液体キセノングループ報告

KEKDTP重点レビュー、2009年1月27日、KEK 田内利明

KEK:冷凍・純化システム、PMTシステム、TPC、テスト 田内利明、真木晶弘、春山富義、田中秀治、三原智、佐伯学行 笠見勝裕(冷凍システム構築)、鈴木祥仁(モニター:Labview) 佐賀大:TPC、TPC/PETシミュレーション、テスト 杉山晃、東貴俊(D2) 東大:TPCテスト 森研究室、金子大輔(M2) 放医研: PETとしての性能仕様とシミュレーション 熊田雅之、富谷武浩、寅松千枝 横浜国大:液体キセノン基本特性 中村正吾 協力支援:KEK素核研回路室、田中真伸氏 レビュワー: 宮島光弘氏(早稲田大)、海野義信(KEK)

2008年度予定

1. TPCの基本性能測定(継続)

2. 現在の真空テスト容器を使用して、2 x 4 =8個の光電子増倍管(PMT)、ドリフト距離 12cm程度のTPCを作成する(基本性能試験)。このシステムにより、PMTマトリックス からのガンマ線反応時間の精密測定、その反応位置の3次元概略情報(Region of Interest)等の最小システム構築

3. エレクトロニクスの基本設計

- エレクトロニクスシステムグループの協力

4. TXePET シミュレーション (GATE, 性能評価)

- 放医研メンバー?、新人?

前回レビュー(7/8,2008)での質問と答え(更新)

(1)員等旅費はグループ均等の50万円。

各グループの事情が考慮されていないことは残念である。前年度の実績をまとめ、再 度幅室長に要求したい。

(2)PT冷凍機の位置がよくない。低温の人は上に置くが、液が落ちてくること等よく ない。できれば、下の方に設置すべき。

下に設置することは難しい。現在のセットアップでも液が直接チェンバー内に落ちる ことはなく、ケーブルを伝わっていく。また、パラソル状の覆いを用いて側面に液を伝 わせることも可能である。 XENON実験では、PTR(Pulse Tube Refrigerator)は離れた ところに設置され、トランスファーチューブで液の補給が行われている。この場合、 Nantesグループの『振動問題』は回避される。

(3)液体キセノン内の対流など密度ゆらぎなどシンチレーション光量に影響する
 液体キセノンの温度と圧力の安定度測定のデータを示すこと
 データを記録しているので示すことができる。

(4)ガスの不純物をppm - ppbレベルで測定すべき、モニターすべき

- ppbレベル測定可能なガスクロを動かしてみる

- モニターシステムを組み込む(電極板間の暗電流を測定)

ガスクロに接続する場合の不純物の混入をppbレベルで防ぐことができるか自明では ない。また、液とガスでの不純物量の関係も精密に研究しなければならない。シグナル 自身、および、上記のようなモニターシステムを組み込むことがよいと思われる。 純度モニターを今年度内製作したい(アルゴングループと協力)。

(5)液化に12時間は長過ぎる。1時間程度にくふうすべき。 試験する上で必要なら、液体窒素使用によるプレクーリングで時間短縮ができる。

(6) β ソースを用意すべき-決まった場所とエネルギーを与える基準 考慮したい。純度モニターでも β ソースを使用する。 γ 線+コリメータも用意したい

(7)ゲイン測定で、LEDの光量のばらつきを考慮すべき、測定すべき PMTシグナルのばらつきは、√N_pe以上ある。特に、光量が大きいときdominantにな る可能性がある。

Purity Monitor (Review) by S.Mihara, 13th January, 2009

1. High purity monitor with long drift for ICARUS

S. Pordes FNAL May 13th 2006

2. Compact purity monitor

Purity Monitor (Review) by S.Mihara, 13th January, 2009

アルゴングループとの打合せの結果(1/13)、我々(液体キセノン)は放射線ソース(α、電子)を用いたもの、アルゴングループ はレーザー又はキセノンランプを光源とするモニターを開発する こととなった。それぞれの主な特徴は以下である。

* 放射線ソース(α、電子)を用いたもの o 不純物の割合として0.1ppm以上 o コンパクトで主検出器と平行してモニターできる

* レーザー又はキセノンランプを光源とするもの o 不純物の割合として1ppm以下 (最終的には0.01ppbを目指す) o ドリフト距離が10-50cmのイオンチェンバー (8) ゲイン測定: σ^2 /ADC のnon-linearな依存性を理解すべき

(9) α線のシンチレーション光がPMTへ直接入らないのではないか。 シミュレーションで検討する。また、必要ならセットアップを変え測定を行う。

(10) α線のシンチレーション光測定はすでに分かっているのでは? - MEG実験や早稲田大(錦戸氏)グループによる測定結果の入手 修士論文、博士論文などを参照する。

(11) キセノンの純化にはもっと時間がかかるのではないか。

- 4時間の測定に対してのコメント

- ゲッターの性能を調べること

MEG実験からの経験によると、液全体が一通りゲッターを通過すれば純度が目に見え て上がる

ただし、α線ソースの場合、シンチレーションの波高の純度依存性が小さい(MEG)

純化速度の評価(Nantes グループの経験)

フランスのNantesグループでは、純化に3週間かかると言っていました。" It takes three weeks to purify liquid xenon, where the purity is monitored by scintillation lights. "(私のtrip reportより)

Nantesグループの液体キセノンシステム:
 液を吸い出してガス化後純化(以下、液換算の流量)
 液体キセノン 10 リットル
 液化速度 0.5 リットル/h
 純化速度 0.33 リットル/h

我々のもの:
 蒸発の気体による純化
 液体キセノン 1.5リットル
 液化速度 0.16リットル/h
 純化速度 0.5リットル/h (5リットル/min, gas/liquid=539)

Nantesのものからスケール(3x7x24/(10/0.33)=16.6)すると、 1.5/0.5 x 16.6 = 49.9 h となり、2日間ほどになります。 (12) 電荷を測定する準備は大丈夫か

- 500nsの積分時間をもつチャージアンプを入手すること

(Liq.Kr用のもの、IDEFIX、宮島氏提供など、液体キセノン中で使用)
 ORTEC製のプリアンプ(142PC, 6.5V/pC)とポストアンプ(672 Spectroscopy
 Amplifier)を借用し測定を行う。

現在は、AMPTEK製の A250 (ゲイン 1V/pC) 、テストボードP250、そして、ポス トアンプの704-3B (応用光研製マルチモードアンプ)を使用している(次ページ)。 TPC用HV電源より200Hzのノイズ(ローパスフィルター使用) - これら低周波数の ノイズの無いHV電源 RPH-042 (林栄精機製 -6KV/1mA, 4ch)を使用する

(13) 『拾う直線の本数』依存性のシミュレーション結果はおかしいのではないか。
 - 本数を増やせば位置分解能はよくなるはず
 事象再構成のアルゴリズムを再検討する。
 GEANT4とGarfieldによるシミュレーションを準備している。

(14) シンチレーション光測定の確立、理解を優先すべき - 必要なら専用のセットアップを行う External FET allows matching to detector FET can be cooled Noise at room temperature = 100 e's RMS Low power (19mW typical) Bipolar signals Sensitivity 1V/pC Operating temperature -55°C to + 125°C Output impedance 100Ω Nominal feedback C & R 1pF & 300MΩ

P250

 Why use Liquid Xenon (LXe)?
 LXe for Micro-PET
 Simulation of LXePET
 Summary

 Expected Simulation (GEANT4)
 LXePET (D.Bryman's group)

Image Reconstruction from Simulations

Same simple reconstruction method (Filter-Back Projection) used for both (emphasis on resolution not image quality):

In the simulation, the limitations of the LXe system are primarily due to physics effects such as the positron range.

ホームページ

http://www-jlc.kek.jp/~tauchi/index/LXeTPC/homepage/

液体キセノン検出器

English page

本研究開発の目的は、液体キセノンタイムプロジェクションチェンバー(TPC) を用いた、keV~MeVのエネルギー領域のガンマ線の3次元位置、時間及びエネ ルギーの高分解能検出器の開発である。

お知らせ

定例打ち合わせ等のメモ・資料

<u>レポートや資料</u>

<u>リンク</u>

液体キセノンTPCの概念図: 大きな画像 (144KB)はクリックするとダウンロードされます。

^{• 2008}年7月10日; 7/8の測定器開発室重点レビュー、Subatech (Nantes)グループの近況の追加、TPC試験報告、シミュレーション報告、マイルストーン、その他

液化・純化システム

オイルフリー・ダイアフラムポンプ(エノモト)によるガス循環精製

June 2008

Am-241, 5.49MeV, 200 Bq 液体キセノン中使用

『MEGではこのプレートの裏側にネジを エポキシ接着剤(スタイキャスト) で接着して装置内に固定しています。

γ線源 Cs-137, 0.66MeV, 7KBq, CS516 (日本アイソトープ協会製)

φ5.2×8.5mmのステンレス鋼(SUS316L) 円柱状カプセルに溶接密封された線源です。

ノイズ状況と対策

Pre-Amp(P250): PMTより約20cm上に設置

低温に冷却中、突然、PreAmpに200MHz の発振状のノイズが現れる - ローパスフルターで1/10にする(2mV)

今後の追加対策: FETとfeedback用のCとRだけ低温 Pre-amp (P250)は常温に設置 同軸の外皮膜(テフロン)ははぎ取る 1 PADの読み出し

PADは2x4=8個ずつ接続し、2チャンネル その内1チャンネルをPre-Ampに入力 カソードとアノードの距離 3mm α線ソース:カソード(メッシュ)面に接着

GXeTPC (Xeガス):電荷シグナル

2mVのPre-Amp出力は13,000個の 電子数に相当する(0.002 x $1 \times 10^{-12} / 1.6 \times 10^{-19} = 1.3 \times 10^{-19}$ 10⁴)。3mm厚のキセノンガス中で 5.4MeVα線は総数150,000個の電 子を電離するので(5.4MeV/12eV x 3mm/9mm =1.5 x 10⁵) 、その 内9%が測定されたと評価される。 液体キセノン・TPCではα線エネル ギーの5%程度が再結合を免れア ノードに到達する。したがって、 5.4MeV/15eV x 0.05=18,000個 の電子による2.8mV程度のPre-Amp出力が期待される。

Typical output of Pre-amp was + 2mV Post Amp : the first differentiation and integration time = 1 usec TPC HV : -600V/3mm , PMT1 HV=800V

GXeTPC:電荷シグナルとシンチレーション光

Why use Liquid Xenon (LXe)? LXe for Micro-PET Simulation of LXePET Summary Expected energy Measurement LXePET (D.Bryman's group) Proof of principle Proof of principle Summary

Combining Light and Charge Measurement with 511 keV Photons

P: Photoelectric, C: Compton, S: Scattered outside

フロントエンドASIC設計・製作

パラメータ	数値
チップの大きさ	3mm x 3mm
チャンネル数	8
電源	±2.5V
消費電力	<10mW/ch
ゲイン	7.5V/pC
入力電荷量	±25fC
ピーキングタイム	0.5, 1us, variable(>1us)
製造プロセス	0.5um CMOS

• KEK ASIC 教育プログラムの利用

● 講習会の受講(9/8~9/12)

● 回路の作成とレイアウトを行う(12/3まで)

パッケージング仕様作成(12/5)
 ダイ納品、パッケージング(2/10)
 KEKに納品(2/16)

プリアンプ

中に内蔵されているディス
 チャージングアンプは抵抗のような役割を果たす(VBIASを変えることで、抵抗値が変わるイメージ)。VBIASに流す電流を
 調整することで時定数が変化する。

テスト回路の簡略図

Gain Estimation of Pre-Amplifier

$$ut = \frac{-Q_t}{\frac{C_{in}}{A} + \left(1 + \frac{1}{A}\right)C_f}$$

$$V_{out} = -AV_{in}$$

$$Q_f = C_f(V_{in} - V_{out})$$

$$= C_f(1 + A)V_{in}$$

$$Q_{in} = C_{in}V_{in}$$

$$Q_t = Q_{in} + Q_f$$

$$= [C_{in} + C_f(1 + A)]V_{in}$$

$$V_{out} = -AV_{in}$$

$$= \frac{-AQ_t}{C_{in} + C_f(1 + A)}$$

If A is large,

$$V_{out} \cong \frac{-Q_t}{C_f}$$

まとめ

- 1. 純度モニターの提案
 - コンパクトなものと高純度用のもの
- 2. 液体キセノン中の電荷シグナルへのノイズ対策
 - ノイズ源: グランド, PMT, TPC-HV PS, Pre-Amp (A/P250)
- 3. キセノンガス中の電荷シグナル測定(α線ソース)
 - シンチレーション光との線形相関
- 4. PETシミュレーション

- GEANT4とGarfieldを準備中

- 5. フロントエンドASICチップの設計と製作
- 6. 不純物とノイズ対策で、LXeTPCシグナルを観測予定