液体キセノングループ中間報告

測定器開発室会議、11月27日、KEK 田内利明

2007年4月の当初メンバー KEK:冷凍・純化システム、PMTシステム、テスト 田内利明、真木晶弘、春山富義、田中秀治、幅淳二 佐賀大:TPC、TPCシミュレーション、テスト 杉山 晃

放医研: PETとしての性能仕様とシミュレーション 熊田雅之、富谷武浩、寅松千枝

協力支援:KEK素核研回路室、田中真伸氏

追加メンバー KEK:冷凍・純化システム、TPC(田中秀治) 笠見勝裕 佐賀大:TPC、TPCシミュレーション、テスト 東貴俊 (D1) 、青座篤史 (M2、電場計算) 横浜国大:液体キセノン基本特性 中村正吾、佐藤友厚(M1)、宮本健司(M1) レビュワー 早稻田大学 宮島光弘氏 選考中 KEK

ホームページ

http://www-jlc.kek.jp/~tauchi/index/LXeTPC/homepage/

液体キセノン検出器

English page

本研究開発の目的は、液体キセノンタイムプロジェ クションチェンバー(TPC)を用いた、keV~MeV のエネルギー領域のガンマ線の3次元位置、時間及 びエネルギーの高分解能検出器の開発である。

<u>お知らせ</u>

定例打ち合せ等のメモ・資料

- 2007年11月15日; プロトプロトタイプTPC、予算執行、科研費申請、<u>NMLコンプレッサー室 マスター工程表</u>
- 2007年11月1日; 冷凍機システム
- 2007年10月18日; パッドデザイン
- <u>2007年10月11日</u>; TPCイメージ図、予定表、科研費
- 2007年10月4日; 整電部材料の最終提案、パッド、PMT固定部の設計
- 2007年9月27日; 進捗状況
- 2007年9月13日; 電場計算、TPC構造、試験マニュアル
- <u>2007年9月6日</u>; PMTキャリブレーション、<u>パッド設計</u>、電場計算に要する時間(<u>ppt</u>)
- <u>2007年8月30日</u>; 年度計画(<u>doc</u>)、<u>実験計画(doc)</u>、電場計算(<u>キセノンの特性</u>)
- 2007年8月23日; 今週の予定、エネルギー分解能
- 2007年8月9日; TPC構造・素材試験の進捗状況、スタイキャスト (<u>カタログ</u>, <u>データシート</u>)
- <u>2007年8月2日</u>; NML(中性子)実験棟、TPC構造・素材試験の進捗状況
- <u>2007年7月26日</u>; TPC構造・素材試験の詳細計画
- <u>2007年7月19日</u>; TPC構造・素材試験の進捗状況、<u>試験計画</u>
- <u>2007年7月12日</u>; TPC構造・素材試験の進捗状況、Liq.Xe-TPCのエネルギー分解能、<u>FANOファクター</u>
- 2007年7月5日; Nantes大学訪問報告、TPC構造・素材試験計画更新、中性子ミュオン実験エリアの部屋割り
- <u>2007年6月27日; TPC構造・素材試験計画</u>、エレキ関係
- 2007年6月14日; 液化・純化システム、TPCシステム担当責任者、マイクロメッシュ、TPC打ち合せ
- <u>2007年6月7日</u>; <u>Nantes大学TPC-R&D</u>、ロッド用止め金具(<u>図1</u>、<u>図2</u>)、<u>micromegas</u>
- <u>2007年5月24日</u>; 線源、青色LED、液体キセノン用素材、フィードスルー、フランジ図面、 TPC図面
- <u>2007年5月17日</u>; ガンマ線源、<u>TPC図面</u>, 素材調査
- <u>2007年5月10日</u>; 今年度の予定、5-6月のスケジュール
- 2007年4月19日
- <u>2007年3月28日</u>:資料(<u>素材の選定について(doc)</u>)
- 2007年3月9日:資料(液体キセノン試験容器, プロトタイプTPC案)
- 2007年3月2日、JST新技術セミナー、田内発表 (<u>pdf</u>、<u>ppt</u>)
- 2007年1月17日、TXePETエレクトロニクスセミナー、田内発表 (pdf)
- 2006年10月4日、放医研の村山グループと打ち合せ (メモ)
- 2006年9月6日、次世代PETについての打ち合せ(資料)

2007年度予定(当面の目標) 1. 液体キセノン純化(KEK パルス管冷凍機使用) 酸素、水(シグナル減衰)そして、クリプトン等(バックグランド)の除去 - ppb以下 不純物除去と測定方法の確立とTPCなどの使用素材の吟味 2.素材チェック(液体窒素中-200°C) HVケーブル碍子、(低温中での耐圧) ハンダ使用の是非 コンデンサ、抵抗(低温中の高周波特性、耐圧、温度特性) フィードスルー ヒートサイクルによる使用素材の劣化 ベーキング可能な材料(必要性?)

ドリフト1cm程度のTPC (プロトプロトタイプ) 基本技術の習得 - テスト用冷凍容器使用

4. TPCの基本性能測定

拡散(diffusion)、減衰(attenuation)、3次元位置の測定 読みだし (ゲイン1):アノードパッド 低電力低ノイズアンプのテスト(開発中のASICなど) 位置、エネルギー精度の較正方法 (放射線源、宇宙線ミューオンなど) シグナルのシミュレーション(電場、グリット電圧、ドリフト)

PMTによるトリガー(タイミング)、3次元位置、エネルギー測定 TPCによる3次元位置、エネルギーの精密測定

(x, y:アノードパッドと z: ドリフト時間)

高速て不感時間のない読みだし

期待される性能

TPC中のドリフト距離 < 24 cm

3次元位置精度 (TPC)
σ(x,y,z) = 0.2mm

2. エネルギー分解能 (TPC) $\sigma = 6\%$ for E_r=511keV

時間分解能 (PMT)
σ = 130 psec

エレクトロニクスシステム概要

E=2kV/cm

(図2 ネジ付のスペーサとフレームを組み合わせる方法(組み立てA・左)、中空スペーサで フレームの間隔を取り、ボルトとナットで固定したもの(組み立てB・中央)、中空スペーサ でフレーム間隔を取り、セットカラー(止め具)とロッドで止めたもの(組み立てC・右)

(図3) セットカラーをトルクレンチ(1N・m)で締めたところ変形が見られた。左から PEEK,POM,フッ素樹脂(テフロン)。左のものほど固く変形が少ない

B を 採 用

ネジとナット:レニー製のM6 (ポリアミド樹脂)

スペーサー:セラミック

電極板:SUS 1mm厚

セラミックスペーサー(市販品)の精度

統計数(28 個)が少ないため、はっきりしたことはいえないが、 概ね正規分布となりそうである。 (Sigma = 0.02193 ± 0.002753) mm RMS(root mean square)= 10.6788 mm

材質	$\nu = -(\phi 6 \text{mm})$					
位置	1	2	3	4	5	6
最初	45.21	45.21	45.23	45.45	45.2	45.14
取り出し直後	45.15		45.2		45.14	45.01
1 サイクル(常温)	45.21		45.21		45.17	45.05
取り出し直後	45.17		45.19		45.19	45.05
2サイクル(常温)	45.21		45.21		45.2	45.08
取り出し直後	45.18		45.2		45.2	45.2
3サイクル(常温)	45.22		45.22		45.19	45.09
取り出し直後	45.16		45.19		45.19	45.15
4サイクル(常温)	45.19		45.23		45.19	45
取り出し直後	45.19		45.19		45.18	45.05
5サイクル(常温)	45.2		45.22		45.19	45.21
取り出し直後	45.19		45.19		45.19	45.03
6サイクル(常温)	45.22		45.22		45.19	45.12
取り出し直後	45.15		45.19		45.15	45.23
7サイクル(常温)	45.19		45.23		45.21	45.25
取り出し直後	45.2		45.19		45.16	45.02
8サイクル(常温)	45.22		45.22		45.22	45.3

冷凍・純化システム

すべての部品は購入済;12月より組立て設置を開始

有効電荷量の謎

エネルギー分解能を決めているもの? 線源依存? 電場の関数

先ず、純度の高い液体キセノン中で測 定してみたい。 Energy Resolution と有効電荷量(QO) Energy resolution A.Curioni, Dr.Thesis, Columbia univ. 2004 Spectroscopy with LXeGRIT is described in a detailed manner in Sec. 2.2.3; the energy is derived from the amplitude of the anode signal through the fitting procedure described in Sec. 2.1.8. To study the impact of the off-line analysis procedure on it, I break down the energy resolution in three pieces

$$\sigma_{tot} = \sigma_{LXe} \oplus \sigma_{el} \oplus \sigma_{other}$$

where \oplus means sum in quadrature. σ_{LXe} is the intrinsic energy resolution in LXe for a drift field of 1 kV/cm; it is known to be $\sim 3.5/\sqrt{E} \%$ (4). σ_{el} comes from electronic noise on the anodes, which is independently measured (Sec. 2.1.5) and does not depend on energy. σ_{other} accounts for everything else than σ_{LXe} and σ_{el} , therefore including inaccuracies introduced by the fitting procedure.

As shown in Sec. 2.2.3, the energy dependence of the energy resolution over the energy range 0.5-4.2 MeV is very well described by

 $\Delta E[\text{MeV}] (FWHM) = \sqrt{6.7 \cdot 10^{-3} \cdot E[MeV] + 3.6 \cdot 10^{-3}}$ FWHM = 8.2%/ $\sqrt{E \oplus 6.0\%}$ (electronics noise)

where the term $6.7 \cdot 10^{-3} \cdot E$ accounts for $\sigma_{LXe} = 3.5\%$ and the energy independent term accounts for the electronic noise, ~60 keV FWHM. Therefore, σ_{tot} is satisfactorily described setting $\sigma_{other} \equiv 0$ without too much room for any significant contribution. Moreover, the energy calibration over the same energy range is perfectly linear, ruling out any undesired dependence on amplitude. \Box / ($\sqrt{816}\sqrt{E}$) \oplus 1 / $\sqrt{1534}$ \longrightarrow Q/Qo=1.4% ! for 60,000/MeV

ELECTRIC FIELD (kV/cm)

Fig. 5. Collected charge $(Q/Q_0\%)$ vs. electric field for ²¹⁰Po in liquid xenon (\Box) and ²⁴¹Am in liquid xenon (\bigcirc) and liquid argon (\triangle).

Fig. 6. Noise subtracted energy resolution vs. electric field for ²¹⁰Po in liquid xenon (\Box) and ²⁴¹Am in liquid xenon (\circ) and liquid argon (\triangle).

FIG. 2. Variation of relative luminescence intensity L and collected charge Q in liquid argon, krypton, and xenon vs appliedelectric-field strength for 0.976- and 1.05-MeV electrons.

まとめ

1. 実験機器類の購入・整備 2. 実験室(IBNML電源室) 12月より使用可能 3. 冷凍・純化システムの組立て・設置 12月中 4. TPC (プロトプロトタイプ) ほぼ構造決定 先ず、ガス中でシグナルの確認(12月中)