PETに使える3Dガンマ検出器 液キセノンTPC

田内利明 (KEK) アクティブ媒質TPC開発座談会、2017年4月22日

XEMIS2 : Small animal PET, which will be tested for 2017 -2020 in CHU-Nantes, France, Subatech group

LXeTPC

prototype -1

5cm drift, mesh grid with1mm gap 4x4 pads readout, 7.5x7.5mm/pad

PMT1 (up) : R5900; DY1 - 12 20.7uA at +900V(max) Q.E.=20%@175nm (2003.11.28)

PMT2 (down) : R7600; DY1 - 10 23.9uA at +900V(max) Q.E.=30%@175nm (2009.06.15)

Pre-amp (A250) NIM 16ch post amp CAEN/N568B 16ch (shaping amplifier)

Trigger: pmt1xpmt2, test pulse, cosmic HV power supplies

- positive (brown) : PMTs
- negative cathode, PMT3(cosmic)

DAQ : CAMAC FADC 500MHz 2ch/module 8bits/3.3V, 8k words/ch FADC 20MHz 16ch/4modules 8bits/2V, 1k words/ch ADC 2249W 12ch, 11bit integrated ADC 0.25pC/count, 800nsec gate

Event classifications by scintillation lights

2012.12.10-2013.1.19

Raw signal charges

2012.9.18

Charges/pad (peak of D-Gaussian fit) of $\alpha 1, \alpha 2$ and γ , 2012.12.20-12.31 (8 days)

Grid Transparency

Drift velocity in Liquid Xe

Electric field kV/cm

Pulse Shape Discrimination (PSD)

Xe Liquid at 165K

PMT1=PMT2=+720V

2011.10.6.1832

TPC cathode =-2.5kV, anode=+255V

16:04 16 Oct. ~ 13:49 19 Dec. 2016

Electron life time and impurity in Liquid Xe

2012.8.23-2013.1.19

Summary : LXeTPC prototype -1

- 1. Preamp : Al 16 ch OK (2012 July 2013 May)
- Purification : gas circulation at 1.3 l/min for about three months
 8/23-9/9 (17days) smooth increase of charge signals followed with saturation
 10/-12/10 (71days) increase with CH warm-up/day followed with saturation
- 3. Impurity estimated by γ spectrum of ¹³⁷Cs (662keV, Compton edge) after 2nd saturation : life time=77±7 μ s, attenuation L.=12±1cm, 6ppb
- 4. Grid transparency as a function of E_2

good agreement with the expectation from the micro-megas results transparency=0.76 at E₂/E₁=5.2, mesh aperture=0.57

5. Drift velocity as a function of E_1

1.6mm/ μ sec at E₁=0.5kV/cm (1.3mm/ μ sec in Xe gas at 1.4atm)

6. Preparation of TPCFE09 (ASIC) in the chamber 168mV/fC, $-7fC < Q_{in} < +7fC$ at room temperature by simulation and test bunch 0.2V/fC expected at 165K (peaking time = 1 μ sec)

ASIC · TPCFE09

TPCFE09 : 2nd version of FEXE09

Designed by Open-IT ; Yuta Takagi (Yokohama N. univ.) , Takatoshi Higashi (Saga univ.), Takahiro Fusayasu(NIAS) , Hirokazu Ikeda(JAXA) , Manobu Tanaka(KEK)

Open-It (Open source consortium for detector instrumentation) collaboration

Schedule

- 1. Circuit design was completed, Mar.2010
- 2. Simulation was completed
- 3. Layout design was passed to the company on 24 Nov.2010
- 4. Tape out was(?) submitted by end of January 2011
- 5. Delivery in Summer 2011
- 6. Test in Autumn 2011

together with the neutron group

Parameters	TPCFE09(TPCFE1x)
dynamic range	-75fC~+25fC -500fC ~ -5fC
gain	2mV/fC 10mV/fC
gain tolerance	~1%
ENC	400+25/pF@0.5us
cross talk	~1%
peaking time	0.5, 1 and 2 us
power dissipation	<10mW/ch
Temperature range	-110 ~ + 25°C
# of channels	16ch
ADC	none (10bit/10MHz)

UMC 0.25um process

Mother board of TPCFE (16ch), version -1, for test, Jan-Mar 2013

studied by Yuya Iwazaki, Yokohama National University

GN-1294-1(FR4), based on Takagi's M thesis

 $R1=R2=5.1k\Omega$: $R25=R26=100k\Omega$ Gain=19.6 ---> GN-1294-2(LTCC)

GN-1294-2(LTCC)

現在のセットアップ (2015~)

予冷システム (Heat Exchanger +Second Cooler) を構築し、Xe 純化のためのガス流量の大幅な 増大を期待している。

これまで、最大で1.5ℓ/分であっ たが、10ℓ/分程度まで安定な自 動運転が可能なことが得られた。

~ 4.5 ℓ /分 で定常運転。

KEK 01 / 12 / 2015

by Sara Diglio and Lucia Gallego (Subatech)

Heat Exchanger Efficiency

prototype -2 Frontend Electronics Optimized setup, 22 October, 2015

Performances of test pulse run

Test pulse : the input charge with 50Hz, 0.025V w/ 31dB, 0.7mV, $C_{test}=1pF$, i.e. 0.7fC; FETPC09+buffer amp. gain / 2 = ~ 200mV/fC with each 50 Ω in series in the output

- \therefore The output voltage at the buffer amp = ~140mV
- .: FADC20MHz : 140/7.8=18 counts expected

2016.11.08

Prototype-2 : The signal growth in LXeTPC, Sep.-Dec.2016

Prototype-1 : Growth of charge signals (α 2)

date from Aug.23 to Mar.31, 2012

Summary : LXeTPC prototype -2 (2013 April - 2017 April)

 New front-end electronics system, all 16 channels, is working since April 2016. TPCFE09 is in the Liquid Xe chamber,

while the buffer amplifier is outside of the chamber. TPCFE09 AC-coupled to the buffer amplifier, the total gain is ~ 200mV/fC

2. Very stable operation of the cooling and the gas circulation/purification system the gas flow rate is ~ 4.5ℓ /min.

3. The signal growth is very slow compared to the prototype-1, although the gas flow rate incresed from 1.3ℓ /min to 4.5ℓ /min.

4. We will try to increase the prufication by adding a getter.

5. The best solution must be to set all the frontend electronics and cables outside the chamber as much as possible.