LXeTPC: レビュー委員会への回答

液体キセノングループ

平成20年5月2日

1 質問1.該当分野の世界の状況、その中での位置づけを具体的 に示すこと。

ガンマ線の反応位置のよい精度を持つものとしては、シリコンストリップを多層重ねた半導 体検出器がある。十分な放射阻止能を得るためには1層の厚さ0.5mmのシリコンストリップを 少なくとも100層以上重ねる必要がある。このように、シリコンストリップを用いた検出器は コンプトン散乱の反応位置の測定に使用される。また、散乱されたガンマ線を効率よく検出す るため、その周囲がカロリメータ(吸収物質)で覆われることもある。ここではシリコンは反応 位置検出器(散乱物質)となっている。この吸収物質として、シンチレータやGe、CdTeなどの 重い半導体が用いられる。位置とともにエネルギーが結晶シンチレーター検出器より精度よく 測定される。この組み合わせの検出器はコンプトンテレスコープと呼ばれ、ガンマ線天文学で 主に用いられている[1]。一般に、半導体検出器は位置とエネルギー分解能において最高の性能 をもつものである。しかし、装置の大型化に際して、多くの半導体と多くの読み出しチャンネ ル数が必要となり、高価なものとなる。

本グループの液体キセノン検出器(LXeTPC)は、タイムプロジェクションチェンバー(TPC) 読み出しにより3次元位置を精度よく測定する。同時に、電離電子群とシンチレーション光に よってエネルギーも精度よく測定できる[2]。また、本検出器は液体キセノン自身が散乱物質と 吸収物質を兼ねる一様な媒質であり、比較的容易に大形化できる。データ読み出しチャンネル 数も少なくでき、安価なものとなる。また、速いシンチレーション光を利用した精度よい時間 分解能では半導体検出器を凌駕する[3]。

これまで、液体キセノン TPC は米国コロンビア大学、早稲田大学の研究グループによりガン マ線天文学用の検出器(コンプトンテレスコープ)として開発研究が行われている[4,5]。 この TPC は電離電子のドリフト距離として 9cm のものである。電離電子群がアノードに到達する 直前で互いに直行する wire 面を通過するとき、wire に誘起されるシグナルにより、これら wire 面での 2 次元位置が検出される。また、ドリフト時間より 3 つ目の位置座標が求められる。さ らに、早稲田大学のグループは wire をすべてなくし、プリント基板の技術を用いた表裏直行す るストリップ型アノード(陽極)によるシグナルの検出を試みている[6]. これら wire やスト リップラインによる位置測定は射影座標で行われるため、PET などの高計数率かつ高バックグ ランドの状況下では、ゴーストヒットの除去が困難になる。

我々と同様な PET 用の液体キセノン TPC 開発研究として、LXe-TPC PET がフランス・ ナンテ (Nantes) 大学の研究グループによって提案されている [7]. 一つの TPC の大きさは 表 1: 液体キセノン検出器:液体の1相; DM は Dark Matter 探索。シンチレーション光のみ測 定のもの (light) と、電荷量測定のもの (TPC, drift chamber) がある。

Phase	Project	Physics	Xe weight	detector	readout	year	location	collaboration		
1	EXO	double beta	10ton (3m ³) 1ton 200kg	TPC	x, y anode wires ; APD for lights , laser - ID	for 10 years for 5 years Nov., 2006	WIPP, NM, USA	Enriched Xenon Observator, US(SLAC), Canada, Swiss, Russia		
1	XMASS	DM solar ν double beta	20ton 1ton (800kg) 100kg (30ℓ)	lights	РМТ	2006	Kamioka	Japan, Korea, Russia		
1	MEG	μ-> e γ	800 - 900 l 70 l	lights	РМТ	Nov., 2006 2003	PSI	Japan, Italy, Switzerland, Russia, USA		
1	LXe-GRIT	cosmic y	2.4 ℓ	TPC	x, y anode wires ; PMT for lights	1997, 1999, 2000	NSBF (National Science Baloon Facility),NM, USA	Columbia university		
1	LXe-PET	PET	64.8 <i>l</i>	TPC	segmented pads	2007 (prototype)	Nantes Cyclotron	France, Japan		
1	PETYA	PET		drift chamber	anode wires or mini-strip ; PMT, APD for lights	2002 (prototype)	Univ. of Coimbra	Portugal		
1	TOF-PET	PET	77.8 l	lights	РМТ	2003	Waseda univ., NIRS	Japan		
1	XEPET	PET	test w/ 8.5 ℓ in 2005	TPC	12 seg. 96wires & 96strips/seg.	2006-2008	TRIUMF	CANADA		

24x60x9cm³(モジュール)であり、LXe-TPC PET は8個のモジュールからなっている。さらに、 各モジュールはシンチレーション光の発光点の同定のため光反射壁により1x1x9cm³の直方 体セルに分割された構造を持つ。電離電子はこの9cm方向(Z)にドリフトする。24x60cm²のア ノードは0.5x0.5mm²のpadsからなっている。彼らのグループには日仏協力 AIL 事業として、 KEK より春山らが参加している。

カナダの TRIUMF でも XEPET が開発されている。インターネット上の情報では 2006 年から3年間の R&D として、小動物用の PET を開発している。この PET は12 個のセンクターが 円筒状に配置されている。TPC のドリフトは半径方向で、シンチレーション光はエンドキャッ プ面に設置された HPD で検出される。

これら液体キセノンを用いた検出器は、田内により測定器開発室勉強会(2006年7月12日) で報告された[8]。これらのまとめを表1 、表2に示した。

主な PET の性能比較を表 3 に示す。この表中赤字で書かれたものは開発研究中の PET であ る。 TXePET の感度 (sensitivity), 雑音等価計数率 (NECR)の値は早稲田大 (現放医研) の錦戸氏らのグループの液体キセノン TOF-PET (LXeTOF PET) [3] のものを下に評価したも のである。この表から、液体キセノンを使用する PET として開発中のものは、我々の TxePET の他に、前述の Nates 大学の LXeTPC PET[7] と TRIUMP(UCB)の (μ -)XEPET、 ポルトガ ルの Coimbra 大学の PETYA (1 TPC ユニット=10x50x60mm³, 10mm ドリフト) [9]、そして 早稲田大学の LXeTOF PET (PMT のみ使用、2光子の時間差,TOF の測定による同時計測線 上位置の同定)である。

これらの中で、液体キセノンが分割されていない TPC 検出器は TXePET のみである。また、

表 2: 液体キセノン検出器:液体と気体の2相;液体キセノン中で電離された電荷を気体相に 移動してガス増幅で呼び出している。ただし、電荷量の直接測定ではなく増幅中のシンチレー ション光を検出している。

Phase	Project	Physics	Xe weight	detector	readout	year	location	collaboration	
		PET	100 <i>l</i>		anode pads :	simulation		France, Israel, Japar	
2	LXeComp/ ⁴⁴ Sc	micro-PET	13.8 <i>ℓ</i> , 6.9 <i>ℓ</i>	TPC	GPM for	simulation	Nantes Cyclotron		
			0.1 ℓ		ngnts	2005			
2	GEM-based	PET		TPC	GEM	2003	Budker Institute	Russia	
2	US patent 5665971	PET		TPC		1997	Columbia university	USA	
			1ton:100kgx10						
0	XENON		100kg	TTD C		design	Gran Sasso undergroun	US, Italy,Portugal	
2		DM (WINP)	10kg	IPC	PM1, GEM	2006			
			3kg			2005	u lab		
			1ton (IV?)					LIV LIC Itoly	
2	ZEPLIN	DM (WINP)	30kg (II)	TPC	PMT, GEM	2006	Boulby, UK	UK, US, Italy,	
			6kg (III)			2006		Russia, Follugai	

TPCのドリフト方向を体軸方向(z方向)にしていることも唯一である。このことにより、以下のような利点を有する。

- 1. ドリフト方向に向って一様な断面形状を有し、一様電場の形成が容易である。
- 2. 円周方向にモジュール化する必要が無く、シームレスな配置が可能であり、感度の向上に 貢献する。
- 3. 体軸方向中央に高電圧陰極を配置することにより、陰極の両サイドにドリフト領域が形成 され、比較的低い電圧で体軸方向に広い領域を覆うことが可能である。
- 4. 将来MRIとの併用によるMRI-PETを考えた場合、体軸方向の磁場は、電離電子群 のドリフトと矛盾せず、むしろ、位置測定精度を改善するなど、有利な点が考えられる。

我々の TXePET は、DOI 分解能を極めた次世代の PET として、高画質 (位置分解能) 高感 度など最高の性能が期待される。

2 質問2.何を、何年で、いくらかけて、どうしたいか、また実 現展望のビジョンを明確に示すこと。

以下に示す研究計画は来年度以降の外部資金獲得も念頭と置いたものである。

表 3: 主な PET の性能比較表

Product		Cryscal/Radiation material		fiducial	fiducial volume position resolution		olution	Slice	energ v res.	sensitivity		NECR by NEMA NU 2-2001		Solid angle	Area	Rate		
designer	name		size	inner diameter	field of view	tange n- tially	radially DOI	axial (z)	z	511 keV	NEMA 200	NU2- 1	NECR	at radiation dose (20Ф x70(20)L	scatter fraction	point source		15MHz in total
PET/CT			x, z, y in mm	cm	cm	mm	mm	mm	mm	%	cps/kBq	%	kcps	kBq/ml	%		cm ²	Hz/cm ²
GE	ADVANCE	BGO	4, 8.1, 30	67.2	15.2	7	30	7.3, 8.4		33		0	37.6	10	44.8	0.221	3207.3	4676.8
GE	Discovery ST Elite	BGO	6, 6, 30	55	15.2	4.25	30	4.8	3.27		8.5	0.85	80	12	36	0.266	2625.0	5714.2
Siemens	ECAT EXACT HR+	BGO	4.39, 4.05, 30	65.3	15.5	4.3	30	4.1			8.98	0.898	27.3(79.2	6.3(12.5)	37	0.231	3178.2	4719.7
Siemens	biograph 16 HI-REZ	LSO	4, 4, 20	58.5	16.2	3.5	20	3.12	2	10	4.92	0.492	84.77	28.73	34.1	0.267	2975.8	5040.7
Philips	Gemini GXL (-TF)	GSO(+Zr)	4, 6, 20 (30)	56	18	4.9-5.5	20	5.0-6.1	4	8.5	8	0.8	70	11	35	0.306	3165.1	4739.2
Shimazu	SET-3000GCT	GSO	2.45, 5.1, 30	66.4	25	2.45	30	5.1	2.6	i	19	1.9	60	9.8	50	0.352	5212.4	2877.8
Toshiba	Aquiduo PCA-7000E	LSO	4, 4, 20	58.5	16.2	3.5	20	3.12	2	10	4.92	0.492	84.77	28.73	34.1	0.267	2975.8	5040.7
PET																		
Hamamatsu	SHR-92000	BGO	2.9, 6.3, 20	60	68.5						9.72	0.972	113.6	10.5	31.4	0.752	12905.4	1162.3
Nantes univ.	LXeTPC PET	Lia.Xe	10, 10, 90 (93%)	60	60	0.25	0.14	0.25		13.8			70	1.5	54.5	0.707	11304.0	1327.0
Coimbra univ	PETYA	Lia Xe	10, 50, 60 (73%)			0.8	2.0-5.0	0.8		15-17								
NIRS	LXeTOF PFT	Lig Xe	segmentation?	80	24	3.7	10 010	3.7		16	35	3.5	150	10		0.287	6028.8	2488-1
KEK-NIRS	TXePRT	Liq.Xe	no segmentation	88	48	1 64	1.64	12		16	70	7	300	10		0.479	13263.4	1130.9
Brain PRT		Induito	no sognomutor										20 m y	20L cm ²			1020011	110010
CERN	brain HPD-PET	150	3.2.200(2) 3.2	35	10	1.0	1.0	4.5		7.5	4	0.4	130	LOD CIII	30.4*	0.275	1000.0	13648.8
NIPC	JET DA	CSO	2.0. 2.0. 7.5×4	25.6	26	2.5	7.5	2.5		1.5	71	0.71	150	11	20.7	0.213	2000.0	7177.1
CPS	JFET-D4 HRRT	USO-UVSO	2.5, 2.5, 7.5X4	20.0	25	2 4.2 0	7.5	30.40		17	4.5	0.45	140	13	40	0.625	2030.0	6124.4
Univ		Anger-logic	2.1, 2.1, 7.012	31.2	20	2.4-2.3	7.0	3.0-4.0		17	4.5	0.45	140	13	40	0.025	2445.2	0124.4
Pennsylvania	G-PET	GSO	4, 4, 10	30	25.6	4	10	5		18	4.79	0.479	60	7.4	39	0.649	2411.5	6220.1
Hamamatsu	SHR-1200(2400)	BGO	2.8(1.4), 6.55, 3	33	16.3	2.9	30	2.9								0.443	1689.0	8881.0
Hamamatsu	SHR-12000	BGO	2.8, 6.55, 30	50.8	16.3	2.9	30	2.9								0.306	2600.0	5769.1
Small Animal PET														(2.5Φ x7L cm ²).MBa/			http://w	ww2.ham
UVP BioImaging	microPET II	LSO	0.975,0.975,12.5	16	4.9	1.17	12.5	1.42			22.6	2.26	235	2.35		0.293	246.2	60932.0
SCETI, Univ. of Ferrara	YAP-PET	YAP	2, 2, 30	4	4	1.8	30	1.8		14.5	18	1.8	90	16.6MBq		0.707	50.2	298566.9
Oxford Positron	Quad HIDAC	HIDAC		17	28	1	1	1			18	1.8	100	0.2	30-40	0.855	1494.6	10035.9
ravtest	ClearPET	LYSO-LuYAP	2, 2, 10x2	22.5	11	1.25-2	10	1.25-2		30	38	3.8				0.439	777.2	19301.3
LIP	RPC-PET	RPC		6	10	(0.5	0.5			21	2.1	318	2.63		0.857	188.4	79617.8
Philips	MOSAIC	GSO		12.8	11.9	2.1-2.5					5.7	0.57				0.681	478.3	31362.1
GE	eXplore Vista	GSO/LYSO	1.55, 1.55,	6.7	4.7	1.56		1.74			41.4	4.14				0.574	98.9	151701.2
Siemens	FOCUS 220	LSO	1.5, 1.5, 10	19	7.6	1.3-2.5	10			18	40	4				0.371	453.4	33082.2
Advanced MI	LabPET7.2	LYSO/HPD	1, 1, 10	11	7.2	1.1	10									0.548	248.7	60316.5
Gamma Medica	X-PET	BGO		10	11.6	2		2			83	8.3				0.757	364.2	41181.6
Joseph Fourier	univ.	Liq.Xe	2, 2, 50(z)	8	5	1	1	8								0.53	125.6	119426.8
UBC (D.Bryman	μ -XEPET	Liq.Xe				0.8	0.8	0.8			200	20						
Joseph Fourier univ.		Liq.Xe	50(z) DOI	30	20		2.1				18	1.8				0.555	1884.0	7961.8
Hitachi co./Hok	kaido univ.	CdTe	x,x,15 x3	8		2	15			5.2								
Tohoku univ.		CdTe	1115x2	6.4	2.6	0.75	5		I –						I			

今後3年間の研究期間では、エネルギー、位置、時間分解能など基本的な性能を検証する。 少なくとも次世代PET に必要な性能、すなわち511keV ガンマ線に対して、エネルギー分解 能の16% (FWHM)、3次元位置分解能の1mm (FWHM)を達成する。このように、本研究は 液体キセノンTPC 検出器が次世代PET として実用化されるための基礎的データを与える。ま た、エネルギー分解能をさらに向上させれば、ガンマ線天文学用の検出器としても十分な性能 をもつものとなる[10]。

従来のフルスケール PET 感度の少なくとも 10 倍を達成するため、PET 視野にあたる TPC のドリフト距離の最終目標を 24cm とする。光電子増倍管 (PMT) は早稲田大学グループにより 液体キセノンシンチレーション光測定用に開発され、その量子効率で最高性能を持つ浜松ホト ニクス製 R5900-06AL12S-ASSY を使用する。これの断面積は 3cm x 3cm の正方形である。十 分な ROI 測定性能評価のため、PMT の配列はドリフト方向に 8 個、それに直行するほうこう に 4 個、すなわち 8 x 4 のマトリックスとなり、PMT 総数は 32 本である。入射ガンマ線進行方 向にあたる液体キセノンの厚さは、511keV ガンマ線の 93%が反応を起こす 9cm とする。その 反応の割合は、78%がコンプトン散乱で残りの 22%が光電効果である。したがって、本研究目 的である PET の基本性能の実験的検証に必要な TPC の容積は 24 x 12 x 9cm³ (2.6)となる。

この大きさの TPC の製作と性能評価が本研究の最終成果となるが、次のように段階的な方 法を採用する。今年度に、4 x 2 の PMT マトリックス配列で半分のドリフト距離 12cm のプロ トタイプ TPC を製作し、TPC の基本構造を確立する。来年度には TPC 本体とパイプライン方 式によるエレクトロニクスシステムの製作を行う。再来年度には、8 x 4 の PMT マトリックス 配列の TPC を完成させ、本研究の目的を達成する。

2.1 平成 20(2008) 年度の計画

先ず、4 x 2 PMT マトリックス配列のプロトタイプを製作する。ここで TPC での液体キセ ノンの厚さは既存の圧力容器に収められるように 10cm である。TPC の主要構成部品で一様電 場形成を行うカソード、フィールドケージ、グリッド、アノード、そしてそれらを支える構造 体の構造・冷却試験を行う。典型的な電場の強さは 2kV/cm である。次に、液体キセノン中で の TPC 性能試験を以下のような課題について実行する。

- 1. フィールドケージからの漏れる電場による PMT への影響(信号出力の均一性など) PMT 周辺を金属メッシュで覆う電場シールドの効果の測定と評価
- 2. 標準ガンマ線源(購入済)、 線源などを使用し、アノードシグナルの電場強さ依存性測定
- 3. 電離電子の再結合率の電場依存性の測定と評価から電場の強さを最適化する[11,12]
- 4. 電離電子のドリフト中の電荷減衰の測定:不純物 (O2, H2O など) 混入比の ppb レベル での直接測定は困難。M.Ichige らによると、0.1ppb 以下で、2m 以上の減衰長が得られ る [13]。
- 5. シンチレーション光と電離電子のそれぞれによるガンマ線のエネルギー分解能: これら 2 つの分解能間の相関も調べる。
- 6. コリメートした標準ガンマ線源とアノードパッド (3x3mm²) による位置分解能: パッドサ イズの最適化を検討する。
- 7. 電離電子の拡散率 (diffusion)の測定: T.Doke らによると、24cm ドリフト時に =1mm 程度である [14]。

上記の結果を踏まえて、TPC の最終設計を行う。平行して次年度製作するエレクトロニクスシ ステムの設計を開始する。先ず、製作する上で必要なシステムの性能仕様をまとめる。

2.2 平成 21(2009) 年度の計画

前年度の最終設計に基づき、TPC 本体を製作する。このとき、図1 に示すような真空容器 も製作する。先ず、真空容器単体で純化・冷凍機システムに接続し、容器内に液体キセノンが

図 1: 液体キセノン用真空容器の概念図。外部よりガンマ線を入射するためマイラーウィンド ウを有する。

満たされるのを確認する。次に、TPC を挿入し、2 倍のドリフト距離での前年度と同様な性能 試験を行う。

図2 に概要を示したパイプライン処理に基づくエレクトロニクスシステムの詳細設計と製作 も行う。光電子増倍管とTPC アノードからのシグナルは不感時間なく高速デジタル化が行わ れ、フィールド・プログラマブル・ゲート・アレイ (FPGA) で四則演算などの高速デジタル処理 により、それぞれのエネルギーと位置情報が計算される。それらの情報は高速メモリ (SRAM) に書かれる。コンピューターでシンチレーション光の発光時刻と ROI 情報より、TPC での電 離電子シグナルからの精密な3次元位置情報が計算される。メモリ上の情報は発光時刻から全 ドリフト時間経過後 (約100 µ 秒/24cm)に上書きされることが可能である。

2.3 平成 22 年 (2010) 度の計画

残りの光電子増倍管 24 本を購入し全システムを完成する。液体キセノン TPC 検出器としての基本的な性能試験(diffusion 係数、シグナル減衰率、エネルギー分解能、位置分解能の測定) を全有効領域で行い、それらの領域内分布、一様性などを解析する。エレクトロニクスシステ

図 2: エレクトロニクスシステムの概要。シンチレーション光の情報(ROI情報) 電離電子の情報(精密位置、エネルギー情報)をそれぞれFPGA技術用いてオンボードでパイプライン処理する。

ムでは、不感時間のない読み出しが達成されていることを確認する。その実証として強度の強 いガンマ線源を使用する予定であるが、少なくとも、エレクトロニクスの各々の部分での時間 損失を測定し、総合的に不感時間を評価する。

2.4 予算(概算)

開発研究3年間の年度ごとの概算を以下の表にまとめた。

項目	単価(円)	数量	価格(円)
TPC本体	1,800,000	1	1,800,000
PMT 用 HV 電源	$235,\!000$	3	705,000
PMT	175,000	8	1,400,000
エレクトロニクス	2,000,000	1	2,000,000
液体キセノン液化・純化システム関係		1	
計			6,275,000+ (液体 Xe 関係)

表 4: 平成 20(2008) 年度

表 5: 平成 21(2009) 年度

項目	単価(円)	数量	価格(円)
TPC 本体	3,000,000	1	3,000,000
TPC 真空容器	2,300,000	1	2,300,000
エレクトロニクス	3,200,000	1	3,200,000
液体キセノン液化・純化システム関係		1	
計			8,500,000+ (液体 Xe 関係)

表 6: 平成 22(2010) 年度

項目	単価(円)	数量	価格(円)
PMT	175,000	24	4,200,000
エレクトロニクス	3,200,000	1	3,200,000
液体キセノン液化・純化システム関係		1	
計			7,400,000+ (液体 Xe 関係)

3 質問3. 現アクティブメンバーリスト(新規参入含む)とその内 訳・貢献度を示すこと(司令塔、デザイナー、試験、ユーザー)

貢献度の目安として FTE の値を示した。

田内利明 (KEK): 0.1FTE:研究の総括および、データ収集システム

真木晶弘 (KEK):0.1FTE:光電子増倍管システムおよび液体キセノンでのシンチレーション 光検出カミオカンデ型カロリメータを有する MEG 実験グループのメンバーで液体キセノンシ ンチレーション光シグナルの特性と ROI の算出方法に豊富な知識がある。

春山富義 (KEK):0.1FTE:液体キセノン純化及び冷凍システム。高性能のパルス管冷凍機の 研究開発をリードし、MEG 実験の純化・冷凍システムも担当している。

笠見勝裕 (KEK): 0.2FTE: 冷凍システム構築の実働

鈴木祥仁 (KEK): 0.2FTE: 冷凍システムモニター用の Labview システムを作成。将来は制御 システムに発展させる。

田中 秀治 (KEK): 0.2FTE: TPC システムの製作及びシステム試験: 数多くのガスチェンバー の製作を行った豊富な経験を有する。

三原智 (KEK): 0.1FTE: 2008 年度より参加。MEG 実験で活躍中で液体キセノン検出器の豊 富な経験 杉山晃 (佐賀大): 0.05FTE: TPC システムそして ASIC 設計:ガス TPC のための GEM や MICROMEGAS による読み出しの開発研究での豊富な知識

東貴俊(D2):1 FTE:博士論文予定。

中村正吾 (横浜国大): 0.05FTE:液体キセノン基本特性の評価。

熊田雅之 (放医研): 0.1FTE: PET としての性能仕様とデータ解析: 放医研で重イオン加速器 利用によるがん治療の豊富な知識より、次世代 PET としての性能評価を遂行

富谷武浩 (放医研): 0.01 FTE: PET への実用化とデータ解析

寅松千枝 (放医研): 0.01 FTE: PET シミュレーションによる性能の最適化

上記のように、大学院生の参加が現在一人と、一番の問題は人手不足(実働)である。

4 質問4.各グループから測定器開発室(室長)およびKEKに 対する希望(予算以外について)(コーディネーションの仕 方、アーカイブ、共通資産として希望等)明確なものがあれ ば示すこと。

予算項目かもしれないが、外国旅費の支給があればよい。

5 質問 5. マンパワーに関して、もしここの専門家がいればブ レークスルーができるという明確なものがあれば示すこと。

KEK素核研エレクトロニクスグループの協力支援を強く希望している。特に、今年度よりエレクトロニクスの設計を開始する予定のため、グループ内にもエレクトロニクスの専門家がぜひ必要である。DAQプロジェクトのトリガーレス読み出しシステムのR&Dグループと協力出来るとよいと思う。

PET としてのシミュレーションによる性能の最適化も急務であるが、放医研での業務のため、 担当者がこれに時間の避けないことが前年度であった。このことが今年度も続くなら、新たな 人材を捜さなければならない。大学院生の修士および博士論文のテーマにもなりうるので『公 募』したい。

6 特別質問: PETへ向けたロードマップを示すこと

PET 開発を最終目標としているため、産学による共同開発研究が必要である。共同研究として、液体キセノン TPC の PET 本体と不感時間無しの読み出しエレクトロニクスシステムの開発研究の2つが独立に必要かもしれない。

PET としての最小システムが完成し、下記に示した技術設計書作成に必要な開発研究の終了 する 2011 年から実用化に向けて産学協同開発研究を行いたい。

そのために必要な TXePET の製作・製品化を前提とした技術設計書(TXePET-TDR)には 以下の項目が含まれる。

- ハードウェア設計: 『真空』容器、TPC本体(フィールドケージ、グリッド、PMT支持 構造)、パッド構造、フロントエンドエレクトロニクス(パッド上に設置)
- 2. シミュレーション: GATE (GEANT4) などによる性能評価とパラメータの最適化
- 3. エレクトロニクスシステム:パイプライン(トリガーレス)読み出し・オンライン処理
- 4. 事象の再構成法
- 5. イメージング化のアルゴリズム
- 6. スケジュール(製品化への開発計画)

7. 年次予算

最初の PET『製品』として、小動物用の μ-TXePET を想定している。これの規模として、 内径(外径)は 20cm(40cm)で体軸方向の長さは 24cm である。 前章を含めてロードマップとして、

- 2008年: 2x4PMT システム-10cm ドリフト TP の基本試験、エレクトロニクスシステムの仕様・設計、とともに、外部資金獲得のための申請、シミュレーション
- 2009年: TXePET の基本単位として 4x8PMT システム-20cm ドリフト TPC の設計・製作、そして、エレクトロニクスシステムの設計・製作、シミュレーション
- 2010 年: TXePET 基本単位の完成とその性能評価試験(パイプライン読み出し、事象の 再構成、設計方針の実証)とまとめ
- 2011 年: TXePET-TDR 作成・完成と産学共同研究申請(パートナー企業決定)
- 2012 年: μ-TXePET の製作開始

とまとめることができる。ここで、イメージング化のアルゴリズムのTXePETでの最適化は産 学協同研究として企業の分担とすることを想定している。

参考文献

- T.Tanaka et.al., Development of a Si/CdTe semiconductor Compton telescope, Proc. SPIE, vol. 5501 (2004),229-240
- [2] E.Conti et. al., Correlated fluctuations between luminescence and ionization in liquid xenon, Physical Review B68 (2003) 54201

- [3] F.Nishikido et.al., Performance of Prototype Liquid Xenon Scintillation Detector Systemfor Time-of-Flight Type Positron Emission Tomography with Improved Photomultipliers, Japanese Journal of Applied Physics, Vol.44, No.7A (2005) 5193-5198
- [4] E.Aprile et.al., The electronics read out and data acquisition system for a liquid xenon time projection chamber as a ballon-borne Compton telescope, NIM A412 (1998) 425-436.
- [5] E.Aprile et. al., The LXeGRIT Compton Telescope Prototype: Current Status and Future Prospects, SPIE 4851 (2002) 140, astro-ph/0212005
- [6] 瀧澤京子他、ストリップ型陽極を用いた宇宙ガンマ線用液体 XeTPC の開発 II、日本物理 学会 2000 年春の分科会(近畿大学)
- [7] J.P. Cussonneau et al., Simulation and evaluation of a new PET system based on liquid xenon as detector medium, Proceedings of the 2nd International Workshop on Applications of Rare Gas Xenon to Science and Technology (XeSAT2005), p 35, Waseda University, March 8-10, 2005, Waseda MediaMix Publishing Co.
- [8] 田内利明, "Liquid Xe Detectors", 測定器開発室勉強会, 平成 18(2006) 年 7 月 12 日,KEK : http://www-jlc.kek.jp/ tauchi/index/LXeTPC/homepage/report.htm
- [9] V. Solovov et al., NIM A477 (2002) 184-190
- [10] Larger ACT Collaboration (Steven E. Boggs et al.), The Advanced Compton Telescope Mission (NASA Vision Mission Concept Study Report), New Astron.Rev.50 (2006) 604-607.
- [11] S.Kubota et al., PR B20(1979)3486-3496
- [12] E.Aprile et al., NIM A307(1991)119-125
- [13] M.Ichige et al., NIM A333 (1993) 355
- [14] T.Doke et al., NIM 196 (1992), 87