TXePET Liquid Xe TPC with Scintillation Readout Aki Maki KEK

動機

- 高エネルギー物理学実験における 粒子測定器の経験
- 3次元位置測定器TPC
 - 大立体角
 - 高い位置分解能
- 液体希ガスTPC
- 蛍光読み出し液体Xeカロリメータ (52.8 MeV γ)
 - 高速計測
 - 高分解能(位置、エネルギー)
- パルス管冷凍機の発達
- データ処理エレクトロニクスの進歩
 - 多量データの高速処理

- ・ 高感度、高分解能PETへの期待
- 高機能物質の開発
 - 固体蛍光体(LaBr₃)
 - 半導体
- 蛍光体の細分化
 - 3次元細分化
 - 多点数、多チャンネル
 - 高価格

TXePET(光電子増倍管で覆われた液体キセノンTPC)

Examples of Reconstruction

gamma

	LAr	LKr	LXe
Atomic Number Z	18	36	54
Atomic Weight A	39.95	83.8	131.3
Density (g/cc)	1.39	2.45	3.06
Melting Point T_m (K)	83.8	115.8	161.4
Boiling Point T_b (K)	87.3	119.8	165.1
Critical Temperature T_c (K)	150.7	209.5	289.7
Critical Pressure P_c (atm)	48.3	54.3	57.64
Critical Density (g/cc)	0.54	0.91	1.10
Volume Ratio (ρ_l/ρ_a)	784	641	519
Fano Factor	0.107	0.057	0.041
Drift Velocity (mm/ μ sec) @ 1(5) kV/cm	1.8(3.0)	2.4(4.0)	2.2(2.7)
Mobility (cm $V^{-1}s^{-1}$)	525	1800	2000
Radiation Length (cm)	14.3	4.76	2.77
(dE/dx) (MeV/cm)	2.11	3.45	3.89
Liquid Heat Capacity (cal/g-mole/K)	10.05	10.7	10.65
W-value (eV) (ionization)	23.3	18.6	15.6
W-value (eV) (scintillation)	19.5	15.5	14.7
Wavelength of Scintillation Light (nm)	130	150	175
Decay const.			
fast (ns)	6.5	2	2
slow (ns)	1100	85	30
Refractive index @ 170 nm	_	1.41	1.60
Dielectric constant	1.51	1.66	1.95

Table 1.5: Physical properties of noble liquids (adapted from Ref. (98)).

PET用シンチレータ比較

シンチレータ	Liq. Xe	Nal:Tl	GSO	BGO	LSO	LGSO	LYSO	LaBr ₃
密度(g/cm3)	3.06	3.67	6.71	7.13	7.4	6.5-7.3	7.25	5.29
蛍光減衰時間(ns)	2, 30	230	30-60	300	42	40-100	41	16
蛍光出力(相対値)	80	100	20-24	10-12	40-80	40-80	80	130
発光波長 $\lambda_{em}(nm)$	175	415	430	480	420	420	420	380
屈折率(at λ_{em})	1.60	1.85	1.85	2.15	1.82	1.82	1.81	1.9
放射線強度(gray)		10 ³	>106	10 ²⁻³	10 ⁵			
吸収潮解性	なし	強い	なし	なし	なし	なし	なし	あり
放射性	なし	なし	なし	なし	あり	あり	あり	なし
融点(°C)	-111.6	651	1950	1050	215	50 2100	2100	783
へき開	なし	なし	(100)面	なし	なし	(100)面	なし	なし
育成方法		BR	CZ	CZ, BR	CZ	CZ	CZ	BR

Event Building (ASIC/FPGA/PC)

Scintillation (PMT)	Ionization (TPC)	Matchina
i. Digitization	1. Amplification	5. Matching with
Base line subtraction	2. Digitization	S(I){r, θ, z,t,E} E(i) - E(k) <δE
P(ij){θ,z,t,E}	Base line subtraction	r(i) - r(k) <δr
ii. Cluster search	I(kl){r, θ,t,E}	z(k)=v(t(k) - t(i))
t(ij) - t(ij±) <δt	3. Cluster search	$ z(i) - z(k) < \delta z$
θ(ij)-θ(ij±) <δθ	†(kl) - †(kl±) <δ†	6. Individual photon
z(ij) - z(ij±) <δγ	θ(kl) - θ(kl±) <δθ	values
iii. Cluster values	r(kl) - r(kl±) <δr	G(m){r(k), & (k),z(k), t(i),E(i) or E(k)}
E(i)=ΣE(ij)	4. Cluster values (not z)	7. Pair matching
θ (i)= Σ E(ij) θ (ij)/ Σ E(ij)	E(k)= Σ E(kl)	T(m) - T(n) < 0 T 8. Event
z(i)= Σ E(ij)z(ij)/ Σ E(ij)	θ (k)= Σ E(kl) θ (kl)/ Σ E(kl)	H (a){G(m),G (n)}
r(i)=f(θ(ij),z(ij),E(ij))	r(k)=ΣE(kl)r(kl)/ΣE(kl)	Imaging

Matching between PMT and TPC

Additional requirement: $S(i)\{r, \theta, E\} \approx T(k)\{r, \theta, E\}$

PETの開発戦略

- A) 解像度の向上
- B) 感度の向上
- C) 雑音の除去

<u>結晶系PETの開発戦略</u>

- O) 多光量、高速、非潮解性結晶の開発
- 1) 結晶サイズの細分化
- 2) 径方向位置情報(DOI)による画像歪の 解消
 - 結晶の径方向分割(多層化)
- 3) パッキング率の改善
- 4) TOF による偽線源位置の排除
- 5) 多チャンネル高速読み出し回路の開発
- 6) 画像処理プログラムの開発

<u>TXePETの開発戦略</u>

- O) 高エネルギー実験技術の応用
- 1) 液体キセノンTPCによる511keV光子の 三次元位置測定(電離電子)
 - ・ DOIを含め1mm以下の精度

2) 蛍光の分布測定による反応の三次元位 置推定と事象発生時間の決定(蛍光)

- 3) 体軸方向のドリフト
 - 一様電場の形成が容易
 - ・ 周方向にシームレス
 - 体軸方向に広いカヴァレッジ
 - ・ MRIとの併用に有利
- 4) TOF 等による偽線源位置の排除
- 5) 多チャンネル高速読み出し回路の開発
- 6) 画像処理プログラムの開発

想定される実用機(TXePET)

ホールボディ 液体キセノンの体積: 140*ℓ*

内径 88cm(クライオスタット内径 80cm)
外形 106cm(DOI 9cm) (93%ガンマ線検出)
長さ 48cm(最大ドリフト長 104µsec)

 金光測定 (35,00 photons for 511keV)

 光電子増倍管: 8x112x2=1792本 (1インチ)
 位置分解能(FWHM): 1cm

 時間分解能(FWHM): 0.5nsec

 同時計測時間(FWHM): 10nsec

電離電子測定 (33,000 ion pairs for 511keV)

TPC:印加電圧 48kV
 最大ドリフト時間: 110µsec
 位置分解能(FWHM): 0.5mm
 エネルギー分解能(FWHM): 14%

TXePETの特徴

- 確立された技術の応用(高エネルギー物理学実験)
- 液体キセノンTPCを主体とした測定器
 - 高い3次元位置精度
- 測定器媒体が液体である
 - 形状の自由度が大きい
 - 不感領域の極小化が容易
 - 媒体の支持も容易。
- 蛍光の測定
 - 時間スタンプ
 - 高速計数(大まかな位置情報)
- 体軸方向(z)へのドリフト
 - 一様電場が容易
 - 高感度
 - 不感領域の極小化
 - 大立体角
 - MRIとの共用
- バックグラウンドの除去
 - コンプトン・スペクトロメータ
 - TOF-PET

開発プロジェクトの現状と予定

- H18年度グループ発足(KEK,NIRS)
- H19年度 KEK素粒子原子核研究所測定器開発室認定プロジェクト
 開発費
 - 実験室(8月末入居予定)
- グループ拡大(佐賀大学、横浜国大)
- 実験準備中
 - 低温設備の整備
 - 読み出しエレクトロニクスの開発整備(KEKエレクトロニクス・グループ)
 - プロト・プロトタイプの設計、発注
- 基本性能の測定(H19.9-H19.12)
- プロトタイプの設計、発注(H20.4)
- H20年度大型プロトタイプでデモンストレーション
- H21-22年度 1号機

プロジェクト・メンバー

- 高エネルギー加速器研究機構(KEK)
 - 田内利明、田中秀治、春山富義、幅淳二、 真木晶弘
- - 熊田雅之、富谷武浩、寅松千枝
- 佐賀大学
 - 杉山晃、東貴俊
- 横浜国立大学
 中村正吾

Position Reconstruction

Localized Weight Method

set up

- Projection to x and y directions.
- Peak point and distribution spread

•Position reconstruction using the selected PMT

 $X_{reconst.} = \frac{\sum_{i} w_i \ Q_i \ x_i}{\sum_{i} w_i \ Q_i}$

Position Reconstruction Resolution

Reconstruction of the event depth

- Using event broadness on the inner face
- Necessary to achieve good timing resolution

(a)

Fig. 1a, b. Schematics of the ALEPH TPC a and of the end-cap geometry b [10]

TXePET:分割の無い液体キセノン**TPC**

液体Xe:140ℓ,88cm内径,48cm FOV,9cm DOI (93%γ線検出)

光電子增倍管: 8x112x2=1792本 TPC: 電場 48kV/24cm

位置分解能(FWHM) = 2cm 同時計測時間 = 10 nsec TPCへのタイムスタンプ ドリフト時間:104 µsec/±24cm (ドリフト速度:2.3mm/µsec) 不感時間のない読み出し

