vmulti = gGeoManager->MakeVolumeMulti(divname, voldiv->GetMedium());
finder = new TGeoPatternZ(voldiv, ndiv, start, end);
voldiv->SetFinder(finder);
finder->SetDivIndex(voldiv->GetNdaughters());
for (id=0; id<ndiv; id++) {
Double_t z1 = start+id*step;
Double_t z2 = start+(id+1)*step;
Double_t rmin1n = 0.5*(fRmin1*(fDz-z1)+fRmin2*(fDz+z1))/fDz;
Double_t rmax1n = 0.5*(fRmax1*(fDz-z1)+fRmax2*(fDz+z1))/fDz;
Double_t rmin2n = 0.5*(fRmin1*(fDz-z2)+fRmin2*(fDz+z2))/fDz;
Double_t rmax2n = 0.5*(fRmax1*(fDz-z2)+fRmax2*(fDz+z2))/fDz;
shape = new TGeoCone(rmin1n, rmax1n, rmin2n, rmax2n, step/2);
vol = new TGeoVolume(divname, shape, voldiv->GetMedium());
vmulti->AddVolume(vol);
opt = "Z";
voldiv->AddNodeOffset(vol, id, start+id*step+step/2, opt.Data());
((TGeoNodeOffset*)voldiv->GetNodes()->At(voldiv->GetNdaughters()-1))->SetFinder(finder);
}
return vmulti;
default:
Error("Divide", "Wrong axis type for division");
return 0;
}
}
//-----------------------------------------------------------------------------
const char *TGeoCone::GetAxisName(Int_t iaxis) const
{
// Returns name of axis IAXIS.
switch (iaxis) {
case 1:
return "R";
case 2:
return "PHI";
case 3:
return "Z";
default:
return "undefined";
}
}
//-----------------------------------------------------------------------------
Double_t TGeoCone::GetAxisRange(Int_t iaxis, Double_t &xlo, Double_t &xhi) const
{
// Get range of shape for a given axis.
xlo = 0;
xhi = 0;
Double_t dx = 0;
switch (iaxis) {
case 2:
xlo = 0.;
xhi = 360.;
return 360.;
case 3:
xlo = -fDz;
xhi = fDz;
dx = xhi-xlo;
return dx;
}
return dx;
}
//-----------------------------------------------------------------------------
void TGeoCone::GetBoundingCylinder(Double_t *param) const
{
//--- Fill vector param[4] with the bounding cylinder parameters. The order
// is the following : Rmin, Rmax, Phi1, Phi2, dZ
param[0] = TMath::Min(fRmin1, fRmin2); // Rmin
param[0] *= param[0];
param[1] = TMath::Max(fRmax1, fRmax2); // Rmax
param[1] *= param[1];
param[2] = 0.; // Phi1
param[3] = 360.; // Phi1
}
//-----------------------------------------------------------------------------
TGeoShape *TGeoCone::GetMakeRuntimeShape(TGeoShape *mother, TGeoMatrix * /*mat*/) const
{
// in case shape has some negative parameters, these has to be computed
// in order to fit the mother
if (!TestBit(kGeoRunTimeShape)) return 0;
if (!mother->TestBit(kGeoCone)) {
Error("GetMakeRuntimeShape", "invalid mother");
return 0;
}
Double_t rmin1, rmax1, rmin2, rmax2, dz;
rmin1 = fRmin1;
rmax1 = fRmax1;
rmin2 = fRmin2;
rmax2 = fRmax2;
dz = fDz;
if (fDz<0) dz=((TGeoCone*)mother)->GetDz();
if (fRmin1<0)
rmin1 = ((TGeoCone*)mother)->GetRmin1();
if (fRmax1<0)
rmax1 = ((TGeoCone*)mother)->GetRmax1();
if (fRmin2<0)
rmin2 = ((TGeoCone*)mother)->GetRmin2();
if (fRmax2<0)
rmax2 = ((TGeoCone*)mother)->GetRmax2();
return (new TGeoCone(rmin1, rmax1, rmin2, rmax2, dz));
}
//-----------------------------------------------------------------------------
void TGeoCone::InspectShape() const
{
// print shape parameters
printf("*** TGeoCone parameters ***n");
printf(" dz = %11.5fn", fDz);
printf(" Rmin1 = %11.5fn", fRmin1);
printf(" Rmax1 = %11.5fn", fRmax1);
printf(" Rmin2 = %11.5fn", fRmin2);
printf(" Rmax2 = %11.5fn", fRmax2);
TGeoBBox::InspectShape();
}
//-----------------------------------------------------------------------------
void *TGeoCone::Make3DBuffer(const TGeoVolume *vol) const
{
TVirtualGeoPainter *painter = gGeoManager->GetGeomPainter();
if (!painter) return 0;
return painter->MakeTube3DBuffer(vol);
}
//-----------------------------------------------------------------------------
void TGeoCone::NextCrossing(TGeoParamCurve * /*c*/, Double_t * /*point*/) const
{
// computes next intersection point of curve c with this shape
}
//-----------------------------------------------------------------------------
void TGeoCone::Paint(Option_t *option)
{
// paint this shape according to option
TVirtualGeoPainter *painter = gGeoManager->GetGeomPainter();
if (!painter) return;
TGeoVolume *vol = gGeoManager->GetCurrentVolume();
if (vol->GetShape() != (TGeoShape*)this) return;
painter->PaintTube(this, option);
}
//-----------------------------------------------------------------------------
void TGeoCone::PaintNext(TGeoHMatrix *glmat, Option_t *option)
{
// paint this shape according to option
TVirtualGeoPainter *painter = gGeoManager->GetGeomPainter();
if (!painter) return;
painter->PaintTube(this, option, glmat);
}
//-----------------------------------------------------------------------------
Double_t TGeoCone::Safety(Double_t *point, Bool_t in) const
{
// computes the closest distance from given point to this shape, according
// to option. The matching point on the shape is stored in spoint.
Double_t saf[3];
Double_t ro1 = 0.5*(fRmin1+fRmin2);
Double_t tg1 = 0.5*(fRmin2-fRmin1)/fDz;
Double_t cr1 = 1./TMath::Sqrt(1.+tg1*tg1);
Double_t ro2 = 0.5*(fRmax1+fRmax2);
Double_t tg2 = 0.5*(fRmax2-fRmax1)/fDz;
Double_t cr2 = 1./TMath::Sqrt(1.+tg2*tg2);
Double_t r=TMath::Sqrt(point[0]*point[0]+point[1]*point[1]);
Double_t rin = tg1*point[2]+ro1;
Double_t rout = tg2*point[2]+ro2;
saf[0] = fDz-TMath::Abs(point[2]);
saf[1] = (ro1>0)?((r-rin)*cr1):kBig;
saf[2] = (rout-r)*cr2;
if (in) return saf[TMath::LocMin(3,saf)];
for (Int_t i=0; i<3; i++) saf[i]=-saf[i];
return saf[TMath::LocMax(3,saf)];
}
//-----------------------------------------------------------------------------
Double_t TGeoCone::SafetyS(Double_t *point, Bool_t in, Double_t dz, Double_t rmin1, Double_t rmax1,
Double_t rmin2, Double_t rmax2, Int_t skipz)
{
// computes the closest distance from given point to this shape, according
// to option. The matching point on the shape is stored in spoint.
Double_t saf[3];
Double_t ro1 = 0.5*(rmin1+rmin2);
Double_t tg1 = 0.5*(rmin2-rmin1)/dz;
Double_t cr1 = 1./TMath::Sqrt(1.+tg1*tg1);
Double_t ro2 = 0.5*(rmax1+rmax2);
Double_t tg2 = 0.5*(rmax2-rmax1)/dz;
Double_t cr2 = 1./TMath::Sqrt(1.+tg2*tg2);
Double_t r=TMath::Sqrt(point[0]*point[0]+point[1]*point[1]);
Double_t rin = tg1*point[2]+ro1;
Double_t rout = tg2*point[2]+ro2;
switch (skipz) {
case 1: // skip lower Z plane
saf[0] = dz - point[2];
break;
case 2: // skip upper Z plane
saf[0] = dz + point[2];
break;
case 3: // skip both
saf[0] = kBig;
default:
saf[0] = dz-TMath::Abs(point[2]);
}
saf[1] = (ro1>0)?((r-rin)*cr1):kBig;
saf[2] = (rout-r)*cr2;
if (in) return saf[TMath::LocMin(3,saf)];
for (Int_t i=0; i<3; i++) saf[i]=-saf[i];
return saf[TMath::LocMax(3,saf)];
}
//-----------------------------------------------------------------------------
void TGeoCone::SetConeDimensions(Double_t dz, Double_t rmin1, Double_t rmax1,
Double_t rmin2, Double_t rmax2)
{
if (rmin1>=0) {
if (rmax1>0) {
if (rmin1<=rmax1) {
// normal rmin/rmax
fRmin1 = rmin1;
fRmax1 = rmax1;
} else {
fRmin1 = rmax1;
fRmax1 = rmin1;
Warning("SetConeDimensions", "rmin1>rmax1 Switch rmin1<->rmax1");
SetBit(TGeoShape::kGeoBad);
}
} else {
// run-time
fRmin1 = rmin1;
fRmax1 = rmax1;
}
} else {
// run-time
fRmin1 = rmin1;
fRmax1 = rmax1;
}
if (rmin2>=0) {
if (rmax2>0) {
if (rmin2<=rmax2) {
// normal rmin/rmax
fRmin2 = rmin2;
fRmax2 = rmax2;
} else {
fRmin2 = rmax2;
fRmax2 = rmin2;
Warning("SetConeDimensions", "rmin2>rmax2 Switch rmin2<->rmax2");
SetBit(TGeoShape::kGeoBad);
}
} else {
// run-time
fRmin2 = rmin2;
fRmax2 = rmax2;
}
} else {
// run-time
fRmin2 = rmin2;
fRmax2 = rmax2;
}
fDz = dz;
}
//-----------------------------------------------------------------------------
void TGeoCone::SetDimensions(Double_t *param)
{
Double_t dz = param[0];
Double_t rmin1 = param[1];
Double_t rmax1 = param[2];
Double_t rmin2 = param[3];
Double_t rmax2 = param[4];
SetConeDimensions(dz, rmin1, rmax1, rmin2, rmax2);
}
//-----------------------------------------------------------------------------
void TGeoCone::SetPoints(Double_t *buff) const
{
// create cone mesh points
Double_t dz, phi, dphi;
Int_t j, n;
n = gGeoManager->GetNsegments();
dphi = 360./n;
dz = fDz;
Int_t indx = 0;
if (buff) {
for (j = 0; j < n; j++) {
phi = j*dphi*kDegRad;
buff[indx++] = fRmin1 * TMath::Cos(phi);
buff[indx++] = fRmin1 * TMath::Sin(phi);
buff[indx++] = -dz;
}
for (j = 0; j < n; j++) {
phi = j*dphi*kDegRad;
buff[indx++] = fRmax1 * TMath::Cos(phi);
buff[indx++] = fRmax1 * TMath::Sin(phi);
buff[indx++] = -dz;
}
for (j = 0; j < n; j++) {
phi = j*dphi*kDegRad;
buff[indx++] = fRmin2 * TMath::Cos(phi);
buff[indx++] = fRmin2 * TMath::Sin(phi);
buff[indx++] = dz;
}
for (j = 0; j < n; j++) {
phi = j*dphi*kDegRad;
buff[indx++] = fRmax2 * TMath::Cos(phi);
buff[indx++] = fRmax2 * TMath::Sin(phi);
buff[indx++] = dz;
}
}
}
//-----------------------------------------------------------------------------
void TGeoCone::SetPoints(Float_t *buff) const
{
// create cone mesh points
Double_t dz, phi, dphi;
Int_t j, n;
n = gGeoManager->GetNsegments();
dphi = 360./n;
dz = fDz;
Int_t indx = 0;
if (buff) {
for (j = 0; j < n; j++) {
phi = j*dphi*kDegRad;
buff[indx++] = fRmin1 * TMath::Cos(phi);
buff[indx++] = fRmin1 * TMath::Sin(phi);
buff[indx++] = -dz;
}
for (j = 0; j < n; j++) {
phi = j*dphi*kDegRad;
buff[indx++] = fRmax1 * TMath::Cos(phi);
buff[indx++] = fRmax1 * TMath::Sin(phi);
buff[indx++] = -dz;
}
for (j = 0; j < n; j++) {
phi = j*dphi*kDegRad;
buff[indx++] = fRmin2 * TMath::Cos(phi);
buff[indx++] = fRmin2 * TMath::Sin(phi);
buff[indx++] = dz;
}
for (j = 0; j < n; j++) {
phi = j*dphi*kDegRad;
buff[indx++] = fRmax2 * TMath::Cos(phi);
buff[indx++] = fRmax2 * TMath::Sin(phi);
buff[indx++] = dz;
}
}
}
//-----------------------------------------------------------------------------
void TGeoCone::Sizeof3D() const
{
// fill size of this 3-D object
TVirtualGeoPainter *painter = gGeoManager->GetGeomPainter();
if (!painter) return;
Int_t n = gGeoManager->GetNsegments();
Int_t numPoints = n*4;
Int_t numSegs = n*8;
Int_t numPolys = n*4;
painter->AddSize3D(numPoints, numSegs, numPolys);
}
ClassImp(TGeoConeSeg)
//-----------------------------------------------------------------------------
TGeoConeSeg::TGeoConeSeg()
{
// Default constructor
SetBit(TGeoShape::kGeoConeSeg);
fPhi1 = fPhi2 = 0.0;
}
//-----------------------------------------------------------------------------
TGeoConeSeg::TGeoConeSeg(Double_t dz, Double_t rmin1, Double_t rmax1,
Double_t rmin2, Double_t rmax2, Double_t phi1, Double_t phi2)
:TGeoCone(dz, rmin1, rmax1, rmin2, rmax2)
{
// Default constructor specifying minimum and maximum radius
SetBit(TGeoShape::kGeoConeSeg);
SetConsDimensions(dz, rmin1, rmax1, rmin2, rmax2, phi1, phi2);
ComputeBBox();
}
//-----------------------------------------------------------------------------
TGeoConeSeg::TGeoConeSeg(const char *name, Double_t dz, Double_t rmin1, Double_t rmax1,
Double_t rmin2, Double_t rmax2, Double_t phi1, Double_t phi2)
:TGeoCone(name, dz, rmin1, rmax1, rmin2, rmax2)
{
// Default constructor specifying minimum and maximum radius
SetBit(TGeoShape::kGeoConeSeg);
SetConsDimensions(dz, rmin1, rmax1, rmin2, rmax2, phi1, phi2);
ComputeBBox();
}
//-----------------------------------------------------------------------------
TGeoConeSeg::TGeoConeSeg(Double_t *param)
:TGeoCone(0,0,0,0,0)
{
// Default constructor specifying minimum and maximum radius
// param[0] = dz
// param[1] = Rmin1
// param[2] = Rmax1
// param[3] = Rmin2
// param[4] = Rmax2
// param[5] = phi1
// param[6] = phi2
SetBit(TGeoShape::kGeoConeSeg);
SetDimensions(param);
ComputeBBox();
}
//-----------------------------------------------------------------------------
TGeoConeSeg::~TGeoConeSeg()
{
// destructor
}
//-----------------------------------------------------------------------------
void TGeoConeSeg::ComputeBBox()
{
// compute bounding box of the tube segment
Double_t rmin, rmax;
rmin = TMath::Min(fRmin1, fRmin2);
rmax = TMath::Max(fRmax1, fRmax2);
Double_t xc[4];
Double_t yc[4];
xc[0] = rmax*TMath::Cos(fPhi1*kDegRad);
yc[0] = rmax*TMath::Sin(fPhi1*kDegRad);
xc[1] = rmax*TMath::Cos(fPhi2*kDegRad);
yc[1] = rmax*TMath::Sin(fPhi2*kDegRad);
xc[2] = rmin*TMath::Cos(fPhi1*kDegRad);
yc[2] = rmin*TMath::Sin(fPhi1*kDegRad);
xc[3] = rmin*TMath::Cos(fPhi2*kDegRad);
yc[3] = rmin*TMath::Sin(fPhi2*kDegRad);
Double_t xmin = xc[TMath::LocMin(4, &xc[0])];
Double_t xmax = xc[TMath::LocMax(4, &xc[0])];
Double_t ymin = yc[TMath::LocMin(4, &yc[0])];
Double_t ymax = yc[TMath::LocMax(4, &yc[0])];
Double_t dp = fPhi2-fPhi1;
Double_t ddp = -fPhi1;
if (ddp<0) ddp+= 360;
if (ddp<=dp) xmax = rmax;
ddp = 90-fPhi1;
if (ddp<0) ddp+= 360;
if (ddp<=dp) ymax = rmax;
ddp = 180-fPhi1;
if (ddp<0) ddp+= 360;
if (ddp<=dp) xmin = -rmax;
ddp = 270-fPhi1;
if (ddp<0) ddp+= 360;
if (ddp<=dp) ymin = -rmax;
fOrigin[0] = (xmax+xmin)/2;
fOrigin[1] = (ymax+ymin)/2;
fOrigin[2] = 0;
fDX = (xmax-xmin)/2;
fDY = (ymax-ymin)/2;
fDZ = fDz;
}
//-----------------------------------------------------------------------------
Bool_t TGeoConeSeg::Contains(Double_t *point) const
{
// test if point is inside this sphere
if (!TGeoCone::Contains(point)) return kFALSE;
Double_t phi = TMath::ATan2(point[1], point[0]) * kRadDeg;
if (phi < 0 ) phi+=360.;
Double_t dphi = fPhi2 - fPhi1;
Double_t ddp = phi-fPhi1;
if (ddp < 0) ddp+=360.;
// if (ddp > 360) ddp-=360;
if (ddp > dphi) return kFALSE;
return kTRUE;
}
//-----------------------------------------------------------------------------
Double_t TGeoConeSeg::DistToCons(Double_t *point, Double_t *dir, Double_t r1, Double_t z1, Double_t r2, Double_t z2, Double_t phi1, Double_t phi2)
{
// Static method to compute distance to a conical surface with :
// - r1, z1 - radius and Z position of lower base
// - r2, z2 - radius and Z position of upper base
// - phi1, phi2 - phi limits
Double_t dz = z2-z1;
if (dz<=0) {
return kBig;
}
Double_t dphi = phi2 - phi1;
if (dphi < 0) dphi+=360.;
// printf("phi1=%f phi2=%f dphi=%fn", phi1, phi2, dphi);
Double_t ro0 = 0.5*(r1+r2);
Double_t fz = (r2-r1)/dz;
Double_t r0sq = point[0]*point[0] + point[1]*point[1];
Double_t rc = ro0 + fz*(point[2]-0.5*(z1+z2));
Double_t a = dir[0]*dir[0] + dir[1]*dir[1] - fz*fz*dir[2]*dir[2];
Double_t b = point[0]*dir[0] + point[1]*dir[1] - fz*rc*dir[2];
Double_t c = r0sq - rc*rc;
if (a==0) return kBig;
a = 1./a;
b *= a;
c *= a;
Double_t delta = b*b - c;
if (delta<0) return kBig;
delta = TMath::Sqrt(delta);
Double_t snxt = -b-delta;
Double_t ptnew[3];
Double_t ddp, phi;
if (snxt>0) {
// check Z range
ptnew[2] = point[2] + snxt*dir[2];
if (((ptnew[2]-z1)*(ptnew[2]-z2)) < 0) {
// check phi range
ptnew[0] = point[0] + snxt*dir[0];
ptnew[1] = point[1] + snxt*dir[1];
phi = TMath::ATan2(ptnew[1], ptnew[0]) * kRadDeg;
if (phi < 0 ) phi+=360.;
ddp = phi-phi1;
if (ddp < 0) ddp+=360.;
// printf("snxt1=%f phi=%f ddp=%fn", snxt, phi, ddp);
if (ddp<=dphi) return snxt;
}
}
snxt = -b+delta;
if (snxt>0) {
// check Z range
ptnew[2] = point[2] + snxt*dir[2];
if (((ptnew[2]-z1)*(ptnew[2]-z2)) < 0) {
// check phi range
ptnew[0] = point[0] + snxt*dir[0];
ptnew[1] = point[1] + snxt*dir[1];
phi = TMath::ATan2(ptnew[1], ptnew[0]) * kRadDeg;
if (phi < 0 ) phi+=360.;
ddp = phi-phi1;
if (ddp < 0) ddp+=360.;
// printf("snxt2=%f phi=%f ddp=%fn", snxt, phi, ddp);
if (ddp<=dphi) return snxt;
}
}
return kBig;
}
//-----------------------------------------------------------------------------
Double_t TGeoConeSeg::DistToPhiMin(Double_t *point, Double_t *dir, Double_t s1, Double_t c1,
Double_t s2, Double_t c2, Double_t sm, Double_t cm)
{
// compute distance from poin to both phi planes. Return minimum.
Double_t sfi1=kBig;
Double_t sfi2=kBig;
Double_t s=0;
Double_t un = dir[0]*s1-dir[1]*c1;
if (un!=0) {
s=(point[1]*c1-point[0]*s1)/un;
if (s>=0) {
if (((point[1]+s*dir[1])*cm-(point[0]+s*dir[0])*sm)<=0) sfi1=s;
}
}
un = dir[0]*s2-dir[1]*c2;
if (un!=0) {
s=(point[1]*c2-point[0]*s2)/un;
if (s>=0) {
if (((point[1]+s*dir[1])*cm-(point[0]+s*dir[0])*sm)>=0) sfi2=s;
}
}
return TMath::Min(sfi1, sfi2);
}
//-----------------------------------------------------------------------------
Double_t TGeoConeSeg::DistToOutS(Double_t *point, Double_t *dir, Double_t dz, Double_t rmin1, Double_t rmax1,
Double_t rmin2, Double_t rmax2, Double_t phi1, Double_t phi2)
{
// compute distance from inside point to surface of the tube segment
if (dz<=0) return kBig;
Double_t ph1 = phi1*kDegRad;
Double_t ph2 = phi2*kDegRad;
if (ph2<ph1) ph2+=2.*TMath::Pi();
Double_t phim = 0.5*(ph1+ph2);
Double_t cm = TMath::Cos(phim);
Double_t sm = TMath::Sin(phim);
Double_t c1 = TMath::Cos(ph1);
Double_t c2 = TMath::Cos(ph2);
Double_t s1 = TMath::Sin(ph1);
Double_t s2 = TMath::Sin(ph2);
// compute distance to surface
// Do Z
Double_t sz = kBig;
if (dir[2]>0) {
sz = (dz-point[2])/dir[2];
} else {
if (dir[2]<0)
sz = -(dz+point[2])/dir[2];
}
// check conical surfaces
Double_t sr1 = TGeoConeSeg::DistToCons(point, dir, rmin1, -dz, rmin2, dz, phi1, phi2);
Double_t sr2 = TGeoConeSeg::DistToCons(point, dir, rmax1, -dz, rmax2, dz, phi1, phi2);
Double_t sr = TMath::Min(sr1, sr2);
// phi planes
Double_t sfmin=DistToPhiMin(point, dir, s1, c1, s2, c2, sm, cm);
return TMath::Min(TMath::Min(sz,sr), sfmin);
}
//-----------------------------------------------------------------------------
Double_t TGeoConeSeg::DistToOut(Double_t *point, Double_t *dir, Int_t iact, Double_t step, Double_t *safe) const
{
// compute distance from inside point to surface of the tube segment
Double_t phi1 = fPhi1*kDegRad;
Double_t phi2 = fPhi2*kDegRad;
Double_t c1 = TMath::Cos(phi1);
Double_t c2 = TMath::Cos(phi2);
Double_t s1 = TMath::Sin(phi1);
Double_t s2 = TMath::Sin(phi2);
if (iact<3 && safe) {
*safe = TGeoConeSeg::SafetyS(point, kTRUE, fDz,fRmin1,fRmax1,fRmin2,fRmax2,c1,s1,c2,s2);
if (iact==0) return kBig;
if ((iact==1) && (*safe>step)) return kBig;
}
// compute distance to surface
// Do Z
Double_t sz = kBig;
if (dir[2]>0) {
sz = (fDz-point[2])/dir[2];
} else {
if (dir[2]<0)
sz = -(fDz+point[2])/dir[2];
}
// check conical surfaces
Double_t sr1 = TGeoConeSeg::DistToCons(point, dir, fRmin1, -fDz, fRmin2, fDz, fPhi1, fPhi2);
Double_t sr2 = TGeoConeSeg::DistToCons(point, dir, fRmax1, -fDz, fRmax2, fDz, fPhi1, fPhi2);
Double_t sr = TMath::Min(sr1, sr2);
// phi planes
Double_t phim = 0.5*(phi1+phi2);
Double_t cm = TMath::Cos(phim);
Double_t sm = TMath::Sin(phim);
Double_t sfmin=DistToPhiMin(point, dir, s1, c1, s2, c2, sm, cm);
return TMath::Min(TMath::Min(sz,sr), sfmin);
}
//-----------------------------------------------------------------------------
Double_t TGeoConeSeg::DistToInS(Double_t *point, Double_t *dir, Double_t rmin1, Double_t rmax1,
Double_t rmin2, Double_t rmax2, Double_t dz, Double_t phi1, Double_t phi2)
{
// compute distance from outside point to surface of arbitrary tube
Double_t snxt=kBig;
if (dz<=0) return kBig;
Double_t ro1=0.5*(rmin1+rmin2);
Double_t tg1=0.5*(rmin2-rmin1)/dz;
Double_t ro2=0.5*(rmax1+rmax2);
Double_t tg2=0.5*(rmax2-rmax1)/dz;
Double_t ph1 = phi1*kDegRad;
Double_t ph2 = phi2*kDegRad;
Double_t c1 = TMath::Cos(ph1);
Double_t s1 = TMath::Sin(ph1);
Double_t c2 = TMath::Cos(ph2);
Double_t s2 = TMath::Sin(ph2);
Double_t fio = 0.5*(ph1+ph2);
Double_t cfio = TMath::Cos(fio);
Double_t sfio = TMath::Sin(fio);
Double_t dfi = 0.5*(ph2-ph1);
Double_t cdfi = TMath::Cos(dfi);
Double_t cpsi;
// intersection with Z planes
Double_t s, xi, yi, zi, riq, r1q, r2q;
if (TMath::Abs(point[2])>dz) {
if ((point[2]*dir[2])<0) {
s=(TMath::Abs(point[2])-dz)/TMath::Abs(dir[2]);
xi=point[0]+s*dir[0];
yi=point[1]+s*dir[1];
riq=xi*xi+yi*yi;
if (point[2]<0) {
r1q=rmin1*rmin1;
r2q=rmax1*rmax1;
} else {
r1q=rmin2*rmin2;
r2q=rmax2*rmax2;
}
if ((r1q<=riq) && (riq<=r2q)) {
gGeoManager->SetNormalChecked(TMath::Abs(dir[2]));
if (riq==0) return s;
cpsi=(xi*cfio+yi*sfio)/TMath::Sqrt(riq);
if (cpsi>=cdfi) return s;
}
}
}
// intersection with cones
Double_t sr1 = TGeoConeSeg::DistToCons(point, dir, rmin1, -dz, rmin2, dz, phi1, phi2);
Double_t sr2 = TGeoConeSeg::DistToCons(point, dir, rmax1, -dz, rmax2, dz, phi1, phi2);
snxt = TMath::Min(sr1, sr2);
// check phi planes
Double_t un;
un=dir[0]*s1-dir[1]*c1;
if (un!=0) {
s=(point[1]*c1-point[0]*s1)/un;
if ((s>=0) && (s<snxt)) {
zi=point[2]+s*dir[2];
if (TMath::Abs(zi)<=dz) {
xi=point[0]+s*dir[0];
yi=point[1]+s*dir[1];
riq=xi*xi+yi*yi;
r1q=(tg1*zi+ro1)*(tg1*zi+ro1);
r2q=(tg2*zi+ro2)*(tg2*zi+ro2);
if ((r1q<=riq) && (riq<=r2q)) {
if ((yi*cfio-xi*sfio)<=0) {
snxt = s;
gGeoManager->SetNormalChecked(TMath::Abs(un));
}
}
}
}
}
un=dir[0]*s2-dir[1]*c2;
if (un!=0) {
s=(point[1]*c2-point[0]*s2)/un;
if ((s>=0) && (s<snxt)) {
zi=point[2]+s*dir[2];
if (TMath::Abs(zi)<=dz) {
xi=point[0]+s*dir[0];
yi=point[1]+s*dir[1];
riq=xi*xi+yi*yi;
r1q=(tg1*zi+ro1)*(tg1*zi+ro1);
r2q=(tg2*zi+ro2)*(tg2*zi+ro2);
if ((r1q<=riq) && (riq<=r2q)) {
if ((yi*cfio-xi*sfio)>=0) {
gGeoManager->SetNormalChecked(TMath::Abs(un));
snxt = s;
}
}
}
}
}
return snxt;
}
//-----------------------------------------------------------------------------
Double_t TGeoConeSeg::DistToIn(Double_t *point, Double_t *dir, Int_t iact, Double_t step, Double_t *safe) const
{
// compute distance from outside point to surface of the tube
// compute safe radius
if (iact<3 && safe) {
*safe = Safety(point, kFALSE);
if (iact==0) return kBig;
if ((iact==1) && (*safe>step)) return kBig;
}
return TGeoConeSeg::DistToInS(point, dir,fRmin1,fRmax1,fRmin2,fRmax2,fDz, fPhi1, fPhi2);
}
//-----------------------------------------------------------------------------
Int_t TGeoConeSeg::DistancetoPrimitive(Int_t px, Int_t py)
{
// compute closest distance from point px,py to each corner
Int_t n = gGeoManager->GetNsegments()+1;
const Int_t numPoints = 4*n;
return ShapeDistancetoPrimitive(numPoints, px, py);
}
//-----------------------------------------------------------------------------
Double_t TGeoConeSeg::DistToSurf(Double_t * /*point*/, Double_t * /*dir*/) const
{
// computes the distance to next surface of the sphere along a ray
// starting from given point to the given direction.
return kBig;
}
//-----------------------------------------------------------------------------
TGeoVolume *TGeoConeSeg::Divide(TGeoVolume *voldiv, const char *divname, Int_t iaxis, Int_t ndiv,
Double_t start, Double_t step)
{
//--- Divide this cone segment shape belonging to volume "voldiv" into ndiv volumes
// called divname, from start position with the given step. Returns pointer
// to created division cell volume in case of Z divisions. For Z division
// creates all volumes with different shapes and returns pointer to volume that
// was divided. In case a wrong division axis is supplied, returns pointer to
// volume that was divided.
TGeoShape *shape; //--- shape to be created
TGeoVolume *vol; //--- division volume to be created
TGeoVolumeMulti *vmulti; //--- generic divided volume
TGeoPatternFinder *finder; //--- finder to be attached
TString opt = ""; //--- option to be attached
Double_t dphi;
Int_t id;
Double_t end = start+ndiv*step;
switch (iaxis) {
case 1: //--- R division
Error("Divide","division of a cone segment on R not implemented");
return 0;
case 2: //--- Phi division
dphi = fPhi2-fPhi1;
if (dphi<0) dphi+=360.;
finder = new TGeoPatternCylPhi(voldiv, ndiv, start, end);
voldiv->SetFinder(finder);
finder->SetDivIndex(voldiv->GetNdaughters());
shape = new TGeoConeSeg(fDz, fRmin1, fRmax1, fRmin2, fRmax2, -step/2, step/2);
vol = new TGeoVolume(divname, shape, voldiv->GetMedium());
vmulti = gGeoManager->MakeVolumeMulti(divname, voldiv->GetMedium());
vmulti->AddVolume(vol);
opt = "Phi";
for (id=0; id<ndiv; id++) {
voldiv->AddNodeOffset(vol, id, start+id*step+step/2, opt.Data());
((TGeoNodeOffset*)voldiv->GetNodes()->At(voldiv->GetNdaughters()-1))->SetFinder(finder);
}
return vmulti;
case 3: //--- Z division
finder = new TGeoPatternZ(voldiv, ndiv, start, end);
vmulti = gGeoManager->MakeVolumeMulti(divname, voldiv->GetMedium());
voldiv->SetFinder(finder);
finder->SetDivIndex(voldiv->GetNdaughters());
for (id=0; id<ndiv; id++) {
Double_t z1 = start+id*step;
Double_t z2 = start+(id+1)*step;
Double_t rmin1n = 0.5*(fRmin1*(fDz-z1)+fRmin2*(fDz+z1))/fDz;
Double_t rmax1n = 0.5*(fRmax1*(fDz-z1)+fRmax2*(fDz+z1))/fDz;
Double_t rmin2n = 0.5*(fRmin1*(fDz-z2)+fRmin2*(fDz+z2))/fDz;
Double_t rmax2n = 0.5*(fRmax1*(fDz-z2)+fRmax2*(fDz+z2))/fDz;
shape = new TGeoConeSeg(step/2, rmin1n, rmax1n, rmin2n, rmax2n, fPhi1, fPhi2);
vol = new TGeoVolume(divname, shape, voldiv->GetMedium());
vmulti->AddVolume(vol);
opt = "Z";
voldiv->AddNodeOffset(vol, id, start+id*step+step/2, opt.Data());
((TGeoNodeOffset*)voldiv->GetNodes()->At(voldiv->GetNdaughters()-1))->SetFinder(finder);
}
return vmulti;
default:
Error("Divide", "Wrong axis type for division");
return 0;
}
}
//-----------------------------------------------------------------------------
Double_t TGeoConeSeg::GetAxisRange(Int_t iaxis, Double_t &xlo, Double_t &xhi) const
{
// Get range of shape for a given axis.
xlo = 0;
xhi = 0;
Double_t dx = 0;
switch (iaxis) {
case 2:
xlo = fPhi1;
xhi = fPhi2;
dx = xhi-xlo;
return dx;
case 3:
xlo = -fDz;
xhi = fDz;
dx = xhi-xlo;
return dx;
}
return dx;
}
//-----------------------------------------------------------------------------
void TGeoConeSeg::GetBoundingCylinder(Double_t *param) const
{
//--- Fill vector param[4] with the bounding cylinder parameters. The order
// is the following : Rmin, Rmax, Phi1, Phi2
param[0] = TMath::Min(fRmin1, fRmin2); // Rmin
param[0] *= param[0];
param[1] = TMath::Max(fRmax1, fRmax2); // Rmax
param[1] *= param[1];
param[2] = (fPhi1<0)?(fPhi1+360.):fPhi1; // Phi1
param[3] = fPhi2; // Phi2
while (param[3]<param[2]) param[3]+=360.;
}
//-----------------------------------------------------------------------------
TGeoShape *TGeoConeSeg::GetMakeRuntimeShape(TGeoShape *mother, TGeoMatrix * /*mat*/) const
{
// in case shape has some negative parameters, these has to be computed
// in order to fit the mother
if (!TestBit(kGeoRunTimeShape)) return 0;
if (!mother->TestBit(kGeoConeSeg)) {
Error("GetMakeRuntimeShape", "invalid mother");
return 0;
}
Double_t rmin1, rmax1, rmin2, rmax2, dz;
rmin1 = fRmin1;
rmax1 = fRmax1;
rmin2 = fRmin2;
rmax2 = fRmax2;
dz = fDz;
if (fDz<0) dz=((TGeoCone*)mother)->GetDz();
if (fRmin1<0)
rmin1 = ((TGeoCone*)mother)->GetRmin1();
if ((fRmax1<0) || (fRmax1<fRmin1))
rmax1 = ((TGeoCone*)mother)->GetRmax1();
if (fRmin2<0)
rmin2 = ((TGeoCone*)mother)->GetRmin2();
if ((fRmax2<0) || (fRmax2<fRmin2))
rmax2 = ((TGeoCone*)mother)->GetRmax2();
return (new TGeoConeSeg(rmin1, rmax1, rmin2, rmax2, dz, fPhi1, fPhi2));
}
//-----------------------------------------------------------------------------
void TGeoConeSeg::InspectShape() const
{
// print shape parameters
printf("*** TGeoConeSeg parameters ***n");
printf(" dz = %11.5fn", fDz);
printf(" Rmin1 = %11.5fn", fRmin1);
printf(" Rmax1 = %11.5fn", fRmax1);
printf(" Rmin2 = %11.5fn", fRmin2);
printf(" Rmax2 = %11.5fn", fRmax2);
printf(" phi1 = %11.5fn", fPhi1);
printf(" phi2 = %11.5fn", fPhi2);
TGeoBBox::InspectShape();
}
//-----------------------------------------------------------------------------
void *TGeoConeSeg::Make3DBuffer(const TGeoVolume *vol) const
{
TVirtualGeoPainter *painter = gGeoManager->GetGeomPainter();
if (!painter) return 0;
return painter->MakeTubs3DBuffer(vol);
}
//-----------------------------------------------------------------------------
void TGeoConeSeg::Paint(Option_t *option)
{
// paint this shape according to option
TVirtualGeoPainter *painter = gGeoManager->GetGeomPainter();
if (!painter) return;
TGeoVolume *vol = gGeoManager->GetCurrentVolume();
if (vol->GetShape() != (TGeoShape*)this) return;
painter->PaintTubs(this, option);
}
//-----------------------------------------------------------------------------
void TGeoConeSeg::PaintNext(TGeoHMatrix *glmat, Option_t *option)
{
// paint this shape according to option
TVirtualGeoPainter *painter = gGeoManager->GetGeomPainter();
if (!painter) return;
painter->PaintTubs(this, option, glmat);
}
//-----------------------------------------------------------------------------
void TGeoConeSeg::NextCrossing(TGeoParamCurve * /*c*/, Double_t * /*point*/) const
{
// computes next intersection point of curve c with this shape
}
//-----------------------------------------------------------------------------
Double_t TGeoConeSeg::Safety(Double_t *point, Bool_t in) const
{
// computes the closest distance from given point to this shape, according
// to option. The matching point on the shape is stored in spoint.
Double_t saf[4];
Double_t phi1 = fPhi1*kDegRad;
Double_t phi2 = fPhi2*kDegRad;
Double_t c1 = TMath::Cos(phi1);
Double_t s1 = TMath::Sin(phi1);
Double_t c2 = TMath::Cos(phi2);
Double_t s2 = TMath::Sin(phi2);
Double_t ro1 = 0.5*(fRmin1+fRmin2);
Double_t tg1 = 0.5*(fRmin2-fRmin1)/fDz;
Double_t cr1 = 1./TMath::Sqrt(1.+tg1*tg1);
Double_t ro2 = 0.5*(fRmax1+fRmax2);
Double_t tg2 = 0.5*(fRmax2-fRmax1)/fDz;
Double_t cr2 = 1./TMath::Sqrt(1.+tg2*tg2);
Double_t r=TMath::Sqrt(point[0]*point[0]+point[1]*point[1]);
Double_t rin = tg1*point[2]+ro1;
Double_t rout = tg2*point[2]+ro2;
saf[0] = fDz-TMath::Abs(point[2]); // positive if inside
saf[1] = (r-rin)*cr1;
saf[2] = (rout-r)*cr2;
saf[3] = TGeoShape::SafetyPhi(point, in, c1,s1,c2,s2);
if (in) return saf[TMath::LocMin(4,saf)];
for (Int_t i=0; i<4; i++) saf[i]=-saf[i];
return saf[TMath::LocMax(4,saf)];
}
//-----------------------------------------------------------------------------
Double_t TGeoConeSeg::SafetyS(Double_t *point, Bool_t in, Double_t dz, Double_t rmin1, Double_t rmax1,
Double_t rmin2, Double_t rmax2, Double_t c1, Double_t s1, Double_t c2, Double_t s2, Int_t skipz)
{
// Static method to compute the closest distance from given point to this shape.
Double_t saf[4];
Double_t ro1 = 0.5*(rmin1+rmin2);
Double_t tg1 = 0.5*(rmin2-rmin1)/dz;
Double_t cr1 = 1./TMath::Sqrt(1.+tg1*tg1);
Double_t ro2 = 0.5*(rmax1+rmax2);
Double_t tg2 = 0.5*(rmax2-rmax1)/dz;
Double_t cr2 = 1./TMath::Sqrt(1.+tg2*tg2);
Double_t r=TMath::Sqrt(point[0]*point[0]+point[1]*point[1]);
Double_t rin = tg1*point[2]+ro1;
Double_t rout = tg2*point[2]+ro2;
switch (skipz) {
case 1: // skip lower Z plane
saf[0] = dz - point[2];
break;
case 2: // skip upper Z plane
saf[0] = dz + point[2];
break;
case 3: // skip both
saf[0] = kBig;
default:
saf[0] = dz-TMath::Abs(point[2]);
}
saf[1] = (r-rin)*cr1;
saf[2] = (rout-r)*cr2;
saf[3] = TGeoShape::SafetyPhi(point,in,c1,s1,c2,s2);
if (in) return saf[TMath::LocMin(4,saf)];
for (Int_t i=0; i<4; i++) saf[i]=-saf[i];
return saf[TMath::LocMax(4,saf)];
}
//-----------------------------------------------------------------------------
void TGeoConeSeg::SetConsDimensions(Double_t dz, Double_t rmin1, Double_t rmax1,
Double_t rmin2, Double_t rmax2, Double_t phi1, Double_t phi2)
{
fDz = dz;
fRmin1 = rmin1;
fRmax1 = rmax1;
fRmin2 = rmin2;
fRmax2 = rmax2;
fPhi1 = phi1;
if (fPhi1<0) fPhi1+=360.;
fPhi2 = phi2;
while (fPhi2<fPhi1) fPhi2+=360.;
}
//-----------------------------------------------------------------------------
void TGeoConeSeg::SetDimensions(Double_t *param)
{
Double_t dz = param[0];
Double_t rmin1 = param[1];
Double_t rmax1 = param[2];
Double_t rmin2 = param[3];
Double_t rmax2 = param[4];
Double_t phi1 = param[5];
Double_t phi2 = param[6];
SetConsDimensions(dz, rmin1, rmax1,rmin2, rmax2, phi1, phi2);
}
//-----------------------------------------------------------------------------
void TGeoConeSeg::SetPoints(Double_t *buff) const
{
// create cone segment mesh points
Int_t j, n;
Float_t dphi,phi,phi1, phi2,dz;
n = gGeoManager->GetNsegments()+1;
dz = fDz;
phi1 = fPhi1;
phi2 = fPhi2;
dphi = (phi2-phi1)/(n-1);
Int_t indx = 0;
if (buff) {
for (j = 0; j < n; j++) {
phi = (fPhi1+j*dphi)*kDegRad;
buff[indx++] = fRmin1 * TMath::Cos(phi);
buff[indx++] = fRmin1 * TMath::Sin(phi);
buff[indx++] = -dz;
}
for (j = 0; j < n; j++) {
phi = (fPhi1+j*dphi)*kDegRad;
buff[indx++] = fRmax1 * TMath::Cos(phi);
buff[indx++] = fRmax1 * TMath::Sin(phi);
buff[indx++] = -dz;
}
for (j = 0; j < n; j++) {
phi = (fPhi1+j*dphi)*kDegRad;
buff[indx++] = fRmin2 * TMath::Cos(phi);
buff[indx++] = fRmin2 * TMath::Sin(phi);
buff[indx++] = dz;
}
for (j = 0; j < n; j++) {
phi = (fPhi1+j*dphi)*kDegRad;
buff[indx++] = fRmax2 * TMath::Cos(phi);
buff[indx++] = fRmax2 * TMath::Sin(phi);
buff[indx++] = dz;
}
}
}
//-----------------------------------------------------------------------------
void TGeoConeSeg::SetPoints(Float_t *buff) const
{
// create cone segment mesh points
Int_t j, n;
Float_t dphi,phi,phi1, phi2,dz;
n = gGeoManager->GetNsegments()+1;
dz = fDz;
phi1 = fPhi1;
phi2 = fPhi2;
dphi = (phi2-phi1)/(n-1);
Int_t indx = 0;
if (buff) {
for (j = 0; j < n; j++) {
phi = (fPhi1+j*dphi)*kDegRad;
buff[indx++] = fRmin1 * TMath::Cos(phi);
buff[indx++] = fRmin1 * TMath::Sin(phi);
buff[indx++] = -dz;
}
for (j = 0; j < n; j++) {
phi = (fPhi1+j*dphi)*kDegRad;
buff[indx++] = fRmax1 * TMath::Cos(phi);
buff[indx++] = fRmax1 * TMath::Sin(phi);
buff[indx++] = -dz;
}
for (j = 0; j < n; j++) {
phi = (fPhi1+j*dphi)*kDegRad;
buff[indx++] = fRmin2 * TMath::Cos(phi);
buff[indx++] = fRmin2 * TMath::Sin(phi);
buff[indx++] = dz;
}
for (j = 0; j < n; j++) {
phi = (fPhi1+j*dphi)*kDegRad;
buff[indx++] = fRmax2 * TMath::Cos(phi);
buff[indx++] = fRmax2 * TMath::Sin(phi);
buff[indx++] = dz;
}
}
}
//-----------------------------------------------------------------------------
void TGeoConeSeg::Sizeof3D() const
{
// fill size of this 3-D object
TVirtualGeoPainter *painter = gGeoManager->GetGeomPainter();
if (!painter) return;
Int_t n = gGeoManager->GetNsegments()+1;
Int_t numPoints = n*4;
Int_t numSegs = n*8;
Int_t numPolys = n*4-2;
painter->AddSize3D(numPoints, numSegs, numPolys);
}
ROOT page - Class index - Top of the page
This page has been automatically generated. If you have any comments or suggestions about the page layout send a mail to ROOT support, or contact the developers with any questions or problems regarding ROOT.