towards NLO SMEFT global fit at e+e-: RG Mixing between Higgs & Top operators

ongoing work with Sunghoon Jung, Junghwan Lee (Seoul National U.), Martin Perello, Marcel Vos (Valencia U.)

Junping Tian (U. Tokyo)

the 27th Meeting of New Higgs Working Group, Dec. 13-14, 2019 @ Osaka U.

introduction: SM Effective Field Theory @ future e+e-

$$\mathcal{L}_{\rm eff} = \mathcal{L}_{\rm SM} + \Delta \mathcal{L}$$

$$= \mathcal{L}_{\rm SM} + \sum_{i} \frac{c_i}{\Lambda^{d_i - 4}} O_i$$

- (background) kappa formalism not suitable for precision Higgs coupling determination @ future e+e-: model-dependent; radiative corrections
- SMEFT provides a more model independent formalism
- most general effects from BSM represented by higher dimensional ops.
- respect SU(3)xSU(2)xU(1) gauge symmetries
- consistently relate BSM effects in Higgs, W/Z, top, 2-fermion physics: provide a global view of roles of various measurements @ future e+e-

SMEFT @ future e+e-: some assumptions & simplifications

$$\mathcal{L}_{\rm eff} = \mathcal{L}_{\rm SM} + \Delta \mathcal{L}$$

$$= \mathcal{L}_{\rm SM} + \sum_{i} \frac{c_i}{\Lambda^{d_i - 4}} O_i$$

assume ∧ >> v : suggested by new particle searches at LHC Run 2
justify the analysis at dimension-6 operators
there are 84 of such operators for 1 fermion generation

assuming B & L number conservation, there are 59

 there exists a smaller but complete set relevant to Higgs couplings determination at e+e-

SMEFT global fit @ e+e-

(Barklow et al, arXiv:1708.09079, 1708.08912; + many papers by other groups)

$$\begin{split} \Delta \mathcal{L} &= \frac{c_H}{2v^2} \partial^{\mu} (\Phi^{\dagger} \Phi) \partial_{\mu} (\Phi^{\dagger} \Phi) + \frac{c_T}{2v^2} (\Phi^{\dagger} \overleftrightarrow{D}^{\mu} \Phi) (\Phi^{\dagger} \overleftrightarrow{D}_{\mu} \Phi) - \frac{c_6 \lambda}{v^2} (\Phi^{\dagger} \Phi)^3 \\ &+ \frac{g^2 c_{WW}}{m_W^2} \Phi^{\dagger} \Phi W^a_{\mu\nu} W^{a\mu\nu} + \frac{4gg' c_{WB}}{m_W^2} \Phi^{\dagger} t^a \Phi W^a_{\mu\nu} B^{\mu\nu} \\ &+ \frac{g'^2 c_{BB}}{m_W^2} \Phi^{\dagger} \Phi B_{\mu\nu} B^{\mu\nu} + \frac{g^3 c_{3W}}{m_W^2} \epsilon_{abc} W^a_{\mu\nu} W^{b\nu}{}_{\rho} W^{c\rho\mu} \\ &+ i \frac{c_{HL}}{v^2} (\Phi^{\dagger} \overleftrightarrow{D}^{\mu} \Phi) (\overline{L} \gamma_{\mu} L) + 4i \frac{c'_{HL}}{v^2} (\Phi^{\dagger} t^a \overleftrightarrow{D}^{\mu} \Phi) (\overline{L} \gamma_{\mu} t^a L) \\ &+ i \frac{c_{HE}}{v^2} (\Phi^{\dagger} \overleftrightarrow{D}^{\mu} \Phi) (\overline{e} \gamma_{\mu} e) \;. \end{split}$$

in total 23 parameters: 17 D-6 operators
 + 4 SM parameters (g, g', v, λ) + 2 for Higgs exotic decays

a complete subset (@LO) for Higgs physics at e+e-

SMEFT global fit: important implications for future Higgs factories in particular at their initial stages

ILC250: 2 ab⁻¹ FCCee240: 5 ab⁻¹

	,				
	2/ab-250	+4/ab-500	5/ab-250	+ 1.5/ab-350	
coupling	pol.	pol.	unpol.	unpol	
HZZ	0.50	0.35	0.41	0.34	
HWW	0.50	0.35	0.42	0.35	
Hbb	0.99	0.59	0.72	0.62	(arXiv:1903.01629)
$H \tau \tau$	1.1	0.75	0.81	0.71	(, , , , , , , , , , , , , , , , , , ,
Hgg	1.6	0.96	1.1	0.96	(arViv: 1000, 11000)
Hcc	1.8	1.2	1.2	1.1	(alviv.1900.11299)
$H\gamma\gamma$	1.1	1.0	1.0	1.0	
$H\gamma Z$	9.1	6.6	9.5	8.1	
$H\mu\mu$	4.0	3.8	3.8	3.7	
Htt	-	6.3	-	-	
HHH	-	27	-	-	
Γ_{tot}	2.3	1.6	1.6	1.4	
Γ_{inv}	0.36	0.32	0.34	0.30	
Γ_{other}	1.6	1.2	1.1	0.94	

see recent discussions for European Strategy Update: 1905.03764; 1910.11775

precision Higgs couplings; model discriminations; global views; ...

SMEFT fit now 23 pars.

matching; more symmetries; weak / strong classifications; breaking of SMEFT;

. . .

. . .

degree of model dependence

what happens at next leading order for SMEFT

- at e+e-, NLO ~ O(α), 1% level
- for NLO from W/Z/γ/H, operators constrained to ~<0.01, overall effect will be < 0.1%
- for NLO from top, operators would be much less constrained, currently ~ O(1) -> overall effect 1% -> potential impact in global fit on Higgs coupling precision

Zhang, et al, arXiv:1804.09766, 1807.02121

Jung, Vos, JT, et al, work in progress

our approach to include NLO top effects

- we didn't try to include full NLO effects for all observables
- instead, include NLO effects that are log-enhanced
- captured by Renormalization Group Evolution (mixing)

$$\dot{c}_i \equiv 16\pi^2 \frac{\mathrm{d}c_i}{\mathrm{d}\ln\mu} = \gamma_{ij}c_j$$

- *c_i*: Higgs operators; *c_j*: Top operators
- no worry to ignore Higgs operators in c_j , as explained last slide
- in this way, we can consistently apply power-counting to all observables, e.g. EWPOs (major difference with earlier work)

new operators (to previous SMEFT fit)

$$\mathcal{O}_{tH} = (\Phi^{\dagger}\Phi)(\bar{Q}t\tilde{\Phi}),$$

$$\mathcal{O}_{Hq}^{(3)} = (\Phi^{\dagger}i\overleftrightarrow{D}_{\mu}^{a}\Phi)(\bar{Q}\gamma^{\mu}\tau^{a}Q),$$

$$\mathcal{O}_{Htb} = i(\tilde{\Phi}^{\dagger}D_{\mu}\Phi)(\bar{t}\gamma^{\mu}b),$$

$$\mathcal{O}_{tW} = (\bar{Q}\sigma^{\mu\nu}t)\tau^{a}\tilde{\Phi}W_{\mu\nu}^{a},$$

$$\mathcal{O}_{Hq}^{(1)} = (\Phi^{\dagger} i \overleftrightarrow{D}_{\mu} \Phi) (\bar{Q} \gamma^{\mu} Q),$$
$$\mathcal{O}_{Ht} = (\Phi^{\dagger} i \overleftrightarrow{D}_{\mu} \Phi) (\bar{t} \gamma^{\mu} t),$$

$$\mathcal{O}_{tB} = (\bar{Q}\sigma^{\mu\nu}t)\tilde{\Phi}B_{\mu\nu},$$

$$\Delta \mathcal{L}_{top} = y_t \frac{c_{tH}}{v^2} \mathcal{O}_{tH} + \frac{c_{Hq}^{(1)}}{v^2} \mathcal{O}_{Hq}^{(1)} + \frac{c_{Hq}^{(3)}}{v^2} \mathcal{O}_{Hq}^{(3)} + \frac{c_{Ht}}{v^2} \mathcal{O}_{Ht} + \frac{c_{Htb}}{v^2} \mathcal{O}_{Htb} + \frac{c_{tW}}{v^2} \mathcal{O}_{tW} + \frac{c_{tB}}{v^2} \mathcal{O}_{tB}$$

effect of top operators: example

log-enhanced

higgs operator

top operator

 $-rac{g^2 c_{WW}}{m_W^2} \Phi^\dagger \Phi W^a_{\mu
u} W^{a\mu
u}$

$$\frac{c_{tW}}{v^2}(\bar{Q}\sigma^{\mu\nu}t)\tau^a\tilde{\Phi}W^a_{\mu\nu}$$

$$\dot{c}_{WW} = \frac{1}{4} (-2gy_t N_c c_{tW})$$

effect of top operators: example

not log-enhanced, hence not captured in our approach

power counting

	Higgs loop decays	other Higgs/EW observables	top productions
SM	finite one-loop	tree-level	tree-level
Higgs operators	tree-level	tree-level	-
top operators	finite one-loop	log-enhanced one-loop	tree-level

effect of top operators: example

RG evolution

$$\dot{c}_{H} = (12y_{t}^{2}N_{c} - 4g^{2}N_{c})c_{Hq}^{(3)} - 12y_{t}y_{b}N_{c}c_{Htb}$$
$$\dot{c}_{BB} = \frac{1}{4t_{W}^{2}}(-4g'y_{t}(Y_{q} + Y_{u})N_{c}c_{tB})$$
$$\dot{c}_{HL} = \frac{1}{2}Y_{l}g'^{2}\left(\frac{16}{3}Y_{q}N_{c}c_{Hq}^{(1)} + \frac{8}{3}Y_{u}N_{c}c_{Ht}\right)$$

LO: without top-op

$$\delta\Gamma(h \to WW^*) = -24c_{WW} - 7.8c_H$$

NLO: with top-op

$$\delta \Gamma (h \to WW^*) + = 3.1 c_{HQ}^{(3)} - 0.09 c_{Htb} - 0.36 c_{tW}$$

Q scale for various observables

$$c_i(Q) \simeq c_i(Q') + \frac{1}{16\pi^2} \gamma_{ij} c_j(Q') \ln \frac{Q}{Q'}$$

	G_F	EWPO	$\delta m_{W,Z,h}$	$\delta\Gamma(h)$	W^-W^+	$\sigma(uar{ u}h)$	$\sigma(Zh)$	$\sigma(Zhh)$
scale Q [GeV]	m_{μ}	m_Z, m_W	$m_{W,Z,h}$	m_h	250, 500	250, 500	250, 500	500

some at multiple scales:

 $\delta\sigma(Zh \to Zb\bar{b})(Q = 250) =$ $\delta\sigma(Zh)(Q = 250) + \delta\Gamma(b\bar{b})(Q = m_h) - \delta\Gamma_{\rm tot}(Q = m_h).$ (2.25)

results

still very preliminary; I will only show a few see more results in talk by S. Jung @ LCWS2019 paper on arXiv soon

results (I): $\sqrt{s} = 250 \text{ GeV e+e-}$

- with the same set of observables, at 250 GeV running only, the global fit will not converge at any of the Higgs factories
- e.g. Higgs couplings could not be determined unambiguously

not surprising, but don't worry

results (II): ILC250 + LHC

• LHC will provide us valuable top data sets, such as

$$pp \to t\bar{t} + Z/W/\gamma \qquad t \to Wb$$

• top operators will be constrained to some extent at (HL-)LHC

results (II): ILC250 + LHC

- with the help of LHC top data, Higgs coupling precisions @ ILC250 are almost restored
- note: top data from LHC Run 2 is not constraining enough

results (III): polarized vs unpolarized

- polarization now shows its important role
- w/o beam polarizations, even with the help of HL-LHC top data, Higgs coupling precisions @ e+e-250 will suffer a lot

results (IV): $\sqrt{s} >= 350$ GeV e+e-

 once e+e- -> t t-bar becomes accessible, effects of top operators on the Higgs coupling determination will be well under-control

some detailed understandings

$$\delta\Gamma(h \to \gamma\gamma) : + = -0.56c_{tH} + 1.2c_{HQ}^{(3)} - 0.04c_{Htb} + 33c_{tW} + 61c_{tB}$$

HL-LHC~600%

some detailed understandings

$$\delta A_l : + = 0.05c_{HQ}^{(1)} - 0.2c_{HQ}^{(3)} + 0.1c_{Ht} + 1.8c_{tW} - 0.3c_{tB}$$

- the capabilities of a e+e- are best represented in SMEFT formalism
- NLO effects from top operators are important for Higgs coupling determination at future Higgs factories by SMEFT fit
- LHC measurements for top processes are important for future Higgs factories
- Higgs coupling precisions at ILC250 will be more or less restored at NLO thanks to the more degrees of freedom provided by beam polarizations

backup

one question in kappa formalism:

$$\frac{\sigma(e^+e^- \to Zh)}{SM} = \frac{\Gamma(h \to ZZ^*)}{SM} = \kappa_Z^2 \qquad ?$$

BSM territory: can deviations be represented by single κ_Z ?

the answer is model dependent

$$\delta \mathcal{L} = (1+\eta_Z) \frac{m_Z^2}{v} h Z_\mu Z^\mu + \zeta_Z \frac{h}{2v} Z_{\mu\nu} Z^{\mu\nu}$$

BSM can induce new Lorentz structures in hZZ

need a better, more theoretical sound framework