Basis for Liquid Xe TPC LIQ course
Fundamental Processes

Amplification Gap

Beam

Ionizations

→ Liberation of Electrons

$P_I(N; \bar{N})$

Normal incidence
(no angle effect)

No δ-ray

Drift and Diffusion

$P_D(x_i; \sigma_d) = \frac{1}{\sqrt{2\pi}\sigma_d} \exp \left(-\frac{x_i^2}{2\sigma_d^2} \right)$

$\sigma_d = C_d\sqrt{z}$

Amplification and further Diffusion

$P_G(G/\bar{G}; \theta) = \frac{(\theta + 1)^{\theta + 1}}{\Gamma(\theta + 1)} \left(\frac{G}{\bar{G}} \right)^\theta \exp \left(-(\theta + 1) \left(\frac{G}{\bar{G}} \right) \right)$

Pad Response

Coordinate
Reconstruction of incident angle in Compton scattering

\[
\cos \theta = 1 + \frac{m_0 c^2}{E_1 + E_2} - \frac{m_0 c^2}{E_2}
\]

\[
\cos \varphi = \frac{E_1}{\sqrt{E_1^2 + 2m_0 c^2 E_1}} + \frac{m_0 c E_1}{(E_1 + E_2)\sqrt{E_1^2 + 2m_0 c^2 E_1}}
\]
Table 1.5: Physical properties of noble liquids (adapted from Ref. (98)).

<table>
<thead>
<tr>
<th>Property</th>
<th>LAr</th>
<th>LKr</th>
<th>LXe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atomic Number Z</td>
<td>18</td>
<td>36</td>
<td>54</td>
</tr>
<tr>
<td>Atomic Weight A</td>
<td>39.95</td>
<td>83.8</td>
<td>131.3</td>
</tr>
<tr>
<td>Density (g/cc)</td>
<td>1.39</td>
<td>2.45</td>
<td>3.06</td>
</tr>
<tr>
<td>Melting Point T_m (K)</td>
<td>83.8</td>
<td>115.8</td>
<td>161.4</td>
</tr>
<tr>
<td>Boiling Point T_b (K)</td>
<td>87.3</td>
<td>119.8</td>
<td>165.1</td>
</tr>
<tr>
<td>Critical Temperature T_c (K)</td>
<td>150.7</td>
<td>209.5</td>
<td>289.7</td>
</tr>
<tr>
<td>Critical Pressure P_c (atm)</td>
<td>48.3</td>
<td>54.3</td>
<td>57.64</td>
</tr>
<tr>
<td>Critical Density (g/cc)</td>
<td>0.54</td>
<td>0.91</td>
<td>1.10</td>
</tr>
<tr>
<td>Volume Ratio (ρ_l/ρ_g)</td>
<td>784</td>
<td>641</td>
<td>519</td>
</tr>
<tr>
<td>Fano Factor</td>
<td>0.107</td>
<td>0.057</td>
<td>0.041</td>
</tr>
<tr>
<td>Drift Velocity (mm/µsec) @ 1(5) kV/cm</td>
<td>1.8(3.0)</td>
<td>2.4(4.0)</td>
<td>2.2(2.7)</td>
</tr>
<tr>
<td>Mobility (cm V$^{-1}$s$^{-1}$)</td>
<td>525</td>
<td>1800</td>
<td>2000</td>
</tr>
<tr>
<td>Radiation Length (cm)</td>
<td>14.3</td>
<td>4.76</td>
<td>2.77</td>
</tr>
<tr>
<td>(dE/dx) (MeV/cm)</td>
<td>2.11</td>
<td>3.45</td>
<td>3.89</td>
</tr>
<tr>
<td>Liquid Heat Capacity (cal/g-mole/K)</td>
<td>10.05</td>
<td>10.7</td>
<td>10.65</td>
</tr>
<tr>
<td>W-value (eV) (ionization)</td>
<td>23.3</td>
<td>18.6</td>
<td>15.6</td>
</tr>
<tr>
<td>W-value (eV) (scintillation)</td>
<td>19.5</td>
<td>15.5</td>
<td>14.7</td>
</tr>
<tr>
<td>Wavelength of Scintillation Light (nm)</td>
<td>130</td>
<td>150</td>
<td>175</td>
</tr>
<tr>
<td>Decay const.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fast (ns)</td>
<td>6.5</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>slow (ns)</td>
<td>1100</td>
<td>85</td>
<td>30</td>
</tr>
<tr>
<td>Refractive index @ 170 nm</td>
<td>–</td>
<td>1.41</td>
<td>1.60</td>
</tr>
<tr>
<td>Dielectric constant</td>
<td>1.51</td>
<td>1.66</td>
<td>1.95</td>
</tr>
</tbody>
</table>
diffusion:

widening pulse shape

\[\sigma^2 = 2Dt = 2DL/v \]

\[C_D^2 = D/v \]

Example:

\[t = 104 \mu \text{sec} \]

\[D = 50 \text{cm}^2/\text{sec} \]

\[C_D = 145 \mu \text{m}/\text{SQRT(cm)} \]

\[\sigma = 1 \text{mm} \]

note: 170 \mu \text{m}/\text{SQRT(cm)}

spatial resolution

\[\sigma_x = \sqrt{\sigma_x(0)^2 + C_D^2/N_{\text{eff}}z} \]

\(N_{\text{eff}} = \text{no. of electrons} \)

if \(N_{\text{eff}} = 1000 \) and \(z = 24 \text{cm} \),

\(C_D^2/N_{\text{eff}}z = (20 \mu \text{m})^2 \)

with pad–analog readout

Fig. 1. Diffusion coefficients of electrons in liquid xenon and argon versus the density-normalized electric field. The full circles represent the authors' results and the open circles the results obtained by Derenzo [LBL, Group A Physics Note No. 786 (1974) unpublished]. T. Doke, NIM 196 (1982), 87
Transverse diffusion coefficient to electric field
Fig. 1. Density-normalized electron mobility $N\mu(E/N)$ as a function of E/N. Present calculation in comparison with measurements by refs. 1, 5 and 6.

$$\mu N = 1.5 \times 10^{22} \text{ (V cm sec)}^{-1} \text{ at Td}=1$$

$$N = 2.5 \times 10^{19} \text{ cm}^{-3} \text{ for Xe gas, 1 atm}$$

$$\mu = 602 \text{ V}^{-1} \text{ cm}^2 \text{ sec}^{-1} \text{ at Td}=1$$

Fig. 2. Electron transverse characteristic energy $\varepsilon_T(E/N)$ and mean electron energy $\langle \varepsilon \rangle(E/N)$ as a function of E/N. Present calculation in comparison with measurements by ref. 8 and calculations. 6, 9

$$\langle \varepsilon \rangle = 7 \text{ eV at Td}=1$$

$$\varepsilon = eD/\mu \text{ in eV}$$

$$D = \mu/e \langle \varepsilon \rangle = 602 \times 7 = 4,215 \text{ cm}^2\text{sec}^{-1} \text{ at Td}=1$$
Figure: Electron cross section in Xe: q_m=momentum transfer, q_i=ionization, q_{em}=excitation to meta stable levels, q_e=other excitations than q_{em}
Measurement of attenuation length of drifting electrons in liquid xenon

Masayuki Ichige a, Elena Aprile b, Tadayoshi Doke a, Katsuhito Hasuike a, Ken Itoh a, Jun Kikuchi a and Kimiaki Masuda c

a Science and Engineering Research Laboratory, Waseda University, 17 Kikui-cho, Shinjuku-ku, Tokyo 162, Japan
b Physics Department, Columbia University, New York, NY 10027, USA
c Saitama College of Health, 519 Kamiokubo, Urawa-shi, Sattama 338, Japan

Received 4 January 1993 and in revised form 10 March 1993

To realize a long attenuation length of drifting electrons in liquid xenon, a purification system which consists of Oxisorb, molecular sieves and a Zr–V–Fe alloy getter has been constructed. A dual type gridded ionization chamber is used for the measurement of the attenuation length. An attenuation length longer than 2 m is achieved in the purified liquid xenon.

attenuation length > 2m!, -11% at 24cm drift
α source of 5.31, 5.49MeV (210Po, 241Am)

Parallel plate chamber with 3.5mm gap, no grid

Collected charge (Q/Q_0%) vs. electric field for 210Po in liquid xenon (□) and 241Am in liquid xenon (○) and liquid argon (△)

E. Aprile et al., NIM A307 (1991)119-125
Parallel plate chamber with 3.5mm gap, no grid

Q/Qo=4 (2.4) % at E=2 (0.5) kV/cm

Energy resolution in FWHM =5.1% at E=2kV/cm
FIG. 2. Variation of relative luminescence intensity L and collected charge Q in liquid argon, krypton, and xenon vs applied-electric-field strength for 0.976- and 1.05-MeV electrons.

"Typically 83(80)% of this charge escapes immediate recombination at the operating field of 1(0.5)kV/cm."

A. Curioni, Dr. Thesis, Columbia univ. 2004

Parallel plate chamber with 5mm gap
Drift velocity in Xe gas for drift in 10mm

![Graph showing drift velocity vs. TPC HV]

- 0.14 MPa
- 0.29 MPa

2013年 3月 20日 水曜日
Drift velocity in Xe gas for drift in 10mm

![Graph showing drift velocity vs. TPC HV in kV/cm for different pressures.]

- 0.14MPa
- 0.29MPa
Drift velocity in Xe gas for drift in 10mm
Fig. 5. Electric field dependence of the electron drift velocity in liquid xenon at $T = 195 \text{ K}$. The solid line is the fit of $v_d = \mu_0 E$, giving $\mu_0 = (4230 \pm 400) \text{ cm}^2\text{V}^{-1}\text{s}^{-1}$. Other lines are from refs. [23,24].

Ref) E.Aprile et al., NIM A300 (1991) 343-350
Drift velocity in liquid and solid Xe

from L.S. Miller, S. Howe, W.E. Spear, Phys. Rev. 166 (1968), 871
希ガス

$V_d \times 10^5 \text{ cm/s}$

$E_d/N \times 10^{-17} \text{ Vcm}^2$

Herium
Neon
Argon
Krypton
Xenon
Signals in Xe Gas at 1.4 atm, Aug.-Sept, 2011

Drift velocity in mm/μsec

Pulse heights

8/6 8/8 8/9 8/12 8/15 8/16 8/19 8/23 8/24 8/26 8/29 9/1

8/31 13:30 - 9/1 purification

Scintillation (PMT1, α1)

Charge (α1)

Charge (α2)

Scintillation (PMT1, α2)
Estimation of the grid transparency

assumption of no dependence of medium?

0.76 measured efficiency of gamma (661 keV, 137Cs)

0.57

Performance of grid transparency

Xe gas at 1.4 atm
TPC : 5cm drift
-2.5KV

Pad channels:
5,6,8,9,10,12
Large squares for the sum

note : grid of 50 mesh with 100um diameter SUS wires and 410um spacing, so aperture of 57%
Pre-amp (A250) NIM 16ch
post amp CAEN/N568B 16ch
(shaping amplifier)

Trigger: pmt1xpmt2, test pulse, cosmic
HV power supplies
- positive (brown) : PMTs
- negative cathode, PMT3(cosmic)

DAQ : CAMAC
FADC 500MHz 2ch/module
8bits/3.3V, 8k words/ch
FADC 20MHz 16ch/4modules
8bits/2V, 1k words/ch
ADC 2249W 12ch, 11bit integrated ADC
0.25pC/count, 800nsec gate