## Bunch ID by Sci. Fi. Tracker

based on the work by Indiana-Notre Dame Collab.

Y. Sugimoto 2004/6/4

# Motivation of Bunch ID

• 2-Photon Background:Expected # of B.G. has been increased x10 in recent re-estimation

| JLC-I (DG model, p <sub>T</sub> >1.6GeV)        | 1.2 ev/train        |
|-------------------------------------------------|---------------------|
| JLC-I (VDM model, $W_{\gamma\gamma}$ >2GeV)     | 4.6 ev/train        |
| TESLA TDR (p <sub>T</sub> >2.2GeV)              | 0.02 ev/BX          |
|                                                 | (=1.8 ev/train@NLC) |
| Tim Barklow's new estimation                    | 56 ev/train         |
| # of charged tracks ( $ \cos \theta  < 0.8$ )   | 48 track/train      |
| # of charged tracks (0.8< cos $\theta$  <0.995) | 390 track/train     |



### $8600 e^+e^-$ pairs / train strike detector



#### 1.8 hadronic events / train with pt>2.2GeV





 $154 \ \mu^+\mu^-$  pairs / train

56 hadronic events / train

# Impact of Large B.G.

- Warm machine:
  - GLC Detector (Jet Chamber) : too much occupancy (R<sub>min</sub> must be increased significantly)
  - Resolutions of physics outputs degrades unless event overlap is resolved by bunch ID
- Cold machine:
  - Event overlap within one bunch (irreducible) is significant (~0.5 ev/BX; x2 more than warm machines)
- Common:
  - Significant positive ion generation in TPC (z- and t(in a train)-dependent in cold machine)

# Bunch ID by Sci.Fi. Tracker

- Possible design:
  - 2-layers (axial+stereo) of Scintillator Fiber (1mm<sup>2</sup>) tracker just inside the main tracker
  - Covers only barrel part
  - R=40cm, L=1m → |cos θ|<0.8
  - Readout by SiPM at both ends
- Occupancy:
  - N<sub>track</sub>/N<sub>channel</sub> ~ 2%
  - Increases due to curring tracks and inclined injection

# **Expected Performance**

- Simulation work by Indiana-Notre Dame Collab.
  - 1m Sci. fiber( $\tau_{decay}$ =8ns) + 8m clear fiber + VLPC
  - −  $\sigma_{\Delta t}$  ~ 2.5 ns →  $\sigma_t$  ~ 1.8 ns (?)
  - ~10 photons at VLPC
- In our case
  - No clear fiber  $\rightarrow$  x2 more photons
  - Efficiency of SiPM : 1/4 of VLPC
  - Readout at both ends : x2 more photons
  - 2-layers : x2 more photons
    - $\rightarrow$  1.2 ns resolution for a track
- Necessary R&D
  - Faster scintillator fiber
  - SiPM: Higher efficiency (geometrical efficiency)

# Vertex Detector Works

- Isolated vertex on the beam-line:
  - Can be removed even w/o timing info, if the vertex mass is low enough (not c- b- jet)
  - If n-tracks are associated with the isolated vertex, vertex-time-resolution= $\sigma_{track}$ /sqrt(n)
  - x2 faster sci., x2 higher SiPM efficiency, and 4 tracks associated with isolated vertex
    - $\rightarrow$  300 ps vertex time resolution << 1.4 ns

### Solution? Bunch identification via track timing



Scintillating fiber tracker,  $\sigma_t \sim 1$  nsec system wide should be possible, resolve single bunches, **R&D on appropriateness as external device for timing** 

"Strawman" for typical llinear collider detector: LCDTRK studies: extra Two axial layers, two 3 degree stereo layers material + new measument Half-length of 29.5 cm, average radius of 48 cm point at least does not (mounted on inside of inner support structure of TPC) degrade impact param. ~15,000 channels [or in a silicon detector] resolution

# Conclusion

- For charged tracks in the barrel region, almost perfect bunch ID looks possible by scintillator fiber tracker at Warm Machines
- What about the end-cap region (x10 more 2γ-b.g. tracks) ?
- What about neutral tracks ?