液体キセノングループ 2007年度報告

KEKDTP Review、2008年4月24日、KEK 田内利明

液体キセノンTPCによる高分解能ガンマ線 検出器の開発研究(提案)、2007年 4月10日

2007年度のメンバー KEK:冷凍・純化システム、PMTシステム、TPC、テスト 田内利明、真木晶弘、春山富義、田中秀治、三原智、幅淳二 笠見勝裕(冷凍システム構築)、鈴木祥仁(モニター:Labview) 佐賀大:TPC、TPCシミュレーション、テスト 杉山晃、東貴俊 (D1)、青座篤史 (M2、電場計算) 放医研: PETとしての性能仕様とシミュレーション 熊田雅之、富谷武浩、寅松千枝 横浜国大:液体キセノン基本特性 中村正吾、佐藤友厚 (M1、夏期)、宮本健司 (M1、夏期) 協力支援:KEK素核研回路室、田中真伸氏 レビュワー:宮島光弘氏(早稲田大)、海野義信(KEK)

ホームページ

http://www-jlc.kek.jp/~tauchi/index/LXeTPC/homepage/

液体キセノン検出器

English page

本研究開発の目的は、液体キセノンタイムプロジェクションチェンバー(TPC) を用いた、keV~MeVのエネルギー領域のガンマ線の3次元位置、時間及びエネ ルギーの高分解能検出器の開発である。

お知らせ

定例打ち合わせ等のメモ・資料

<u>レポートや資料</u>

<u>リンク</u>

液体キセノンTPCの概念図: 大きな画像 (144KB)はクリックするとダウンロードされます。

定例打ち合せ等のメモ・資料

東貴俊(佐賀大)の日刊報告:(<u>ホームページ</u>)

- <u>2008年4月17日</u>; インタビュー、TPCと液化システムの準備状況、低温用アンプ、その他 4/16 常陽新聞からの取材
- <u>2008年4月10日</u>; 共用施設のクリーンルーム使用方法、TPC準備状況、その他
- <u>2008年4月3日</u>; 3/17レビューの報告、キセノン液化準備状況、TPC準備状況・配線チェック、**Q**線(Am)ソース、そして、アンプ,純化装置、その他
- <u>2008年3月13日</u>; 定例打合せに代えて近況の報告
- 2008年2月28日;実験室でのクリーンブースの組立て作業 無事終了
- 2008年2月21日; TPCのプロトタイプの準備状況(ケーブル配線、テストパルス試験)、液化システム組立て予定、工程表作成、密封線源、その他
- <u>2008年2月14日</u>; 定例打合せに代えて近況の報告
- 2008年2月7日; TPCのプロトタイプの準備状況、配電盤工事終了後の予定、その他
- <u>2008年1月31日</u>; TPCのプロトタイプの準備状況、ハンダ、超音波洗浄機、ブース、RG188ケーブル、TXテクノロジーショウケースのポスターセッション 報告、その他
- <u>2008年1月24日</u>; 今年度予算執行状況と予定、放射線チェッキングソースの保管場所、その他
- <u>2008年1月9日</u>; TPCシミュレーション、洗浄、液化装置の新実験室への搬入、その他
- 2007年12月25日; 新実験室の現状、特に配電盤工事、今後の作業計画、その他
- <u>2007年12月7日</u>; 進捗状況、TPC用部品、発注リスト、その他
- <u>2007年11月29日</u>; 測定器開発室11月例会議での中間報告結果、新実験室の様子、今後の作業計画、その他
- <u>2007年11月22日</u>; reviewer決定、測定器開発室11月定例会での報告、購入リスト、その他(議論、作業計画等)
- <u>2007年11月15日</u>; プロトプロトタイプTPC、予算執行、科研費申請、<u>NMLコンプレッサー室 マスター工程表</u>
- <u>2007年11月1日</u>; 冷凍機システム
- 2007年10月18日; パッドデザイン
- <u>2007年10月11日</u>; TPCイメージ図、予定表、科研費
- <u>2007年10月4日</u>; 整電部材料の最終提案、パッド、PMT固定部の設計
- 2007年9月27日; 進捗状況
- <u>2007年9月13日</u>; 電場計算、TPC構造、試験マニュアル
- <u>2007年9月6日</u>; PMTキャリブレーション、<u>パッド設計</u>、電場計算に要する時間(<u>ppt</u>)
- <u>2007年8月30日</u>; 年度計画(<u>doc</u>)、<u>実験計画(doc)</u>、電場計算(<u>キセノンの特性</u>)
- <u>2007年8月23日</u>; 今週の予定、<u>エネルギー分解能</u>
- <u>2007年8月9日</u>; TPC構造・素材試験の進捗状況、スタイキャスト(<u>カタログ</u>, <u>データシート</u>)

レポート、発表ファイルや資料など

レポート

- 『次世代PET研究会』プロシーディング、放医研、平成19(2007)年7月30日、『液体キセノンTPC-PET』、真木晶弘(<u>pdf (6ページ, 604kB)</u>
- KEK素核研・測定器開発室への提案書:『液体キセノンTPCによる高分解能ガンマ線検出器』、平成 19 年 4 月 24 日 (pdf (17ページ, 799kB)

発表ファイル

- 平成20(2008)年3月17日、『液体Xeグループ報告』(<u>pdf, 21ページ, 3.9MB</u>)、田中秀治、測定器開発室、KEK いつ試験するのか?
- 平成20(2008)年1月25日、<u>TXテクノロジー・ショーケース・イン・ツクバ 2008</u>のポスターセッション:アブストラクト(<u>pdf</u>、<u>doc</u>)、インデックス発表 (<u>pdf</u>、<u>ppt</u>)、ポスター原案(<u>pdf: 2008.1.8.10am</u>)
- 平成19(2007)年11月27日、『液体キセノングループ中間報告』(<u>pdf, 27ページ, 7.6MB</u>)、田内利明、測定器開発室、KEK 質問への回答
- 平成19(2007)年7月30日、"TXePET, Liquid Xe TPC with Scintillation Readout" (<u>pdf, 23ページ, 2.4MB</u>又は、<u>ppt</u>)、そして、『液体キセノンTPC-PET』 (<u>pdf, 3ページ, 348kB</u>), 真木晶弘、次世代PET研究会、放医研 次世代PET研究会での発表
- 平成19(2007)年4月10日、『液体キセノンTPCによる高分解能ガンマ線検出器』(pdf, 22ページ, 3.6MB)、田内利明、測定器開発室報告会2007、KEK
- 平成18(2006)年7月12日、"Liquid Xe Detectors", (pdf, 82ページ, 13.6MB)、田内利明、測定器開発室勉強会、KEK

資料

- 液体キセノンTPCの検討項目、(<u>pdf, 5ページ, 147kB</u>)
- 液体キセノン検出器のまとめ、(PDF, <u>1位相(液相)</u>、<u>2位相(液相と気相)</u>)
- PET/CTのまとめ、(PDF)

11/27 2007のレビューでの質問への回答

- 抵抗値の10MΩで2kVの電圧をかけると、0.4Wの消費電力となる。
 気泡がでるのではないか。
 - TPCシステムの抵抗は簡単に交換可能であり、1GΩ程度までは
 - 検討してみる。
 - ・ 最終的にはこの抵抗値は放射線の線量で決まると考えている。100MΩ使用
- cathode用の電極はメッシュ板である必要はない。
 - 金属板に変更した。
- それぞれのPADごとのゲイン(感度など)の較正をどうするのか。
 - 較正のための真空容器で使用可能なガンマ線ソースを購入
 - (Cs-137, CS516タイプ, 7kB及びα線源(MEGで使用))
- パッドの材質のG10はアウトガスの問題があると思われる。
 - コストの問題が一番大きい。今回は FR4を使用するがを最終的にはセラ ミックスを使用したいと考えている(業者問い合わせ中)。
- HV用抵抗はガラス抵抗がよい。 → 変更済み
- 一般に3mm間に6kV/cm以上(ドルフト領域の3倍程度)かけないと メッシュを透過しない
 - スペーサーギャップをコンロトールして達成する。
- ガスでTPCのテストする意味があるのか。
 実験室の準備の遅れによりガスでの試験はしない。

ポスター:TXテクノロジー・ショーケース・イン・ツクバ 2008 TXePET(液体キセノン検出器を用いた次世代 PET)

次世代 PET の開発課題

A) 解像度の向上: r線位置精度の向上 (特に DOI) : 雑音の除去 B) 感度の向上 : 大アクセプタンス (死角の最小化)

従来技術のアプローチ

多光量、高速、非潮解性結晶の開発 結晶サイズの細分化 径方向位置情報 (DOI) による画像歪みの解消: 結晶シンチレーターの多層化 パッキング率の改善 2光子間の時間差測定 (TOF) による偽信号の排除 多チャンネル高速読み出し回路の開発 画像処理プログラムの開発

	液体キセノンの特性									
	r線や荷電粒子の通過でシンチレータ光と電離電子が生成される									
ſ										
	正確な時間,エネルギー,位置 正確な位置,エネルギー 光電子増倍管 イオンチェンバー,低ノイズ増幅器									
	APD GEM:液体、2相キセノン (Avalanche Photodiodes) (Gas Electron Multiplier)									
1	511 keVのγ線の反	芯 = 22% 光電効	果 + 78% コンフ	プトン散乱						
	22,000個光子数/511		nsと27nsの高速							
3	30,000 電離電子数/5	511keV, 0.5mm0	D平均射程							
	電子のトリノト速度	2.3mm/µs (—≹	表電場 2kV/cm 「	")						
	シンチレーター	GSO Gd₂SiO₅	LSO Lu₂SiO₅(Ce)	液体キセノン						
	密度 (g/cm ³)	6.71	7.4	3.06						
	放射長 (cm)	1.38	1.14	2.77						
	蛍光波長(nm)	430	420	175						
	蛍光減衰時間(ns) 30-60 40 2,3									
相対発光量 20 40-75 10										
	屈折率	1.85	1.82	1.60						
	融点 (°C)	1950	2050	-111.75						
	自由									
	ドリフト速度(mm/µs)	x	х	2.2						

TXePETの開発戦略

高エネルギー実験で培われた検出器技術を基礎とする 液体キセノン TPC による 511keV 光子の3次元位置測定: DOI を含めて 1mm (FWHM) 以下の精度(電離電子) シンチレーション 光の分布測定による反応の3次元位置推定と 事象発生時間の決定(シンチレーション) 体軸方向のドリフト:一様電場、広い FOV、MRI との併用 高速なシグナルと TOF による偽信号の排除 多チャンネルで高速読み出しエレクトロニクスを開発 画像処理プログタムの開発

エレクトロニクスシステムの概要:シンチレーション光の情報(Region Of Interest -ROI 情報、発光時刻)、電離電子の情報(精密位置、エネルギー 情報)をそれぞれFPGA技術によりオンボードでパイプライン処理する

エレクトロニクスボード上でパイプライン処理される信号情報の概念図

液体キセノン・タイムプロジェクションチェンバー(TPC)の原理検証実験 高エネルギー加速器研究機構(KEKDTP プロジェクト研究)、放射線医学総合研究所、 佐賀大学、横浜国立大学の共同研究

従来技術の問題点

粗い DOI による画質の低下 DOI 方向の分割をこまかくすると、結晶数が増え、 したがって、煩雑さ・複雑さの増加によるコスト増 結晶間の反射材仕切など隙間による、感度の低下や ばらつき

2007年度予定と自己評価 1. 液体キセノン純化(KEKパルス管冷凍機使用) 酸素、水(シグナル減衰)そして、クリプトン等(バックグランド)の除去 - ppb以下 不純物除去と測定方法の確立とTPCなどの使用素材の吟味 2.素材チェック(液体窒素中-200°C) HVケーブル碍子、(低温中での耐圧) ハンダ使用の是非 コンデンサ、抵抗(低温中の高周波特性、耐圧、温度特性) フィードスルー ヒートサイクルによる使用素材の劣化 ベーキング可能な材料(必要性?)

液体キセノンTPCによる高分解能ガンマ線検出器の開発研究(提案)、2007年 4月10日

4. TPCの基本性能測定 拡散(diffusion)、減衰(attenuation)、3次元位置の測定 読みだし (ゲイン1):アノードパッド 低電力低ノイズアンプのテスト(開発中のASICなど) 位置、エネルギー精度の較正方法(放射線源、宇宙線ミューオンなど) シグナルのシミュレーション(電場、グリット電圧、ドリフト)

液体キセノンTPCによる高分解能ガンマ線検出器の開発研究(提案)、2007年 4月10日

整電部(フィールドケージ)構造

ネジとナット:レニー製のM6 (ポリアミド樹脂)

スペーサー:セラミック

電極板:SUS 1mm厚

材質	レニー(<i>φ</i> 6mm)					
位置	1	2	3	4	5	6
最初	45.21	45.21	45.23	45.45	45.2	45.14
取り出し直後	45.15		45.2		45.14	45.01
1 サイクル(常温)	45.21		45.21		45.17	45.05
取り出し直後	45.17		45.19		45.19	45.05
2サイクル(常温)	45.21		45.21		45.2	45.08
取り出し直後	45.18		45.2		45.2	45.2
3サイクル(常温)	45.22		45.22		45.19	45.09
取り出し直後	45.16		45.19		45.19	45.15
4サイクル(常温)	45.19		45.23		45.19	45
取り出し直後	45.19		45.19		45.18	45.05
5サイクル(常温)	45.2		45.22		45.19	45.21
取り出し直後	45.19		45.19		45.19	45.03
6サイクル(常温)	45.22		45.22		45.19	45.12
取り出し直後	45.15		45.19		45.15	45.23
7サイクル(常温)	45.19		45.23		45.21	45.25
取り出し直後	45.2		45.19		45.16	45.02
8サイクル(常温)	45.22		45.22		45.22	45.3

TPC本体の制作状況

◎真空容器取り付けのためのフ レームを設計制作を行い、設置可 能であることを確認した。 ◎配線はフランジのフィードス ルーを経由して外部に取り出す が、現在ほぼ部品準備を終えた。 ◎ブリーダー抵抗はガラス封入の ものに交換 $(100M\Omega, RG1/2S)$

PMT

TPC配線

TPC配線部品

ハンダは極低温で使用可能なSn+Ag+Cu(アルミット製)を使用

12

部品洗浄及びコーティングの可能性

- TPCの部品は素材に応じて洗浄形態が異なる
 - アルミの場合:アルカリ溶液洗浄
 - SUSの場合: 酸溶液洗浄
 - ハンダ:水溶性フラックス+水超音波洗浄(まだ実現できていない)
- PMTやケーブルなどは部品が複合しているため洗浄方法
 が不定になっている。
 - フッ素グリースによるコーティングかブラスチックによるモール
 ディングが可能であるか検討中。
 - RG188信号ケーブルなどは被覆が不純物の原因となりうるのでその影響 も確認する必要がある。

冷凍・純化システム

オイルフリー・ダイアフラムポンプ(エノモト)によるガス循環精製

Xeガスハンドリングパネル

- ・配管はSUS-BA管
- ・VCR継手
- ・自動溶接
- ・サエスゲッター
- ・ダイアフラムポンプ
- ・半導体クリーン仕様部品 等、組込み済み
- ・0.75m³のバッファタンク
- ・チェンバーへの配管
- ・温度センサー、液面検出装置
- ・LabVIEWモニターシステム完成
- ・4月21日の週にチェンバーとつなぎ 試運転(キセノン液化、保持、回収)

有効電荷量の謎

エネルギー分解能を決めているもの? 線源依存? 電場の関数

先ず、純度の高い液体キセノン中で測 定してみたい。

ELECTRIC FIELD (kV/cm)

Fig. 5. Collected charge $(Q/Q_0\%)$ vs. electric field for ²¹⁰Po in liquid xenon (\Box) and ²⁴¹Am in liquid xenon (\bigcirc) and liquid argon (\triangle).

Fig. 6. Noise subtracted energy resolution vs. electric field for ²¹⁰Po in liquid xenon (\Box) and ²⁴¹Am in liquid xenon (\circ) and liquid argon (\triangle).

FIG. 2. Variation of relative luminescence intensity L and collected charge Q in liquid argon, krypton, and xenon vs appliedelectric-field strength for 0.976- and 1.05-MeV electrons.

Am-241, 5.49MeV, 200 Bq 液体キセノン中使用

『MEGではこのプレートの裏側にネジを エポキシ接着剤(スタイキャスト) で接着して装置内に固定しています。

Y線源 Cs-137, 0.66MeV, 7KBq, CS516 (日本アイソトープ協会製)

φ5.2×8.5mmのステンレス鋼
 (SUS316L) 円柱状カプセル
 に溶接密封された線源です。

2007年度予算執行結果: 470万円 (液化システム) + 300万円 (TPC)

契約日	品名	数量	金額	単価	扱い業者	
					執行額合計	残高
	予算合計		7,700,000		8,213,583	-513,583
					執行額合計	残高
予算配分	液体X e 関連の設備投資分		4,700,000		4,753,391	-53,391
8月16日	超高純度ガス精製装置	1	1,386,000		巴商会学園都市営業所	
8月21日	ダイヤフラム式エアーポンプ	1	134,925		北原商事	
10月12日	複合分子ポンプ排気セット 一式	1	1,260,000		大阪真空機器製作所 東京	支店
1月23日	半導体産業用圧力計 Bグレート他		55,650		英和(株)つくば出張所	
1月23日	圧力トランスミッタ(BAグレード)他		277,200		英和(株)つくば出張所	
1月24日	日阪製作 ブレージングプレート式熱交換器		51,450		古本機工	
1月24日	(株)山武 流量計他		127,050		英和(株)つくば出張所	
1月24日	コールドカソードピラニゲージ(NW25)他		246,172		(株) アールデック	
1月28日	ICF34銅ガスケット(5枚/組)他		10,290		(株) アールデック	
1月28日	圧力調整器		118,650		英和(株)つくば出張所	
1月28日	ICF34銅ガスケット(5枚/組)他		10,290		株)アールデック	
1月28日	圧力調整器		118,650		英和(株)つくば出張所	
2月4日	ICF34銅ガスケット(5枚/組)他		13,650		株)アールデック	
2月27日	フレキシブルチューブ他		856,338		茨城バルブ・フィッティン	グ (株
2月27日	おすナット 他		87,076		茨城バルブ・フィッティン	グ(株
					執行額合計	残高
予算配分	検出器周辺関連		3,000,000		3,460,192	-460,192
8月23日	ジュラコンスペーサー他		112,556		古本機工	
9月4日	セットカラー他		41,828		古本機工	
9月27日	PAD用読み出し基板	4	312,900	78,225	林栄精機	
10月5日	精密石定盤	1	26,880		古本機工	
10月15日	基盤加工他	1	58,275		スズノ技研(株)	
11月7日	レニー皿小ネジ	1	472		古本機工	
11月16日	PAD読出し基盤	1	168,000		林栄精器(株)	
12月5日	ステンレス製金網	1	4725		古本機工 (株)	
12月11日	ソフトウエア LabVIEW8.5ベースパッケージ(日本語版)	1	184,800		日本ナショナルインスツル	メンツ(株)
12月27日	DELL デスクトップパソコン他		284,550		ヤトロ電子 (株)	
12月27日	テフロンワッシャー他		520,920		古本機工 (株)	
1月11日	セラミックスペーサー加工品他		104,063		古本機工 (株)	
1月24日	TPC検出器 PMT固定板他		121,380		林栄精器(株)	
2月8日	CC/NET型 ネットワーク・クレートコントローラ他		602,700		大栄無線電機(株)	
2月8日	クリーンブース他		732,183		古本機工 (株)	
2月14日	高真空高電圧抵抗器他		126,210		古本機工 (株)	
2月29日	JRIA製 Cs-137 ガンマ線源		57,750		(社) 日本アイソトープ協	会

機関番号	研究種目番号	審查区分番号	細目番号	分割番号	整理番号
82118	05	1	4301		0006

平成20年度 (2008年度) 基盤研究 (B) (一般) 研究計画調書

平成19年11月12日 5版

新規

研究種目	基盤研究 (B)		審查区分	一般					
分 野	数物系科学								
分科	物理学								
細目	素粒子・原子	素粒子・原子核・宇宙線・宇宙物理							
細目表 キーワード	粒子測定技術	粒子測定技術							
細目表以外の キーワード	液体キセノン	TPC							
研究代表者	(フリガナ) タウチ トシアキ								
氏名	(漢字等)	田内 利明							
所属研究機関	大学共同利用	機関法人高	エネルギー加	1速器研究機構	構				
部局	素粒子原子核研究所								
職	准教授								
研究課題名	液体キセノン	ТРСによ	る高分解能ガ	シマ線検出器	器の開発研究	e L			
	左南	研究経費	使用内訳(千円)						
	平度	(千円)	設備備品費	消耗品費	旅費	謝金等	その他		
मा के छा क	平成20年度	5,475	2,875	1,400	1,200	0	0		
研究経貨 「チロ+= 溝の 〕	平成21年度	9,700	8,500	0	1,200	0	0		
端数は切り	平成22年度	4,800	0	3, 500	1,300	0	0		
し 括てる 丿	平成23年度	0	0	0	0	0	0		
	平成24年度	0	0	0	0	0	0		
	総計	19,975	11,375	4,900	3,700	0	0		
分担金の配分	無								
開示希望の有無	開示希望の有無 審査結果の開		3						
研究計画最終年度前年度応募									

2007年度まとめ 1. 実験機器類の購入・インフラ整備 2. 実験室(IBNML電源室) 2008年2月 使用開始 3. 冷凍・純化システムの組立て・設置 2008年2月-4月 部品搬入 4. TPC (プロトプロトタイプ) 2007年4-9月 素材試験 2007年10月 構造決定 2007年11-12月 試験システム部品購入

- ・ 冷凍機の運転開始は4 月下旬
 - コントロール用配管ラック
 - モニターシステム
- TPC本体(部品準備OK)
 - 部品準備
 - 読み出し、HV
- 液化システムの安定運転確認後の計画
 - グリッドにかける電場のシミュレーション(継続)
 - 収集電荷の電場依存性の確認(Xeの温度依存もできれば)
 - PMTのキャリブレーション(線源を用いる)
 - TPCとしての信号をオシロで確認後、CAMACでデータ収集
 - 読み出し部分のクロストークチェック
- 一番の問題は人手不足(実働)
 - 読み出しエレキ部分がまだ手付かず(図参照)
 - TPCグループ以外でエレキに興味をもってくれるところを当たる。

2008年度予定

1. TPCの基本性能測定(継続)

2. 現在の真空テスト容器を使用して、2×4=8個の光電子 <u> 増倍管 (PMT)、ドリフト距離12cm程度のTPCを作成する</u> (基本性能試験)。このシステムにより、PMTマトリック スからのガンマ線反応時間の精密測定、その反応位置の3次 元概略情報(Region of Interest)等の最小システム構築 3. エレクトロニクスの基本設計 - エレクトロニクスシステムグループの協力 4. TXePET シミュレーション (GATE, 性能評価) - 放医研メンバー?、新人?

期待される性能

TPC中のドリフト距離 < 24 cm

3次元位置精度 (TPC)
 σ(x,y,z) = 0.2mm

2. エネルギー分解能 (TPC) $\sigma = 6\%$ for E_r=511keV

時間分解能 (PMT)
 σ = 130 psec

液体キセノンTPCによる高分解能ガンマ線検出器の開発研究(提案)、2007年 4月10日

エレクトロニクスシステム概要

2008年度予算の概算

(1) TPC本体 180万円 (2) PMT用HV電源 70.5万円 (3) PMT用HV分配器 37万円 (4) PMT 8本 140万円 (5) 液体キセノン液化・純化システム関係 C. (6) READOUT electronics 200万円 627.5万円 + α (液体Xe関係) 合計

