Manual for the extended
ConditionsDB interface for ATLAS

Author: A.Amorim, N.Barros, D. Klose, J.Lima, C.Oliveira,
L.Pedro
Date: May 7, 2003

Abstract

This document reports the evolution of the Conditions Database (CondDB)
interface for the ATLAS experiment. A new CondDB with extended features
have been developed during the last moths and this document is the first
step that will allow its usage. The extended version of CondDB is based on
the MySQL inplementation [1] and it is his natural sucessor. In this document
will be presented the notes for the extended CondDB - MySQL implementa-
tion (0.3 version). It will provide a guide line to the interface, including a
detailed description of the major changes, the necessary documentation
to start using the new features and also an enumeration of bug fixes.

Contents

1

2

Introduction

Bug fixes

Major changes

3.1 New database schema

3.2 Support for tiny objectso

New tools

4.1 Tel/tk wrapper
4.1.1 General informations
4.12 Howtoinstall.

4.2 The PVSS Manager v vt i
4.2.1 General information
422 Howtoinstall.

43 Backuptool

New examples

5.1 DrOwSEPVSS.CXX « « v v v v v v vt e e e e e e

5.2 findpvssS.CXXo Lo

Other changes

6.1 GCC3.xxsupport,

6.2 TIMETESTSflag.

To do...

7.1 Graphical user interface

7.2 Support for other types of objects

7.3 Other platforms support

7.4 New browsing functions,

75 Newtools

General informations

8.1 Howtodownload

82 Compiling
8.2.1 Requirements 0oL

8.3 Installing

8.4 Reporting bugs

8.5 Running the examples

8.6 Thelogfile

Acknolegments

11

13
13
13
14
15
15
16
16

17
17
19

21
21
21

22
22
22
22
22
23

24
24
24
25
25
25
26
26

28

1 Introduction

This document will present the changes accomplished in the CondDB API
for ATLAS. Although we are still trying to understand with the users what
will be the final requirements’, it was understood that a new version of the
interface was needed. This new version will provide a set of bug fixes found,
both from user reports and from more exhaustive tests performed on the
implementation. To cope with the user requirements collected so far[3], we
made very important changes in the implementation, mainly providing new
tools and features. The main new feature that is included in this version
of the API is the support for tiny objects which will allow the storage of
PVSS-related data into the CondDB.

Other enhancements of the API were also implemented, such as a Tc1/TK
wrapper, new examples, or the support for new compilers. These changes
will be described in detail in the appropriate section.

This document is the first one that provides information about an ex-
tended CondDB API. At the time it was written this extention does not
apply to any other implementation of the API (neither ORACLE nor Ob-
jectivity).

The document will be structured in 9 different sections:

Introduction - this one.

Bug fixes - a description of the bugs that were found and that should
now be fixed.

Major changes - includes a description of the new database schema;
the support for tiny objects, etc.

New tools - a description of new tools implemented that will help in
the usage of CondDB API.

New examples - new source code examples that make usage of the
new features are distributed.

Other changes - minor but also important ones.
To do - a list of things that should be done in the near future.
General informations - other informations that might be relevant

Acknoledgements -

"http://atlobk01.cern.ch/ConditionsDB /requirements/

2 Bug fixes

In this section we will present all the bugs found during testing and reported
by users. All the bugs that were reported during the time between the release
of version 0.2.6-b and this one are fixed.

Data storage stop when using multiple clients. When more
than one client were used simultaneously storing data, the process
stopped until only one client was using the database. An exception
was generated and the process stooped until only one client was using
the database. This happens because the API provides methods to
ensure the database integrity and, with multiple clients, this was not
possible in the previous version. In version 0.3 table locking mechanism
is used during INSERT and UPDATE querys. The problem is fixed.

Error while storing and retrieving data. All the queries for
storage and retrieving where performed in order to the localhost instead
of the server passed from the init() method. This error was found while
running remote tests and it’s fixed in this version. All the necessary
methods were re-written using the variable srvname.

find() generates an exception. The method find() threw excep-
tion when point was exactly the frontier between two objects. This bug
was fixed by substituting BETWEEN by >= AND < in the appropriated
queries.

Problems after cvs co.

e Missing of the 1ib directory causes an error in compilation after
checking out from the CVS repository. Users needed to create
this directory by their own. In this version, if the directory does
not exist it will be created from the Makefile.

e After cvs co users needed to create a softlink in directory
ConditionsDB-MySQL/include/ in order to ensure that the com-
pilation of CondDB library proceeds. This problem was solved by
removing from the necessary source code files all references to
directory ConditionsDB in #include<xxxxx.h> lines.

db_id error in table folders_tbl. In the previous version of CondDB
interface, the field db_id was not properly filled. If it was a folderRoot
or a folderSet the field was stored with the value 0, otherwise it would
be stored the value 1 and this was hard-coded. After the necessary
corrections, the interface retrieves the proper value performing a query
in the table databases_tbl giving the dbname and srvname. After
retrieving the result from the query it stores the correct value in table
folders_tbl.

Corrected function getAl1CondDBFolderBeneath(). This function
didn’t make any distinction between folder and folderset. This bug is
corrected.

3 Major changes

In this version of the API a lot of changes were introduced, some of them very
deep, what causes the incompatibility between this version and the previous
one. To cope with the new enhancements introduced, as well as for simplic-
ity, a new databases schema was achieved. This means that databases from
the previous versions of the API will not work with the 0.3 version (neither
storage, nor retrieving data). Figure 1 shows schematically the database
design of CondDB API including the relationship between the tables. In this
version we also introduce the support for tiny objects. This means that
using a proper manager connected to PVSS the API can now handle very
granular objects coming from DCS.

3.1 New database schema

object_type_tbl bldem bl
OO
type_id fid_id dp_ibi |
descripiion tag2iolder_tbl parent dp. id 1 data_ibl_tiny_#
libpath tag_id insert_t name obj_ —
code fid_id fpath unit since_t
insert_t desc an it |
fattr &ffid_id db_id
ddiype el_id
db, ;:1 ap_id
is
tags_bl dahbases_ibl UsedKB
tag_id l_ db_id 1
i n_t dbi
;“9" = object_key_ibl # name
name foe oLk sIvname
tatir — Tt usermame
tdesc ||Tse password
since_t
i Til_t
1ag2obj_tbl_#
e e
= db_id part_i |d
obj id
_ i~ dat_id since_t
since_t T
Hil_t -
= db_id
object_key_tbl_head_#
&l abj id
insert_t
since_t dala_ibl_#_#
[dal id
layer description
db_id oblock
dal_id

Figure 1: CondDB API database schema.

The new database schema was designed in order to allow extention of the
API to support new features, also trying to think in future improvements
that can be made (e.g. Database partitioning) as well as to make it more

simple than the previous one. Some of the changes in the schema were
intruduced, also due to the results from performance tests[2] that we've
been seting and implementing.

Here is the list of tables together with a small description of each one:

e databases_tbl

T e O o e e +
| Field | Type | Null | Key | Default | Extra |
T — T — - e T — e +
db_id	int(11)		PRI	NULL	auto_increment
dbname	char(64)	YES		NULL	
srvname	char(64)	YES		NULL	
username	char(16)	YES		NULL	
password	char(16)	YES		NULL	
e e fm————— fm———— e e +

In this table will be stored information about all the databases used to store
conditions data. This table will be used in the condDB master servers in
order to cope with scalability issues. One row will be added if a new slave
server or database will be used.

e folders_tbl

e e e e o e +
| Field | Type | Null | Key | Default | Extra |
e e e ————e N e +
£fld_id	int(11)		PRI	NULL	auto_increment
fparent	int(11)			0	
insert_t	timestamp(14)	YES		NULL	
fpath	varchar(255)				
fdesc	varchar(255)				
fattr	varchar(255)				
ddtype	int(11)	YES		0	I
db_id	int(11)	YES		NULL	
is_set	tinyint(1)	YES		0	
e o e - N e +

All the information about folders, folderSets and folderRoots will be stored in
this table. The table includes the db_id field that will make the relationship
between folders and the description of the database in which they will be
stored.

e tag2folder_tbl

Fomm Fomm o o Fom— o +
| Field | Type | Null | Key | Default | Extra |
fo—m o Fomm o= o Fom— o +
| tag_id | int(11) | | | 0 | |
| fld_id | int(11) I I | o |

| insert_t | timestamp(14) | YES | | NULL | |
Fo—m o o= o Fom— Fom— +

This is an auxiliary table used to create a many-to-many relationship between
tables tags_tbl and folders_tbl.

e tags_tbl
o o o o o o +
| Field | Type | Null | Key | Default | Extra |
Fomm Fom o o= pom Fom +
tag_id	int(11)		PRI	NULL	auto_increment
insert_t	timestamp(14)	YES		NULL	
tname	varchar(64)	YES		NULL	
tattr	varchar(64)	YES		NULL	I
tdesc	varchar(255)	YES		NULL	
fomm Fomm o o= pomm Fomm e +

This table is used to store information about tags, including the insertion
time, the tag name and the tag description.

e partition_tbl_#

fo—— Fomm o o fomm o +
| Field | Type | Null | Key | Default | Extra |
e fomm o e o= pomm T +
part_id	int(11)		PRI	NULL	auto_increment
since_t	bigint(20)	YES	MUL	NULL	
till_t	bigint(20)	YES	MUL	NULL	
db_id	int(11)			0	

o pomm o o o pomm o o +

This table will be used in the future to allow table partitioning. This fea-
ture is very important because we can ensure the database scalability. Once
again the # character goes for the id of the corresponding folder. For each
folder there will be a new partition_tbl. This table also contains the server
coordinates because it uses the field db_id.

e object _key tbl #

Fo—m Fomm e o= o o o +
| Field | Type | Null | Key | Default | Extra |
fomm e o o pomm - o +
obj_id	int(11)		PRI	NULL	auto_increment
insert_t	timestamp(14)	YES		NULL	
since_t	bigint(20)	YES	MUL	NULL	
till_t	bigint(20)	YES	MUL	NULL	
layer	int(11)	YES		NULL	
db_id	int(11)	YES		NULL I I	
dat_id	int(11)	YES		NULL	
Fomm e Fomm o= o Fom— o +
In this table is stored all the information that allow the full description of
each object. Each one of the fields is of extreme importance for the object
qualification. It includes the time of insertion, the validity time, the reference
to the description of the database and the version of the object. The #
character represents the id of the folder in which the objects are assign. It
also includes a field that points to the data it self (data_id).

e object_key_tbl_head_#
fommmm e o N pomm o Fomm e +
| Field | Type | Null | Key | Default | Extra |
Fomm o Fomm o= o Fom— o +
| obj_id | int(11) | | PRI | NULL | auto_increment |
| insert_t | timestamp(14) | YES | | NULL | |
| since_t | bigint(20) | YES | | NULL I I
till_t	bigint(20)	YES		NULL	
layer	int(11)	YES		NULL	
db_id	int(11)	YES		NULL	
dat_id	int(11)	YES		NULL I I	
fommmm e o N pomm o o +

This table records the same information as the previous one with the differ-
ence that the objects are associated with the head tag. Description of objects
which tag is different from head are stored in the previous table.

e tag2obj_tbl #

| tag_id | int(11)
| obj_id | int(11)

Another table used to create a many-to-many relationship. This one creates a
relationship between tags_tbl and, object_key_tbl_# and object_key_tbl_head_#.

e data_tbl #_ #

e e e e e e +
| Field | Type | Null | Key | Default | Extra |
Fmm Fmm o Fm——— o e +
dat_id	int(11)		PRI	NULL	auto_increment
description	varchar(255)	YES		NULL	
oblock	mediumblob	YES		NULL	
e e e e Hmmm e e +

This is the table where the real data is stored. The objects are stored in
BLOBs (Binary Large Object)

e dp_tbl
o e o o fomm et +
| Field | Type | Null | Key | Default | Extra |
fo—m o e o pomm e +
dp_id	int(11)		PRI	NULL	auto_increment
name	varchar(255)				
unit	varchar(10)	YES		NULL	
arr	int(11)			O	
fld_id	int(11)	YES		NULL	
pomm o e T et oo e +

Information regarding the description of PVSS datapoints are stored in this
table, namely the datapoint name and the array size.

e data_tbl_ tiny #

pommm o pommm to————= o= pomm - o +
| Field | Type | Null | Key | Default | Extra |
e e Ho—m— it Fmmm e +
obj_id	int(11)		PRI	NULL	auto_increment
since_t	bigint(20)	YES		NULL	
till_t	bigint(20)	YES		NULL	
db_id	int(11)	YES		NULL	
el_id	int(11)	YES		NULL	
dp_id	int(11)	YES		NULL	
Value	_________	YES		NULL	
pommm - pommm to————= o= pommm - o +

Values coming from the DCS scada system that reflect the state of the detec-
tor are stored in this table. Because this type of data does not need neither
versioning nor tagging mechanism, only the validity time is stored. The field
dp_id is used as a reference to the datapoint that each element corresponds.
The type of the field designated here by the name of Value will change de-
pending on the type of what comes with the datapoint. # goes for id of the
corresponding folder.

10

3.2 Support for tiny objects

As written in the previous section, the API provides, starting from version
0.3, features that allow storage and retrieving of tiny objects. These features
match the requirement of some users that would like to store objects with
simple structures but with a huge granularity. The best example of objects
of this kind are the data coming from the DCS part of the detector. To deal
with this type of objects the API was extended in order to handle the PVSS
interface. New methods implemented:

Storage:

e createCondDBFolderPvss (fullpathname, attributes,
description, parents, dptype, dpname, unit, name, elem)

This function creates a set of tables (partition_tbl n, data tbl_tiny n),
the necessary, folders and makes an entry in the tables folders_tbl and
dp_tbl for the given dpname. fullpathname is the full pathname of the
folder. dptype is needed to define the type of field for the values (INT,
FLOAT, etc). dpname is the datapoint name unit, the unit associated to the
dp name is the name of the values column elem specifies how many elements
an array has (if it is not an array elem = 0).

e storeCondDBPvss (parentfolder, dpname, unit, values,
since, name)

This function inserts a new value (or a set of new values in case of an array)
in the data_tbl_tiny n table, closing the interval of validity of the previous
value. parentfolder is the name of the parentfolder dpname the datapoint
name unit the actual unit associated to the dp values: the values to be stored
(1 for normal dp, n for dyn dp) since, the actual time name, the name of the
values column

Retrieval:

e findCondDBPvss (string dpname, CondDBKey time,
vector<string> value, string unit)

This function searches for the value(s) stored at time and stores the found
value(s) in the vector<string> value and the associated unit in string unit.
time can be in SimpleTime format which makes it easier to use this function.
dpname, the datapoint name whose value we want. In the case of a dyn dp
value will contain as many values as have been stored at time.

e browseCondDBPvss (string dpname, CondDBKey since,
CondDBKey till, vector<string> unit,
vector < vector<string> > data, vector <SimpleTime> time)

This function searches for all the values contained in the time interval defined
by since and till. It stores the result in vector< vector<string> > data,
vector<string> unit and vector <CondDBKey> time, meaning the values
found in data, associated unit in unit and the associated time in time. data

11

is a twodimensional vector where each row contains an entry for the respective
time. This entry is a vector which contains as many values as the dp contained
at the time (1 for normal dp, n for dyn dp). unit and time are onedimensional
where each element corresponds to one time. This means:

data[n][m] returns he mth element of the nth row

time[n] returns the time for the nth row

unit[n] returns the unit for the nth row

data[n].size() returns the number of elements in row n

data.size(), time.size(), unit.size() returns the number of rows since and
till can be in SimpleTime format dpname the name of the datapoint

12

4 New tools

4.1 Tcl/tk wrapper
4.1.1 General informations

The wrapper makes the ConditionsDB API available under TCL. The API
is available as a binary module that can be easily loaded into a running
interpreter. When properly installed, the following line will suffice to auto-
maticaly load the ConditionsDB module.

package require conddb 1.0

For further details about the installation read the install item listed
bellow.

The TCL API mimics the C++ API as much as possible. So, if you are
already familiar with the C++4 API it should not be difficult to start using
the TCL API right away.

Appart from the sintactic differences, most API caracteristics were pre-
served. Even the object oriented nature of the API is present in the TCL
version. The following facts can be taken as granted when learning the
TCL’s API.

e For every class, all method names are the same as the C+4 couterpart;

e The argument order for each method is the same as the C++ coun-
terpart;

e The return value for methods is the same in TCL and C++;

e When a reference or a pointer is passed as argument to a C++ method,
The TCL’s version takes a variable name;

e When an object is taken as argument or a pointer to it is returned
from a C4++ method, TCL takes or returns the name of the object.

e When a value (integer, float or string) is passed to or returned from a
C++ method, The TCL’s counterpart also expects or returns a value.

e The instances of the C++ API classes are all supported by the TCL
API. They are represented by TCL procedures that are actually bound
to a C++ object.

e The first argument for each object bound procedure is the method
that one wishes to invoke. The remaining arguments are, y the order in
which they appear, the corresponding arguments for the C++ method
for that object.

13

e The exception to the above statement is the case of the factory classes
methods. However, this is an exception even n the case of the C++
API as these methods are not bound to any object, they are pure
static methods. On the TCL side these methods are defined inside a
namespace with the name of the corresponding class.

An interesting feature provided with the TCL API that is not available
in the C++ API is the performance measurement facility. This facility is
controlled through to TCL global variables:

conddb_perf_measurement

conddb_elapsed_time

The first one holds a boolean value stating if the performance measurement
is active (1) of inactive (0).

The second global variable holds a floating point representation for the time
elapsed during the last API operation in seconds. It is important to evaluate
this variable immediately after the operation you are interested in, since
every subsequent operation will change its value.

4.1.2 How to install
Follow these steps when installing the CONDDB module for tcl.

1. Compile the ConditionsDB from the toplevel directory

(a) Copy the tclconddb.so to the standard tcl modules directory in
your system. This might vary from system to system. Contact
you system administrator.

(b) Alternatively, you may choose whatever directory you wish and
append that directory path to the system variable TCLLIBPATH.
Pay attention that, unlike other system vars like PATH or
LD_LIBRARY PATH, the path elements in TCLLIBPATH are not sep-
arated by colons ”:” but by spaces ” ”.

2. Invoke a TCL shell (can be tclsh, wish, or any other TCL shell) and
run the command pkg mkIndex with the following arguments
pkg-mkIndex -verbose <conddb_module_dir_path> tclconddb.so
The jconddb_module_dir_path; stands for the directory where the tclconddb.so
file resides (the one chosen in step 2). The path can be relative or ab-
solute. The -verbose option is very importante since it lets you know
if something goes wrong.
On success, a file named pkgIndex.tcl will be created in jconddb_module_dir_path,,
which contains the command that will provide automatic loading when
the package is required.

14

4.2 The PVSS Manager
4.2.1 General information

A PVSS manager was created to store PVSS values in the Conditions Database
as tiny objects. This Manager works only in Linux since Windows is not yet
supported by the Conditions Database.

The PVSS Manager for the conditions database connects to a PVSS system
and reads the contents of the datapoint defined in the config file. This
datapoint has to be of type dynamic string and is supposed to contain the
datapoint names of the datapoints whose values we want to store online.

¥

Manager ——

&

I3 i
E 1
i 1 e
=3 a g
iz : |3

2*

i
pvsSsS /8% | Cond DB

Figure 2: Interface between PVSS and CondDB.

All the necessary configuration information is defined in the config file.

The PVSS manager reads the list of datapoint names and connects to
each one. At the time of the connect, the manager checks if the database
exists and if the folders exist (one folder per datapoint). If they don’t exist,
the manager creates them, making usage of the CondDB API. After that the
initial value of each datapoint is stored. Every time a value changes the
storing function is called. Figure 2 shows a very general schema on how the
Manager interfaces PVSS and the CondDB.

At the moment single value datapoints and dynamic datapoints are sup-
ported, their types being: float, int, bool, string, char and time. Structures
are not supported in this version.

The functions used and the table structure are described in section 3 of
this document.

15

Files

ApiManRunTime.zip CDBManager.hxx CDBResources.hxx add VerInfo.cxx
CDBMain.cxx CDBManager.zip Makefile.api CDBManager.cxx
CDBResources.cxx README

4.2.2 How to install

CDBManager .zip contains the executable version of the Manager for Linux.
The source code files are also available including the Makefile.
To get the manager running you have to do the following:

1.

2.

4.3

Compile the Conditions Database API
unzip the manager CDBManager.zip

unzip APIManRunTime.zip

. change config file in APIManRunTime/config (see README)

define environment variables (see README)

execute the Manager

Backup tool

There’s also available a tool to backup CondDB databases. In directory tools
there is a perl script that makes the backup automatically. The syntax to
use this script is the following;:

cond_db_backup.pl database_name backup_location mysql_user [mysql_host]

If you don’t specify a mysql_host by default it will try to connect to
localhost machine. The mysql_passwd will be asked while trying to connect
to the server. Note that if backup_location starts by /castor/cern.ch the
backup file is then moved to the specified location at CERN’s CASTOR.

To use this aplication, you’ll need to have installed in your system the
MySQL aplication named mysqldump.

16

5 New examples

A set of new examples have been developed. It is intended to exemplify the
usage of the new features available for the CondDB API. In this section some
examples will be presented along with a short description. These examples,

as well as others, can be found in directory
CondDB-MySQL-extended-xx-xx-xx/implementationMySQL/examples/ of the
implementation.

5.1 browsepvss.cxx

Example application to illustrate the use of the function browseCondDBPvss
(const string& dpname, CondDBKey since, CondDBKey till, vector<string>&
unit, vector < vector<string> >& data, vector <SimpleTime>& time)
It returns all the values found for the given time interval, the correspond-
ing unit and the since time of each value. In the case of an ordinary dp there
is only one column (second index=0) for the vector< vector<string> data.
In the case of a dyn dp there are as many columns to each row as there are
values for each time.

#include "ICondDBMgr.h"
#include "CondDBMySQLMgrFactory.h"

#include <string>
#include <iostream>
#include <vector>

using namespace std;
int main (int argc, char* argv([])
{

try {

ICondDBMgr* condDBmgr = CondDBMySQLMgrFactory: :createCondDBMgr () ;
condDBmgr->init () ;

condDBmgr->startRead () ;
condDBmgr->openDatabase () ;
condDBmgr->commit () ;
ICondDBDataAccess* condDataAccess = condDBmgr->getCondDBDataAccess();
condDBmgr->startRead () ;
// start browse
vector< vector<string> > values;

string dpname;
vector <string> unit;

17

vector <SimpleTime> time;

SimpleTime since, till;

since = SimpleTime(2003,3,13,16,45,0);// start time
till = SimpleTime(2003,4,13,16,50,0); // end time
cout << "Start time: " << since << endl;

cout << "End time : " << till << endl << endl;

// Single value:

cout << "Single value data point" << endl << endl;
dpname = "Systeml:_MemoryCheck.UsedKB:_online.._value";
condDataAccess->browseCondDBPvss (dpname, since, till, unit, values, time);

if (values.size() > 0){
cout << "Value(s) found for " << dpname << ": " << endl;
cout << "Value" << "\t\t" << "Unit" << endl;
for (unsigned int i=0; i<values.size(); i++)
cout << values[i] [0] << "\t\t" << unit[i] << "\t" << time[i]<< endl;

}
else
cout << "No value found" << endl << endl;
// Array:
cout << endl << endl << "Dynamic data point" << endl << endl;
values.clear();

dpname = "Systeml:test.dynfloat:_online.._value";
condDataAccess->browseCondDBPvss (dpname, since, till, unit, values, time);

if (values.size()>0){
cout << "Data found for " << dpname << endl << endl;
cout << "Value" << "\t\t" << "Unit" << endl;
for (unsigned int i=0; i<values.size(); i++){
for (unsigned int j=0; j<values[il.size();j++)
cout << values[i][j] << "\t\t" << unit[i] << "\t"
<< time[i] << endl;
cout << endl;
}
}

else
cout << "No value found" << endl;
// end browse
condDBmgr->commit () ;

CondDBMySQLMgrFactory: :destroyCondDBMgr (condDBmgr) ;
return 0; // return success

18

catch (CondDBException &e){

cerr << "sx*x ConditionsDB exception caught: " << e.getMessage() << "\n"
<< "xx* error code: " << e.getErrorCode() << endl;
return 1; // return failure
}
}

5.2 findpvss.cxx

Example application to illustrate the use of the function findCondDBPvss (string
dpname, CondDBKey time, vector<string> value, string unit).

Searches the value of the given dp for the given time and returns de value into
the vector<string>value and the unit into string unit. In the case of an ordinary dp
the value will be unique and therefore vector<string> will contain exactly one entry.
In the case of a dyn dp the value found will be an array therefore vector<string>
will contain as many entries as values that have been stored at the given time.

#include "ICondDBMgr.h"
#include "CondDBMySQLMgrFactory.h"

#include <string>

#include <iostream>

#include <vector>

using namespace std;

int main (int argc, char* argv([])

{

try {

ICondDBMgr* condDBmgr = CondDBMySQLMgrFactory: :createCondDBMgr () ;
condDBmgr->init () ;
condDBmgr->startRead() ;
condDBmgr->openDatabase () ;
condDBmgr->commit () ;
ICondDBDataAccess* condDataAccess = condDBmgr->getCondDBDataAccess();
condDBmgr->startRead () ;

// start find

vector<string> value;
string dpname,unit;

SimpleTime time = SimpleTime(2003,4,15,16,45,0);// search time
cout << "time: " << time << endl << endl;

// Single value:

19

cout << "Single value data point" << endl << endl;
dpname = "Systeml:_MemoryCheck.UsedKB:_online.._value";

condDataAccess->findCondDBPvss (dpname, time, value, unit);

if (value.size() > 0)

cout << "Value found for " << dpname << ": " << value[0]

<< " " << unit << endl;

else

cout << "No value found for time " << time << endl << endl;

// Array:

cout << endl << endl << "Dynamic data point" << endl << endl;
value.clear();

dpname = "Systeml:test.dynfloat:_online.._value";
condDataAccess->findCondDBPvss (dpname, time, value, unit);

if (value.size()>0){
cout << "Data found for " << dpname << endl << endl;
cout << "Value" << "\t\t" << "Unit" << endl;
for (unsigned int i=0; i<value.size(); i++)
cout << value[i] << "\t\t" << unit << endl;
}
else
cout << "No value found for time " << time << endl;

// end find
condDBmgr->commit () ;

CondDBMySQLMgrFactory: :destroyCondDBMgr (condDBmgr) ;
return 0; // return success

}
catch (CondDBException &e){
cerr << "sx*x ConditionsDB exception caught: " << e.getMessage() << "\n"
<< Mkokok error code: " << e.getErrorCode() << endl;
return 1; // return failure
}

20

6 Other changes
6.1 GCC 3.xx support

After some code clean up and some re-implementation ConditionsDB MySQL im-
plementation it compiles and works fine with GCC compilers with versions > than
3.0. Here is a list of things that were changed:

e using include file <sstream> instead of <strstream>
e using ostringstream instead of strstream

e added using namespace std to some implementation files - mainly the exam-
ples source code

e added #include <iostream> to some source examples in which it was missing

6.2 TIMETESTS flag

It was added a Macro to perform time tests while querying. Use the flag -
DTIMETESTS in compilation and then set up the conditionsDB debug environment
variable to export COND_DB_DEBUG=all to allow storage of the time spent in each
query to be written in log file. This time is written in microseconds. Please note
that this procedure will leave to a loss of performance of the API.

21

7 To do...

The CondDB interface is far from being complete. A lot other features that are not
yet available are desired from the users. To deal with this we will continue to try
to understand the user requirements and then develop and include them in a future
version. Some of these new features have been already isolated. This is a list of
features that should be included in the next version.

7.1 Graphical user interface

A graphical user interface (GUI) it’s one of the next steps for this API. We're
still evaluating technologies to ensure that a proper solutions is chosed. Athought
already exists a GUI based on Tcl/TK, it’s oriented for developers and for debug
purposes. The condDB GUI should provide the functionalities of displaying the
relevant information stored in the database and should also be able to display the
data related with the objects whenever this could be possible.

7.2 Support for other types of objects

A set of other types of objects should be supported by the API in one of the next
versions. The ideas presented below are still in an immature stage and it’s up to
the users to help to understand their needs.

e XML The capability of storing XML objects as well as the feature of being
able to serialise and deserialise them should be implemented. XML objects
are possible to store for the current implementation, but the API doesn’t
know anything about it’s schema. A more sofisticated mechanism is desired
by the users and should be provided in the future.

e ROOT objects Also, the capability of storing ROOT objects can be one of
the features to implemented in the future. This will allow the API to be able
to understand ROOT objects and use them.

7.3 Other platforms support

In the next version of the CondDB API Windows platform should be provided. This
will allow users that are developing applications in Windows operating systems to
use the CondDB facilities to store data in the database. This could be very interesting
in particular for CERN users that are using the PVSS scada system.

Other platforms should also be supported if this becomes a user requirement.

7.4 New browsing functions

New browsing functions should be implemented in order to make it easy to select
from a set of objects. A function that finds objects from a since_t to a till_t
time is already desirable by the users and should be available in the next version.

22

7.5 New tools

A set of new tools should also be available in a future release of CondDB API. In
this section it can be included tools to import CondDB databses that are stored for

backup.

23

8 General informations

Some general and practical informations will be described in this section.

8.1 How to download

Please refere to the web page https://savannah.cern.ch/projects/conddb-mysql/ to
get all the necessary links for downloading the different versions. There you’ll find
all the informations concerning the CondDB API subject including the link to the
project home page: http://kdataserv.fis.fc.ul.pt/ATLAS/.
If you want to download the development version please follow the instructions
below. You can also find this information in the project web page mentioned above.
Download ConditionsDB via CVS repository

e Define the environment variables:
export CVSROOT=:ext:conddb@kdataserv.fis.fc.ul.pt:/usr/local/cvsroot
export CVS_RSH=ssh
or setenv CVSROOT :ext:conddb@kdataserv.fis.fc.ul.pt:/usr/local/cvsroot
setenv CVS_RSH ssh
Depending on what shell are you using.

e Execute the command:
cvs co CondDB-MySQL-extended

e passord = conditions

8.2 Compiling

The MySQL version of CondDB should compile in any UNIX platform. If you find a
problem compiling the library, please inform us as soon as you can.

If you've downloaded the .tgz file from the web page, start by unpacking the
distribution in youDirectory:

tar zxf CondDB-MySQL-extended-xx.xx.xx.tgz

You'll get a directory scructure very similar to this one:

CondDB-MySQL-extended-xx-xx-xx/
| -- docs-MySQL

|-- implementationMySQL

| |-- examples

| | | -— PVSSManager
| | | -- deprecated
| | ¢—— future

| |-- include

I [-- 1ib

| |-- src

| [-- tcl

| ‘-- tools

‘—- include

24

Change to the directory youDirectory/CondDB-MySQL-extended-xx-xx-xx/implementationMySQL.
Edit the toplevel of the Makefile to match to your own settings. The Makefile
is heavily commented, so you just need to follow the instructions. In the Makefile,
you can set the default INIT_STRING.

Finnaly, type: make depend (skeep this step if you're using GCC >=3.0

make

If you want to compile the Tc1/TK wraper type:
make tcl
Do not try to use the make tcl command before you compile the CondDB library.

8.2.1 Requirements
To compile the CondDB API make sure that:
e GCC version 2.95.3 or above with C++ support

e MySQL development packages (header files and MySQL client library) version
3.23.41 or above

e in order to compile the Tc1/TK wraper you need the Tcl/TK developement
package

e to run the Tcl/TK browser or the Tcl/TK examples you need a tcl shell
installed

8.3 Installing

The installation settings for the API are also defined in the toplevel of the Makefile.
Please change the line of the TARGETDIR = /usr/local/lib if you want to customize
your installation path. Please check if you have the necessary privileges and the
type:

make install

This will install the library in the defined path. Run the 1dconfig command.
If your directory of installation is not a standard one defined for libraries, you’ll
have to define the environment variable LD_LIBRARY_PATH. Type:

export LD_LIBRARY_PATH=your_installation_path

or
setenv CVSROOT vyour_installation_path

8.4 Reporting bugs

For the CondDB API package we're using the LCG Software development portal?.
You can find the web page for the CondDB project in:

https://savannah.cern.ch/projects/conddb-mysql/

https://savannah.cern.ch/

25

There you can find an easy to use tool for bug repporting. Please use it to
repport any kind of problem that you find wile using CondDB - MySQL. The team of
developers will be automatically notified every time that a bug is reported.

8.5 Running the examples

The main Makefile also builds a set of example programs that are distributed with
the source code of the package. To use any of theses example programs change to
the directory yourDirectory/CondDB-MySQL-DCS/implementationMySQL/examples
and run the tests you want. Note that some of the example programs depend on
others, and other may fail if executed twice. The list of examples that are provided
is the following:

e basicSession - Creates the database basic structure.

o createFolderx - Creates a folder and tests it.

e storeData - Stores a simple object.

e readData - Reads bask the object.

e genericObjectStore - Stores a vector object.

e genericObjectRead - Reads the vector.

e storeDatax - Stores multiple objects (up to 1 milion).

e readDatax - Reads multiple objects.

e storeDatay - Stores multiple objects with diferent intervals of validity.
e readDatay - Reads back the objects created by storeDatay.
e createTags - Creates some tags.

e testTags - Tag objects.

For more information on how to create you own objects please refer to[1] section
10.4.

8.6 The log file

If you want to know what is hapning behind the API, you can set an environment
variable (COND_DB_DEBUG) that will log in a file diferent informations deppending of
the value that takes. Use the comand export COND_DB_DEBUG = verbositylLevel or
setenv COND_DB_DEBUG verbosityLevel. verbosityLevel can take the following
values:

e none: no message is printed (not to be used when defining a message)

e prof: only those messages are printed which do not disturb profiling mea-
surements

e user: only those messages are printed which are of ”general” interest

e devl: also those messages are printed which are only of interest for the
package developer

26

e more: more paranoid messages are printed

e all: any debug message will be printed. You can also get the time that takes
to perform each query if you compile with the -DTIMETESTS option.

27

9 Acknolegments

Thank you for those who have been involved in the last months with this project.
Also thanks for their sugestions and pragmatism that helped us to develop this new
version of the CondDB.

28

References

[1] J. Lima, A MySQL based ConditionsDB interface,
http://kdataserv.fis.fe.ul.pt/ATLAS/, November, 2002.

[2] A. Amorim et all, Evaluation of the Relational implementation of Conditions
Database
http://kdataserv.fis.fe.ul.pt/ATLAS/, February, 2003.

[3] A. Amorim et all, Requirements on the Conditions Database interface to TDAQ
http://atlobk01.cern.ch/ConditionsDB/requirements/

29

