Liquid Xenon TPC for a gamma detector (LXeTPC)

T. Tauchi (KEK)

The 2nd JAAWS 29-30 November 2010 POSCO International Center, PAL, Korea

LXeTPC project since 2007.4 as a KEKDTP project Detection of KeV-MeV "gammas" with 3D positions and energy of high resolutions

Applications : Gamma ray astronomy; Single Photon Emission Computed Tomography (SPECT), Positron Emission Tomography (PET); Dark matter, Double β decay experiments KEK: liquefaction & purification, PMT, TPC, DAQ T.Tauchi, A.Maki, T.Haruyama, S.Tanaka, S.Mihara, T.Saeki K.Kasami, S.Suzuki Saga univ. : TPC, simulation, FE ASIC chip, test A.Sugiyama, T.Higashi(D4) Tokyo univ. : TPC, PMT, simulation, test T.Mori, Y.Fujii(M2), T.Chiba(M1) National Institute of Radiological Science : PET M.Kumada, T.Tomitani, C.Toramatsu Yokohama National univ. : APD test, Xe-property S.Nakamura, Y.Takagi (M1), Y.Endo(M1) Cooperation: KEK electronics system group, DAQ M.Tanaka et al.

Next-generation PET with LXeTPC

TXePET

First Prototype, 2009

α source of ²⁴¹Am (200Bq)

ARARA

PMT

ZENITH ANGULAR DISTRIBUTION OF CRM

• Results

- Sum of charges > 20fC
- Cosmic ray muons have the zenith angular distribution as a function of $\cos^2 \theta$
 - Red histogram shows the distribution with cos² θ (Monte Carlo), where the azimuthal angles are integrated.
- Consistent distribution was obtained.

Y. Fujii, JPS fall meeting, Kohnann univ., 9 Oct. 2009

Experimental Setup

TPC prototype

Present Status : Light and Charge Signals

Front-end ASIC chip R&D First version : FEXE08

Pre-amp. to PZC to shaper - output all analog channels

PARAMETER chip size	SPECIFICATION	Achieved in room temp.	n D. Inputs (8ch)
channel number	8		
power supplies	±2.5V		
dissipation power	<10mW/ch		
gain	8.2V/pC 6	.0±0.5V/pC	
Input charge	±25fC	-60~100fC	
peaking time	0.5, 1us, variable(>	lus)	
prod. process	0.5um CMOS		
ENC	2,000e (C _d =1pf	-) (C _d =1pF)	→ 3mm

T. Higashi, JPS fall meeting, Kohnann univ., 9 Oct. 2009

Second version : FEXE08

Designed by Open-IT;

Takatoshi Higashi (Saga univ.), Takahiro Fusayasu(NIAS) , Hirokazu Ikeda(JAXA) , Manobu Tanaka(IPNS)

Open-It (Open source consortium for detector instrumentation) collaboration

Schedule

- 1. Circuit design was completed
- 2. Simulation was completed
- 3. Layout design was passed to the company on 24 November
- 4. Tape out will be submitted by end of January 2011
- 5. Delivery in March 2011
- 6. Test in March 2011

together with the neutron group

Parameters	TPCFE09(TPCFE1x)			
dynamic range	-75fC~+25fC -500fC ~ -5fC			
gain	2V/pC 10V/pC			
gain tolerance	~1%			
ENC	400+25/pF@0.5us			
cross talk	~1%			
peaking time	0.5, 1 and 2 us			
power dissipation	<10mW/ch			
Temperature range	-110 ~ + 25°C			
# of channels	16ch			
ADC	none (10bit/10MHz)			
UMC 0.25um process				

Pressure Capacity Test on the Ceramic End Plate (vacuum - liquid xenon window)

Summary

1. Charge signals of both cosmic ray and α sources were detected with a commercial pre-amplifier. 2. Purification process was monitored and understood by scintillation light and charge signals. The preliminary estimation is about 90 ppb $(O_2 equiv.)$ with circulation in 2 months, which will be improved in next time. 3. Present R&D : TPC with 16ch-pads, 5cm drift. with improvement by a getter pump 4. Front end electronics ASIC (16ch) :TPCFE09 The layout was just submitted and the test in JF2010 5. Ceramic end plate R&D The pressure capacity will be tested soon.