TXePET(液体キセノン検出器を用いた次世代 PET)

次世代 PET の開発課題

A)	解像度の向上	1	γ線位置精度の向上
			(特に DOI)
		:	雑音の除去
B)	感度の向上	÷	大アクセプタンス
			(死角の最小化)

従来技術のアプローチ

多光量、高速、非潮解性結晶の開発 結晶サイズの細分化 径方向位置情報 (DOI) による画像歪みの解消 結晶シンチレーターの多層化 パッキング率の改善 2光子間の時間差測定 (TOF) による偽信号の排除 多チャンネル高速読み出し回路の開発

画像処理プログラムの開発

従来技術の問題点

粗い DOI による画質の低下

DOI 方向の分割をこまかくすると、結晶数が増え、

したがって、煩雑さ・複雑さの増加によるコスト増 結晶間の反射材仕切など隙間による、感度の低下や ばらつき

液体キセノンの特性

γ線や荷電粒子の通過でシンチレータ光と電離電子が生成される								
シンチレーション光	;(蛍光)	電離電子						
正確な時間,エネルギ 光電子増倍管	È—,位置 正	正確な位置,エネルギー イオンチェンバー,低ノイズ増幅器						
APD (Avalanche Photo	(diodes)	GEM : 液体, 2相キセノン (Gas Electron Multiplier)						
22,000個光子数/511 keV, 減衰時間3nsと27nsの高速な175nmVUV光 30,000 電離電子数/511keV, 0.5mmの平均射程 電子のドリフト速度 2.3mm/μs (一様電場 2kV/cm 中)								
シンチレーター	GSO Gd₂SiO₅	LSO Lu₂SiO₅(Ce)	液体キセノン					
密度 (g/cm ³)	6.71	7.4	3.06					
放射長 (cm)	1.38	1.14	2.77					
蛍光波長(nm)	430	420	175					
蛍光減衰時間(ns)	30-60	40	2, 30					
相対発光量	20	40-75	100					
屈折率	1.85	1.82	1.60					
融点 (°C)	1950	2050	-111.75					
PET用結晶 (mm ³)	2.45x5.1x30	4x4x20	自由					

γ線や荷電粒子の通過でシンチレータ光と電離電子が生成される							
シンチレーション光	; (蛍光)	電離電子					
正確な時間,エネルギ 光電子増倍管	È—,位置 正	正確な位置,エネルギー イオンチェンバー,低ノイズ増幅器					
APD (Avalanche Photo	(diodes)	GEM : 液体, 2相キセノン (Gas Electron Multiplier)					
22,000個光子数/511 keV, 減衰時間3nsと27nsの高速な175nmVUV光 30,000 電離電子数/511keV, 0.5mmの平均射程 電子のドリフト速度 2.3mm/µs (一様電場 2kV/cm 中)							
シンチレーター	GSO Gd₂SiO₅	LSO Lu₂SiO₅(Ce)	液体キセノン				
密度 (g/cm ³)	6.71	7.4	3.06				
放射長 (cm)	1.38	1.14	2.77				
蛍光波長(nm)	430	420	175				
蛍光減衰時間(ns)	30-60	40	2, 30				
相対発光量	20	40-75	100				
屈折率	1.85	1.82	1.60				
	1950	2050	-111.75				
		THE REPORT OF THE PARTY OF THE					
PET用結晶 (mm ³)	2.45x5.1x30	4x4x20	自由				

TXePETの開発戦略

高エネルギー実験で培われた検出器技術を基礎とする 液体キセノン TPC による 511keV 光子の 3 次元位置測定:

DOI を含めて 1mm (FWHM) 以下の精度(電離電子) シンチレーション 光の分布測定による反応の3次元位置推定と

事象発生時間の決定(シンチレーション) 体軸方向のドリフト:一様電場、広い FOV、MRI との併用 高速なシグナルと TOF による偽信号の排除 多チャンネルで高速読み出しエレクトロニクスを開発

•				
•		•		•
		•	1. il	
•		·	Clarks.	
	1			

TPC 読み出し部 (PAD)

エレクトロニクスシステムの概要:シンチレーション光の情報(Region) Of Interest -ROI 情報、発光時刻)、電離電子の情報(精密位置、エネルギー 情報)をそれぞれFPGA技術によりオンボードでパイプライン処理する

高エネルギー加速器研究機構(KEKDTP プロジェクト研究)、放射線医学総合研究所、 佐賀大学、横浜国立大学の共同研究