液体キセノン検出器TPCのR&D

次世代PETに向けて (TXeTPC)

高エネ研:田内利明 KEK測定器開発室・液体キセノングループ 佐賀大学、東京大学、放医研、横浜国大、KEK

研究会『電離及びシンチレーション検出器の基礎物理と暗黒物質探索への応用』,早稲田大学、2009年9月18日

LXeTPC project since 2007.4 as a KEKDTP project Detection of KeV-MeV "gammas" with 3D positions and energy of high resolutions

Applications : Gamma ray astronomy; Single Photon Emission Computed Tomography (SPECT), Positron Emission Tomography (PET); Dark matter, Double β decay experiments

KEK:冷凍・純化システム、PMTシステム、TPC、テスト 田内利明、真木晶弘、春山富義、田中秀治、三原智、佐伯学行 笠見勝裕(冷凍システム構築)、鈴木祥仁(モニター:Labview) 佐賀大:TPC、TPC/PETシミュレーション、テスト 杉山晃、東貴俊 (D3) 東大:TPCテスト 森俊則、藤井祐樹(M1) 放医研: PETとしての性能仕様とシミュレーション 熊田雅之、富谷武浩、寅松千枝 横浜国大:液体キセノン基本特性 中村正吾 協力支援:KEKエレクトロニクスシステムG、田中真伸氏 レビュワー:宮島光弘氏(早稲田大)、海野義信(KEK)

Next-generation PET with LXeTPC

TXePET

エレクトロニクスシステム

Previous Activities 2007.4 Proposal to KRKDTP 2007.4 - Preparation of prototype New laboratory was completed 2008.2 2008.4.30 Refrigerator system was completed 2008.5.7 Chamber was filled with liquid Xenon in the first time w/o a detector. 2008.5.22 First scintillation signal was observed 2009.2.25 First charge signals from cosmic rays(1) 2009.3.31 First charge signals from α sources(45) Improving vacuum system and 4ch pad readout 2009.4.24 This experiment

LXeTPC:プロトタイプで原理実証

光電子增倍管

This Experiment in 2009

4/24 15:04 Start of evacuation in the chamber 4/27 - 30 Vacuum build up tests in three times @ 1.4 x 10⁻⁴Pa 5/2 12:15 Gas phase purification/circulation with 4L/min 5/10 16:52 First observation of charge signals from cosmic rays(8) 5/20 17:40 Liquid phase purification/circulation with 1L/min 5/22 14:44 First observation of α charge signals (20mV)(20) 6/29 17:15 α charge signals to 100mV w/o LPF 6/25 -7/9 Electric field dependence of charge and light signals 7/23 - 31 4ch Pre-amplifier setup and test 8/14 - 17 Data taking with Cosmic ray trigger, about 1/min

Evacuation Curve(2009.4.24 - 4.27 - 4.30)

Vacuum Build Up Test

"Less than 1 Pa overnight", 道家先生 Golden rule -> 10Pa for us

Vacuum Build Up Test (2)

Estimation of gas emission rate (Q) : Q = a VFirst : $t = 2.4 \times 10^5 s$ Second : $t = 3.4 \times 10^5 s$ Third : $t = 4.9 \times 10^5 s$

SUS vacuum chamber : $102 \text{mm}\phi$, 490 mm length , 4ℓ , inner surface of 0.17m^2

Assuming total volume V=10L and Q=a x10 [L Pa/s],

Gas emission rate at the third test is estimated to be $Q = 1.4 \times 10^{-3} L Pa/s$

Scintillation Lights Pulse Height (m V

Purification process by scintillation lights in 2 weeks

α線イベント

1.1fC measured at the α peak (about 91ppb O₂ eqiv., $\lambda_{att}=15.3$ mm)

(1) 波高分布

ch 4

宇宙線イベント

(2) 波高分布

ch 3

3500

3000

2500F

2000F

1500F

1000F

500H

2500

2000

1500

1000

500

500

ዌ

ch 4

pad1 vs pad4

pad1 vs pad3

ch 3

4000 E

3500

3000E

2500F

2000

1500

1000

500 ·

6

ch 4

4000

3500F

3000

2500

2000

1500

1000

500

ᡃᠮ

pad1 vs pad4

500

pad1 vs pad3

ch

Real Soft A GASS - Carter

RMS

ch]

Mean

RMS

DEMONSTRATION OF TRACKING BY USING COSMIC RAY MUON (CRM)

- ●4chを用いた宇宙線ミューオン信号の解析
 - 複数パッドで電荷信号を検出できる
 - 再結合による電離電子の損失が少ない
 - パッドに近い場所で反応が起きるため、不純物の影響を減らせる
 - ▶ 1 cm で50%の電荷減少とすると、宇宙線の場合は平均で25%の減少のみ
 - ノイズの多い3,4 channelでも十分大きな信号が期待される
- ●天頂角での角度分布

藤井祐棱

09/10/09 JPS fall meeting @

Kohnan

- パッド4枚でノイズもあり、宇宙線のイベントレートもかなり小さいため、正確 な角度を求めるのは難しい
- 今回は以下の3通りにイベントを分ける -> 誤差は30%程度である

Cosmic ray muons >20fC

ZENITH ANGLE DISTRIBUTION OF CRM

◦結果

- 右図の天頂角分布が得られた
- 宇宙線ミューオンは天頂角で
 cos² θ に従うことが知られて
 いる
 - ▶パッド上で角度を求めているの で、 cos² θ の分布を経面に射影 した分布と比較する
 - ▶赤い線のヒストグラムがcos² θ を平面に射影したときの分布 (monte carlo)
 - ▶不完全ではあるが理論と近い傾向 が見られる

Front-end ASIC chip R&D

Pre-amp. to PZC to shaper - output all analog channels

Î	TION Achieved	SPECIFICATI	PARAMETER
	nm	3mm x 3mr	chip size
		8	channel number
E E		±2.5V	power supplies
က	ch	<10mW/ch	dissipation power
	C 6.0±0.5V/pC	8.2V/pC	gain
	-60~100fC	±25fC	Input charge
	ole(>1us)	0.5, 1us, variable	peaking time
	10S	0.5um CMC	prod. process
1pF)	=1pF) 400e (Cd=	2,000e (C _d =1	ENC

Inputs (8ch)

Cd IN OUT IN

入力電荷(fC)

出力電圧のσ値は1mV前後 σ=1mV/(6.4mV*Qin) σ= 0.16/Qin[fC]

入力電荷 -8 ~ 8 fCの範囲で 非線形性は少なくとも0.8%以下。

ノイズ(ENC)測定 - 常温 -

note: ENC ∝ (検出器容量) / (時定数)^{1/2}, 測定データの *τ* = lus

展望

今後、アナログ-デジタル変換部も含め るためにさらなる<mark>低消費電力化</mark>を考慮 したシステムASICを製作する必要があ る。

そのため、プロセスを0.25umへ

変更し改良型ASIC開発を開始。

- ・ 高ゲイン化
- ・高密度多チャンネル化、32チャンネル
- ・ S/N比が10以上の低ノイズアンプ
- ・ 低温(-110)で安定動作

	目標値
入力電荷範囲	- 0.025 ~ 0.025 pC
ゲイン	10 V/pC
ピーキングタイム	1 us, 500ns, variable (外部スイッチで変更可)
消費電力	5mW/ch 以下
ノイズ(ENC)	2000e (Cd = 1pF)以下
チップ(ダイ)の大きさ	3 mm x 3mm
電源電圧	+ 2.5V, -2.5 V
チャンネル数	32 ch
プロセス	0.25 μ m CMOS
動作温度	~ -110°C

Conclusions

1. Charge signals of both cosmic ray and α sources were detected with a commercial pre-amplifier. 2. Purification process was monitored and understood by scintillation light and charge signals. The preliminary estimation is about 90ppb (O₂ equiv.) with circulation in 2 months, which will be improved in next time. 3. We will confirm the purification and measure the 4ch charge signals (pads). 4. Next, we will measure 16ch-pads with 5cm drift in TPC.