# 液体キセノン、液体アルゴン TPCプロジェクト

第三回先端加速器推進室連合報告会 2008年12月22日、KEK、田内利明、丸山和純

# 本プロジェクトの目的

LXeTPC:KeV-MeV領域のガンマ線・電 子の3次元位置、時間及びエネルギーの高 分解能検出器・液体キセノンTPCの開発

応用分野:ガンマ線天文学、Single Photon Emission Computed Tomography (SPECT)、 Positron Emission Tomography (PET); Dark matter, Double *β* decay experiments

# エネルギー領域と物理

- 数10KeV ~ 数10MeV: ガンマ線天文学
- 10KeV : ダークマター
- 100KeV :太陽ニュートリノ
- 数 KeV ~ 300KeV : SPECT
- 500KeV : PET
- 2.48MeV : ve 無しダブルB崩壊

## Summary of 1 Phase LXe

| Phase | Project  | Physics                      | Xe weight                                 | detector         | readout                                               | year                                      | location                                              | collaboration                                                    |
|-------|----------|------------------------------|-------------------------------------------|------------------|-------------------------------------------------------|-------------------------------------------|-------------------------------------------------------|------------------------------------------------------------------|
| 1     | EXO      | double beta                  | 10ton (3m <sup>3</sup> )<br>1ton<br>200kg | TPC              | x, y anode wires ;<br>APD for lights ,<br>laser - ID  | for 10 years<br>for 5 years<br>Nov., 2006 | WIPP, NM, USA                                         | Enriched Xenon Observator,<br>US(SLAC), Canada, Swiss,<br>Russia |
| 1     | XMASS    | DM<br>solar ν<br>double beta | 20ton<br>1ton (800kg)<br>100kg (30ℓ)      | lights           | РМТ                                                   | 2006                                      | Kamioka                                               | Japan, Korea, Russia                                             |
| 1     | MEG      | μ-> e γ                      | 800 - 900 l<br>70 l                       | lights           | РМТ                                                   | Nov., 2006<br>2003                        | PSI                                                   | Japan, Italy, Switzerland,<br>Russia, USA                        |
| 1     | LXe-GRIT | cosmic y                     | 2.4 ℓ                                     | TPC              | x, y anode wires ;<br>PMT for lights                  | 1997,<br>1999, 2000                       | NSBF (National<br>Science Baloon<br>Facility),NM, USA | Columbia university                                              |
| 1     | LXe-PET  | PET                          | 64.8ℓ                                     | TPC              | segmented pads                                        | 2007<br>(prototype)                       | Nantes Cyclotron                                      | France, Japan                                                    |
| 1     | РЕТҮА    | PET                          |                                           | drift<br>chamber | anode wires or<br>mini-strip ; PMT,<br>APD for lights | 2002<br>(prototype)                       | Univ. of Coimbra                                      | Portugal                                                         |
| 1     | TOF-PET  | PET                          | 77.8 l<br>12 l                            | lights           | РМТ                                                   | 2003                                      | Waseda univ.,<br>NIRS                                 | Japan                                                            |
| 1     | XEPET    | PET                          | test w/ 8.5<br>ℓ in 2005                  | TPC              | 12 seg. 96wires &<br>96strips/seg.                    | 2006-2008                                 | TRIUMF                                                | CANADA                                                           |

### Summary of 2 Phase LXe

| Phase | Project                   | Physics   | Xe weight                    | detector | readout      | year       | location                 | collaboration                      |
|-------|---------------------------|-----------|------------------------------|----------|--------------|------------|--------------------------|------------------------------------|
|       |                           | PET       | 100 <i>l</i>                 |          | anode pads : | simulation |                          |                                    |
| 2     | LXeComp/ <sup>44</sup> Sc | micro-PET | 13.8 <i>ℓ</i> , 6.9 <i>ℓ</i> | TPC      | GPM for      | simulation | Nantes<br>Cyclotron      | France, Israel, Japan              |
|       |                           |           | 0.1 ℓ                        |          | ngnts        | 2005       |                          |                                    |
| 2     | GEM-based                 | PET       |                              | TPC      | GEM          | 2003       | Budker<br>Institute      | Russia                             |
| 2     | US patent<br>5665971      | PET       |                              | TPC      |              | 1997       | Columbia<br>university   | USA                                |
|       |                           |           | 1ton:100kgx10                |          |              |            |                          |                                    |
| 2     | XENON                     | DM (WINP) | 100kg                        | TPC      | PMT, GEM     | design     | Gran Sasso<br>undergroun | US, Italy,Portugal                 |
|       |                           |           | 10kg                         |          |              | 2006       |                          |                                    |
|       |                           |           | 3kg                          |          |              | 2005       | u lau                    |                                    |
| 2     |                           | DM (WINP) | 1ton (IV?)                   | TPC      | PMT, GEM     |            | Boulby, UK               | UK, US, Italy,<br>Bussia, Portugal |
|       | ZEPLIN                    |           | 30kg (II)                    |          |              | 2006       |                          |                                    |
|       |                           |           | 6kg (III)                    |          |              | 2006       |                          | Russia, i Ortugal                  |

KEK:冷凍・純化システム、PMTシステム、TPC、テスト 田内利明、真木晶弘、春山富義、田中秀治、三原智、佐伯学行 笠見勝裕(冷凍システム構築)、鈴木祥仁(モニター:Labview) 佐賀大:TPC、TPC/PETシミュレーション、テスト 杉山晃、東貴俊(D2) 東大:TPCテスト 森研究室、金子大輔(M2) 放医研: PETとしての性能仕様とシミュレーション 熊田雅之、富谷武浩、寅松千枝 横浜国大:液体キセノン基本特性 中村正吾 協力支援:KEK素核研回路室、田中真伸氏 レビュワー: 宮島光弘氏(早稲田大)、海野義信(KEK)

## LArTPC:ニュートリノ・核子崩壊:次世代目標

- $\nu_{\mu} \rightarrow \nu_{e} (\overline{\nu_{\mu}} \rightarrow \overline{\nu_{e}})$ 振動におけるCPの破れの探索
  - $= \theta_{13}$ についてはまもなく開始するT2K実験で探索
  - CPの破れの検出のためにはより大質量・高性能の遠方検出器
    が必要となってくる
  - → 主な背景事象となる ν<sub>μ</sub> からのπ<sup>0</sup>を効率的に除去できる検出器 が有利
- 核子崩壊
  - → p → v K<sup>+</sup> :SUSY理論では分岐比が大きいと予想
    → 寿命/分岐比10<sup>34-35</sup>年までの探索
  - → 荷電K中間子の識別能力の高い検出器が有利
- 液体アルゴンTPCはこれらの目標の達成に特化した検出器

 大型液体アルゴンTPC 製作を見据えたテストス タンド開発研究

高工研 素核研 ニュートリノG (小林隆、田中雅士、西川公一郎、 長谷川琢哉、丸山和純)

高工研 素核研 ニュートリノG 丸山和純

|                  | ° <u>-</u> <u>-</u> <u>-</u> <u>-</u>       | < <u> </u>    |          | ~ / /    |
|------------------|---------------------------------------------|---------------|----------|----------|
|                  |                                             | LAr           | LKr      | LXe      |
|                  | Atomic Number Z                             | 18            | 36       | 54       |
|                  | Atomic Weight A                             | 39.95         | 83.8     | 131.3    |
|                  | Density $(g/cc)$                            | 1.39          | 2.45     | 3.06     |
|                  | Melting Point $T_m$ (K)                     | 83.8          | 115.8    | 161.4    |
|                  | Boiling Point $T_b$ (K)                     | 87.3          | 119.8    | 165.1    |
|                  | Critical Temperature $T_c$ (K)              | 150.7         | 209.5    | 289.7    |
|                  | Critical Pressure $P_c$ (atm)               | 48.3          | 54.3     | 57.64    |
|                  | Critical Density $(g/cc)$                   | 0.54          | 0.91     | 1.10     |
|                  | Volume Ratio $(\rho_l/\rho_q)$              | 784           | 641      | 519      |
|                  | Fano Factor                                 | 0.107         | 0.057    | 0.041    |
|                  | Drift Velocity (mm/ $\mu$ sec) @ 1(5) kV/cm | 1.8(3.0)      | 2.4(4.0) | 2.2(2.7) |
|                  | Mobility (cm $V^{-1}s^{-1}$ )               | 525           | 1800     | 2000     |
|                  | Radiation Length (cm)                       | 14.3          | 4.76     | 2.77     |
| 雷離雷子             | (dE/dx) (MeV/cm)                            | 2.11          | 3.45     | 3.89     |
|                  | Liquid Heat Capacity (cal/g-mole/K)         | 10.05         | 10.7     | 10.65    |
|                  | W-value (eV) (ionization)                   | 23.3          | 18.6     | 15.6     |
|                  | W-value (eV) (scintillation)                | 19.5          | 15.5     | 14.7     |
|                  | Wavelength of Scintillation Light (nm)      | 130           | 150      | 175      |
| シンチ光             | Decay const.                                |               |          |          |
|                  | fast (ns)                                   | 6.5           | 2        | 2        |
| <b>T</b> _ 1 < . | slow (ns)                                   | 1100          | 85       | 30       |
| ナエレン             | Refractive index @ 170 nm                   | 1.24(visible) | 1.41     | 1.60     |
| コノ元              | Dielectric constant                         | 1.51          | 1.66     | 1.95     |
|                  |                                             |               |          |          |

Table 1.5: Physical properties of noble liquids (adapted from Ref. (98)).

# 共通の特徴

1. 電離電子: TPCによる3次元位置とdE/dX 3次元イメージング(泡箱イメージ) 軌跡に沿ったdE/dXによる粒子の識別 2. シンチレーション光: 130nm(Ar)と175nm(Xe) 精密な時間情報

3. チェレンコフ光:エネルギー・速度の閾値

荷電粒子の識別

### LAr-TPC





Typical  $\nu_{\mu}$  and  $\nu_{e}$  QE event in liquid Argon detector  $(\nu_{\mu} + n \rightarrow p + \mu^{-} \text{ and } \nu_{e} + n \rightarrow p + e^{-}).$ 



FIG. 7: Typical  $\nu_{\mu}$  NC event in liquid Argon detector  $(\nu_{\mu} + p \rightarrow \nu_{\mu} + p + \pi^{0})$ .

#### A. Bueno et al., hep-ph/0701101v1 (ICARUS T600)



Figure 5.7: "Snapshots" of three different events in the LXeTPC recorded during the balloon flight in year 2000; for each of them the X-Z view and the Y-Z view are shown. *Left:* a 2-site  $\gamma$ -ray interaction. *Center:* a relativistic particle passing through the fiducial volume. Several  $\delta$ -rays are visible in the X-Z view. *Right:* a more complex interaction with several particles detected in the fiducial volume. The vertex happens below the fiducial volume, i.e. at Z<0.

#### A. Curioni, Dr Thesis, Columbia univ. 2004 (LXeGRIT)

## 共通技術開発項目

1. 液化システム: 84K (Ar) と 162K (Xe) 2. 純化システム: < 0.1ppb; 例) 電離電子ドリフト減衰長 > 4m 3. 電離電子の検出:液中、ゼロ増幅 例) W-value =23.3eV (Ar), 15.6eV (Xe) 電子数/MeV =43,000 (Ar), 64,000 (Xe) 4. 超低ノイズのアナログエレクトロニクス



### LXeTPC:液化・純化システム

オイルフリー・ダイアフラムポンプ(エノモト)によるガス循環精製





Cooling test of miniature PT Cryocooler

-PTR PDC08(8W at 77K: Iwatani) -Air cooled compressor (700W at 50Hz) -20W at 147K confirmed  $\rightarrow$ 24W at 165K





### Cooling, Liquefaction, Pump circulation test



Results:

- 19 hrs for 1.2L liquefy by PT cryocooler only
- ~0.16L/h liquefaction speed
- -~2 L/min of pump circulation for purification

## LArTPC:純度モニターシステムの開発

- カソードに置いた光電面に
  カソードとアノードの信号から
  光をあて、大量の光電子を
  ドリフト電子の減衰=純度
  発生させる
  ドリフト速度
- この光電子をドリフトさせて
  アノードから読み出す。



#### 高工研 素核研 ニュートリノG 丸山和純

## LXeTPCを用いた次世代PET TXePETイメージ



### TXePET:分割の無い液体キセノンTPC

液体Xe:140ℓ,88cm内径,48cm FOV,9cm DOI (93%γ線検出)

### 光電子增倍管: 8x112x2=1792本 TPC: 電場 48kV/24cm

位置分解能(FWHM) = 2cm 同時計測時間 = 10 nsec TPCへのタイムスタンプ







### LXeTPC:プロトタイプで原理実証

光電子增倍管







## LArTPC: 100kt検出器のイメージと研究開発



高工研 素核研 ニュートリノG 丸山和純

## LArTPC:アルゴン純化・液化システム

- 気体アルゴンをフィルターで純化
- 20 cm \$\phi\$ × 25 cm \$\frac{-}{25}\$ cm \$\frac{-}{5}\$ cm \$\frac{-}{5}\$
- テスト容器を液体アルゴンで冷却
  することにより気体アルゴンを液化
- 現状
  - → 約1リットル/hの液化能力を確認
  - → 真空性能を評価中







#### 高工研素核研ニュートリノG丸山和純

## LArTPC: GEMの基本特性の研究

- 林栄精器製 厚型GEMを用 いた研究をはじめている
  - 気体アルゴン中でAmからの
    α線の信号を読み出し
- R&Dアイテムとして
  - → 低温下での特性評価
  - → GEM素材・サイズの最適化
  - → 印加電圧・配置の最適化



サイズ約10cm四方 厚さ400μm、穴径300μm 穴間隔700μm





高工研 素核研 ニュートリノG 丸山和純

まとめ:知識の共有で共同研究 LXeTPC: 2007年度よりスタート - 原理実証のためのプロトタイプ研究 - PT冷凍管による液化・純化システムの完成・運転 - 電離電子信号の検出:1相、PAD読み出し LXe中、 プリアンプ(A250, 1V/pC)設置;ノイズ対策 ASIC チップ設計 ・ 試作 - シンチレーション光:PMTの量子効率向上の検討 LArTPC: 2008年 夏よりスタート - 基礎技術の立ち上げ段階:テストスタンドの構築 - 電離電子信号の検出:2相、GEM読み出し(当面) - 次のステッップとして1トン程度の試験検出器の設計 も考えている