Evaluation of the Relational
Implementation of the Conditions
Database Interface

Author: A.Amorim, N.Barros, D.Klose, J.Lima, C.Oliveira, L.Pedro
Date: February 2003

Abstract

The ConditionsDB interface is a C++ class library, built on top of a
database management system, to enable storage and retrieval of detector-
related information with an associated period of validity.

This document describes a first comparison study between the Oracle
v0.4.1.6 and the MySQL v0.2.6b implementations of the ConditionsDB in-
terface. A set of performance tests were executed both running locally in
the database server machine and using clients in remote machines.

It also addresses the issues related to the Large Scale Tests performed
using the MySQL prototype.

The necessary steps to build and install both implementations are also
described.

ATLAS-TDAQ Lisbon Group

Contents
1 Part I - Comparison between MySQL and Oracle implemen-
tations 4
1.1 Introduction. 4
1.2 Setting up the system, 4
1.3 Running examples 4
1.3.1 Description of the tests 5
1.4 Intensive Usage 6
2 Part II - Large Scale Tests 10
2.1 Introduction. 10
2.2 System Setup 10
2.3 Large Scale Tests Results 11
3 Conclusions 13
4 Appendix A - Installing, setting up and running the MySQL
and ORACLE servers, compiling and using the ConditionsDB
API on Linux 14
4.1 Using MySQL o 14
4.2 Using ORACLE. 15
5 Appendix B - Detailed test results for the MySQL and Or-
acle implementation of ConditionsDB 19
5.1 MySQL 19
5.2 Oracle e 22
6 Appendix C - Graphical representation of the results for the

Large Scale Tests 25

CONTENTS 2

ATLAS-TDAQ Lisbon Group

List of Figures

1 time values for the MySQL implementation of ConditionsDB (local
and remote) . .. o. ... Lo Lo 6
2 time values for the Oracle implementation of ConditionsDB (local
and remote) L. oL oL 6
3 time values for the MySQL implementation of ConditionsDB with
intensive usage tests (local and remote) 7
4 time values for the Oracle implementation of ConditionsDB with
intensive usage tests (local and remote) 8
5 Short 8
6 objects stored vs. time spent storing for MySQL and Oracle imple-
mentations (remote) oL Lo Lo o 9
7 objects stored vs. time spent reading for MySQL and Oracle im-
plementations (local) Lo 9
8 objects stored vs. time spent reading for MySQL and Oracle im-
plementations (remote) oL 10
9 Objects stored vs. time spent - fixating the number of controllers . 11
10 Number of controllers vs. time spent - fixating the number of ob-
jectsstored L. e 11
11 Objects stored vs. time spent - fixating the number of controllers . 12
12 Number of controllers vs. time spent - fixating the number of ob-
jectsstored Lo 12
13 Objects stored vs. time spent - fixating the number of controllers . 12
14 Number of controllers vs. time spent - fixating the number of ob-
jectsstored 12
15 MySQL implementation: local / remote 19
16 MySQL implementation: local / remote - Intensive Usage - storeDatax 20
17 MySQL implementation: local / remote - Intensive Usage - readDataz 21
18 Oracle implementation: local / remote 22
19 Oracle implementation: local / remote - Intensive Usage - storeDataz 23
20 Oracle implementation: local / remote - Intensive Usage - readDatax 24
21 Objects stored vs. time spent - fixating the number of controllers . 26
22 Number of controllers vs. time spent - fixating the number of ob-
jectsstored L Lo Lo 27
23 Objects stored vs. time spent - fixating the number of controllers . 28
24 Number of controllers vs. time spent - fixating the number of ob-
jectsstored L. oL 29
25 Objects stored vs. time spent - fixating the number of controllers . 30
26 Number of controllers vs. time spent - fixating the number of ob-
jectsstored 31
LIST OF FIGURES 3

ATLAS-TDAQ Lisbon Group

1 Part | - Comparison between MySQL and
Oracle implementations

1.1 Introduction

The purpose of this work is to evaluate the performance of the Oracle and
MySQL implementations of Conditions Database (ConditionsDB) as they
are implemented at the present moment and to suggest paths for improve-
ment for both implementations.

The comparison was carried out using both the examples distributed
with the Oracle implementation, that were also used, with the appropri-
ate modifications, on the MySQL implementation and implementing wew
intensive usage examples that were created and applied to both implemen-
tations. These new applications, developed to evaluate the intensive usage
of the ConditionsDB include not only creating complex foldersets and folder
based structures but also storing and retrieving large number of objects.

The time spent running each one of this examples was measured and
provided the source for the comparison results.

1.2 Setting up the system

Both implementations can be found at standard CERN AF'S locations and
both bring documentation on how to correctly set up the system in order to
achieve compilation without errors.

An Oracle or a MySQL server must be available to support the databases
and the client API’s libraries must also be installed in order to correctly
build the implementations. Both setup procedures are described in detail
in Appendix A. Installing the ORACLE version the Oracle 9i, Release 2 on
Suse Linux was rather straighforeward once the respective Suse rpm was
used. This is not the case for release 1 where several ad hoc operations
have to be performed. Information on how to instal this previous release is
available from the authors.

1.3 Running examples

All the tests were performed using a database server in a Linux PC with
the following configuration:

e Hardware:

— Intel Pentium 4, 1,6GHZ
— 756Mb DDR RAM PC133MHz
— 30 Gb HDD, ATA100, 7200RPM

1 Part I - Comparison between MySQL and Oracle 4
implementations

ATLAS-TDAQ Lisbon Group

e Operating Sytem:
— Suse 8.0, linux kernel 2.4.18-64GB-SMP
e Database Servers:

— Oracle: Oracle9i Enterprise Edition Release 9.2.0.1.0 - Produc-
tion With the Partitioning, OLAP and Oracle Data Mining op-
tions JServer Release 9.2.0.1.0 - Production

— MySQL: Distrib 3.23.48

Below is the list of all the examples used on the tests, as well as a brief
description of the different steps involved. Some benchmarks were adapted
from the examples distributed in the 0.4.1.6 distribution of the Oracle im-
plementation that were also migrated to the MySQL implementation. Due
to the abstract interface design of the ConditionsDb interface, the migration
to MySQL is easily accomplished with minor changes in the code.

From the common code:

#include < ConditionsDB/CondDBXXXXMgrFactory.h>

}bondDBMgr* CondDBmgr = CondDBXXXX MgrFactory::createCondDBMgr();
'é’ondDBmgr—>im't();

“é'ondDBXXXXMngactory::destmyCondDBMgr(CondDBmgr);

XXXX must be changed for the specific implementation. For MySQL it
must be changed to MySQL and for Oracle to OracleDB.

1.3.1 Description of the tests

e createFolders - Connects to the database server. Verifyes if a folder-
set/folder structure (cal/temp) exists. Should not exist, creates it.

e czampleObject and storeData - Stores an object under a given folder
with defined characteristics, such as time validity, insertionTime, layer
and data. exampleObject creates one object and storeData creates
three objects with different time validity.

e cxampleObjectRead and readData - Reads an object already stored
and prints out all it’s properties.

e comprehensiveTest - Extends the functionality of all the procedures
(NOTE - this test was not migrated to MySQL).

1.3 Running examples 5

ATLAS-TDAQ Lisbon Group

To measure the time spent by each test, the time Unix function was
used by preceeding the command by ”time”. We have recorded the real
time, the user time and system time. From the manual page of the function
comes the definitions: real time - the elapsed real time between invocation
and termination, user time - the user CPU time, system time - the system
CPU time.

The real time for each test is listed bellow. The chosen value includes the
time spent on network transport. All tests were done in dedicated machines
that were performing only this task. Appendix B contains the detailed test
results for real, user and system time.

e MySQL Results

MySQL {local) MySQL (remote)
createlolders real Om0.134s real Om0.133s
storeDade real Om00&5s real OmD.085s
read Data real Om0023s real Om0.048s
examplel bject real Om0038s real Om0.080s
exampleti bject Read real Om0021s real Om0.053s

Figure 1: time values for the MySQL implementation of ConditionsDB (local and
remote)

e Oracle Results

Orucle (o) Oracle {remote)
CreateFolders real Omll.101s real Om23.088s
storeDagta real OmO0427s real Om0.633s
read Data real Om0.130s real Om0.228s
examplel bject real Om0233s real Om0.293s
exampleQ bjectRead real Om0.131s real Om0.248s
compre hensivelest real Sm35.043s real 7md2.640s

Figure 2: time values for the Oracle implementation of ConditionsDB (local and
remote)

1.4 Intensive Usage

The following tests were implemented in order to test the different im-
plementations in it’s functionalities and to see it’s behaviour under heavy
load, creating the database structures and performing intensive storage and
reading procedures. The tests are based on the examples distributed with
the Oracle implementation.

1.4 Intensive Usage 6

ATLAS-TDAQ Lisbon Group

e createFolderr - Connects to a given database in the database server.
If none exists, creates a defined structure associated with the three
levels of foldersets and a folder.

e storeDatax - Connects to the database server. Verifies the existence
of a defined folder. If it does not exist, it is created. The user is
prompted for the number of objects to be stored. All objects will be
stored using the same time validity, insertionTime, and data, but each
will be in a different layer.

e readDataxr - Connects to the database server. Looks into a defined
folder and sees if it’s not empty. Gets all the objects stored in that
folder and iterates over all, showing their values.

For the storeDataz test, diferent quantities of objects were stored in
order to study the relation between objects stored vs. time spent storing
and between objects stored vs. time spent reading.

Intensive Usage MySQL (focad) MySQL (remote)
createlolde real OmQ0034s real Om0.072s
store Datax 10 objs real Omld47s real Oml.127s

100 objs real Oml1368s real Om2.345s
1000 objs real Om4.058s real Omé.341s
10,000 objs real Om23.175s real OmS5&6.929s
S0.000 objs real 1m40.040s real 3mS53.565s
100.000 objs real 3md2.184s real Sml&.510s
read Datex 10 objs real Om0028s real Om0.082s
100 objs real Om0.121s real Om0.146s
1000 objs real Om0312s real Oml.084s
10,000 objs real Om3.379s real Omll.021s
S0.000 o&js real Omls.sfls real OmdP.572s
100000 obys real Om34258s real 1md5.335s

Figure 3: time values for the MySQL implementation of ConditionsDB with in-
tensive usage tests (local and remote)

1.4 Intensive Usage 7

ATLAS-TDAQ Lisbon Group

Intensive Usage Oracle (beal) Oracle {remote)
createlolde real Oml5.173s real Omll.857s
storeDatax 10 objs real Om4.973s real Om5.434s

100 o&js real OmP749s real Oml5.820s
1000 objs real 1m2.375s real 1m2 850s
10,000 objs real 9m22.103s real 11ml2.554s
S0.000 ofjs real 53m48.330s real 52m42.003s
100,000 ofjs real 109mA40.878s real 104m13.283s

reqd Datax 10 objs real Om0.513s real Om0.311s
100 objs real Oml1075s real Oml.531s

1000 objs real Oméd4ls real Oml3.571s

10,000 objs real 1m8759s real 2ml2.243s

50,000 ofjs real Sm57.175s real 13ml2387s

100,000 objs real 12ml18.258s real 30mld 354s

Figure 4: time values for the Oracle implementation of ConditionsDB with inten-

sive usage tests (local and remote)

Graphical Representation

7000

5000
— 5000
4000
3000
2000
1000

time (sec.

storeDatax local

L ORACLE
« MyS0L

'y
0« - >

o 20000 40000 60000 50000 100000 120000

stored objects

Figure 5: objects stored vs. time spent storing for MySQL and Oracle implemen-
tations (local)

1.4 Intensive Usage 8

ATLAS-TDAQ Lisbon Group

storeDatax remote

7000

5000 =

5000

3000 - + MySaL

2000

1000 ”
0 s T T T T \

0 20000 40000 GOOOO 80000 100000 120000
stored objects

time (sec.)

.

Figure 6: objects stored vs. time spent storing for MySQL and Oracle implemen-
tations (remote)

readDatax local

800
700
600

g 500
‘ e
300 o My

200
100

0 s * % \

(s e

time

o 20000 40000 B0000 80000 100000 120000

stored objects

Figure 7: objects stored vs. time spent reading for MySQL and Oracle implemen-
tations (local)

1.4 Intensive Usage 9

ATLAS-TDAQ Lisbon Group

readDatax remote

5

ORACLE
2 400 A
s " + MySOL

H . *

y T T T T T 1
o 20000 40000 GO000 BO000 100000 120000

stored objects

Figure 8: objects stored vs. time spent reading for MySQL and Oracle implemen-
tations (remote)

2 Part Il - Large Scale Tests

2.1 Introduction

For the Large Scale Tests up to 100 PC’s were used as clients for
the MySQL server using the MySQL ConditionsDB API. The Online
Software infraestructure was used to allow synchronisation of the client
processes. Each client runs as a controller for the Online Software that
activates a certain process on that client everytime a state transition
occurs using RunControl. The type of test and the number of objects
to be managed were preconfigured on a database server. On the Load
to Configure transition, the test configuration occurs connecting to the
database server in order to get its parameters such as the type of test
(Store or Read test), database names and number of objects. The
Configure to Run transition executes the test.

The tests are the same as described in the Intensive Usage chapter.
Tests were performed by using different values of objects to be stored
and read from the database and different numbers of clients accessing
it. Due to implementation limitations, each client stores the objects
in one database. At the moment it is not possible for several clients
to store the objects on one database at the same time. Although it is
possible for all the clients to read the objects from the same database.

Each client gets its start and end time for its test process. The time
results presented are the average value of its duration.

2.2 System Setup
e Client Detalils:

— Intel PIII 1GHz dual processor
— Linux 2.4.18-18.7.x.cernsmp

2 Part II - Large Scale Tests 10

ATLAS-TDAQ Lisbon Group

— 376 MByte RAM
— On-Line Software release 00-18-01
— gce 2.96 compiler

— Gigabit network between the clients
e Server Details

— Intel PIV 2GHz

— Linux 2.4.18

— 1 GByte RAM

— cc 2.95.4 compiler

— MySQL Distrib 3.23

2.3 Large Scale Tests Results

e Storing objects on diferent databases

objects 10 controllers 20 controllers a0 controllers G0 controllers 100 controllers
100 0:00:03 0:00:06 0:00:16 0:00:37 0:00:49
1000 0:00:28 0:01:02 0:.03:22 0:08:47 0:15:06
10000 0:04:43 0:11:21 1:50:44 3:04:40
100000 0:43:01 1:55:15

Figure 9: Objects stored vs. time spent - fixating the number of controllers

Figure 10: Number of controllers vs. time spent - fixating the number of objects

stored

controllers 100 objects| 1.000 objects| 10.000 objects(100.000 objects
10 0:00:03 0:00:28 0:04:43 0:45:01
z0 0:00:08 0:01:02 0:11:21 1:55:15
a0 0:00:16 0:03:22
g0 0:00:37 0:08:47 1:50:44
100 0:00:49 0:15:06 3:04:40

e Reading objects from diferent databases

2.3 Large Scale Tests Results

ATLAS-TDAQ Lisbon Group

objects | 10 controllers | 20 controllers | 50 controllers | 80 controllers | 100 controllers
100 o000 00001 0:00:03 0:00:05 0.00:07
1000 0:00:06 ooz 0:00:30 00047 0:00:58
10000 :00:55 m:0z:01 0:08:01 0:10:03
100000 n09:11 1925

Figure 11: Objects stored vs. time spent - fixating the number of controllers

controllers 100 objects | 1.000 objects 10.000 obhjects 100.000 objects
10 0:00:00 0:00:06 0:00:55 0:09:11
20 00001 ooz 0:0z:01 0:19:25
50 ooo:os 00030
80 00005 0:00:47 00801
100 00007 0:00:58 01003

Figure 12: Number of controllers vs. time spent - fixating the number of objects

stored

e Reading objects from same database

ohjects 10 controllers a0 controllers
100 0:00:00 0:00:03
1000 0:00:08 0:00:31
10000 0:00:54 0:05:02
100000 0:09:13 0:5117

Figure 13: Objects stored vs. time spent - fixating the number of controllers

controllers 100 objects| 1.000 objects| 10.000 objects 100.000 objects
10 0:00:00 0:00:06 0:00:54 0:09:13
50 0:00:03 0:00:31 0:05:02 05117

Figure 14: Number of controllers vs. time spent - fixating the number of objects

stored

2.3 Large Scale Tests Results

12

ATLAS-TDAQ Lisbon Group

3 Conclusions

At the present moment MySQL implementation shows better per-
formance in all tests.

Both implementations show time values that grow linearly with the
number of objects stored or retrieved.

On possible factor that will be investigated in the future is the use
of more indexed fields in the MySQL implementation. This feature can
bring even better results while selecting and reading objects but might
have a negative impact on the time spent while storing the data.

Setting up the system for the MySQL implementation seems much
simpler and has less hardware requirements. The Oracle DBMS on
the other hand has many powerful features and includes many assis-
tants that should help to bring the most benefit from the whole system.

Large Scale Tests

The time spent results for the readDatazr test with one database
per client fixating the number of objects shows a exponential growth
in function of the number of clients making it unbearable to support
for clients above 100. The clients access should be of more concern on
the implementation future development.

For all other combinantions a linear growth is showned.

3 Conclusions 13

ATLAS-TDAQ Lisbon Group

4 Appendix A - Installing, setting up and
running the MySQL and ORACLE servers,
compiling and using the ConditionsDB API
on Linux

4.1 Using MySQL

The MySQL source code can be obtained at http://www.mysql.com
as well as documentation on how to install and use MySQL. The
MySQL_max server should be installed since it includes extended fun-
cionalties. The mysql_install_db script must be invoked in order to
create the necessary structure to start MySQL. To protect the MySQL
root user with a password, issue the command:

mysqladmin -u root password <password>
The next step is creating a new user:
mysql -u root -p mysql
Enter password:
mysql>grant all privileges on *.* to <username> Q@ localhost’ identi-
fied by ‘<password>" with grant option;
mysql>grant all privileges on *.* to <username> Q”%” identified by

‘<password>" with grant option;

This will create a very privileged user who can connect to the
database server either locally or from remote machines.

To enter in the MySQL command line client environment one can
use the following client application:

mysql -u <user> -p <password> -h <hostname>

The following command lists all databases inside MySQL:
mysql>show databases;

To use a specific database one can:

mysql>use <database name>;

4 Appendix A - Installing, setting up and running the MySQL 14
and ORACLE servers, compiling and using the ConditionsDB
API on Linux

ATLAS-TDAQ Lisbon Group

To navigate trough the database structure one can use SQL com-
mands like select * from <table name>;

Another usefull command that allows erasing a database:

mysql>drop database <database name>;

e Using the ConditionsDB MySQL implementation:

The abstract interface of the ConditionsDB allows the user code to
become almost independent of the implementation. The only modifi-
cations are in the init() method that is used to establish a connection
to the MySQL server. The input string, in this case, takes the form:

condDBmgr— > init(” < host >:< database_name >:< user >:<
password >");

4.2 Using ORACLE

Oracle 9i, Release 2, was used. Due to some dependencies on the
specific linux platform, the instalation of Oracle 91 R1 in Suse Linux
8.0 is not trivial. However, once installed, it works correctly together
with the ConditionsDB implementation.

The installation problems in Oracle 9i R1 distribution were fixed
in R2 release and for this reason this last version was used to perform
the tests. The installation under Suse 8.0 follows the standard ORA-
CLE installation procedure but a package released by Suse support on
Oracle, orarun9i.rpm had to be installed to set up the correct kernel
parameters and several environment variables that are later used by
the instalation procedure.

During installation, the following installation options must be made:

e Available Products -> Oracle 9i Database 9.2.0.1.0
e Installation Type -> Enterprise Edition

e Database Configuration -> General Purpose

All this options enable the Partitioning feature that is required
for the process of creating the support database structure for Con-
ditionsDB.

4.2 Using ORACLE 15

ATLAS-TDAQ Lisbon Group

To start using a database, the database administrator must perform
this some steps. It’s necessary to start up and mount the database that
will be used. Perform:

user@Qmachine >export ORACLE_SID=<database name that will be
used>

user@Qmachine>oraenv

ORACLE_SID = [database name] ? (press Enter or insert database
name again)

user@Qmachine>sqlplus /nolog

SQL*Plus>connect system as sysdba

password.:

SQL*Plus> startup

For unmounting and shuting down a database, do shutdown instead
of startup.

In order to use the ConditionsDB implementation with Oracle, a
user must be set. This user must have certain privileges. To create a
user perform:

user@machine>sqlplus /nolog

SQL*Plus>connect system as sysdba

SQL*Plus>password:

SQL*Plus>create user <username> identified by <password>;
SQL*Plus> grant connect to <username>

SQL*Plus>grant ALL PRIVILEGES to <username>

To have access and navigate through all the structure created by
ConditionsDB, a SQL*Plus console can be used. Perform:

user@machine>sqlplus <user> /<password> Q <database name>

From SQP*Plus console it’s possible to navigate through all the
tables issuing SQL commands.

Dropping the ConditionsDB is not at the moment a code feature.
It must be performed using an external SQL script that uses all the
necessary SQL commands to automatically erase all the structure. This
script named dropCondDB.sql comes with the Oracle implementation
under the path implementationOracle/sql. To launch it, perform:

user@machine> sqlplus <username> | <password> @< database name>

4.2 Using ORACLE 16

ATLAS-TDAQ Lisbon Group

SQL*Plus>start /<path> /dropCondDB.sql

The script asks for two values. The first one is the username and
the second is the ConditionsDB database name that was passed on the
init() method. This operation is irreversible and permanently deletes
all the structure and data stored in the ConditionsDB database chosen.

To see the ConditionsDB database names that are already created,
perform:

SQL*Plus>select * from condition_dbs;

Another way of dropping the ConditionsDB database is to change
the value of the STATUS field for the chosen database from 0 to 1 on
the condition_dbs table. This is not the same as erasing the database
with the dropCondDB script. Changing this value only makes the
implementation rewrite the structure like no one was created. For
changing the value, perform:

SQL*Plus>update condition_dbs set status=1 where status=0;

To prepare the server in order to accept connections from clients, it’s
necessary to start a listener. This is a process that runs on the server
side and whose function is to listen for incoming client connection re-
quests and manage the traffic to the server. To configure a listener
the Oracle Net Manager tool may be used. Launch the tool by issuing
netmgr. Choose Oracle Net Configuration -; Local -; Listeners and
then Fdit -; Create. Give the listener a name. Press Add Address and
in the Listening Locations verify if the default values for Protocol, Host
and Port are correct. Under Database Services press Add Database and
then modify the values for Global Database Name, Oracle Home Di-
rectory and SID. Those values will identify the databases available for
the remote connections and the Global Database Name must be passed
on the SQL*Plus connect command in the client as it was defined. To
start the listener perform:

oracle@machine>lsnrctl start
For stopping the listener use stop instead of start.
All the actions listed for local server are also valid for the client.

Even though it’s a client installation, on the Awvailable Products win-
dow, the Oracle 9i Database 9.2.0.1.0 option must be chosen and not

4.2 Using ORACLE 17

ATLAS-TDAQ Lisbon Group

Oracle 9i Client 9.2.0.1.0 because this option does not install the all
Oracle files that are necessary for the implementation to compile. In
Database Configuration window, Software Only option may be chosen
since no database is needed on the client. The listener doesn’t need to
be configured and started since the client don’t receive connections for
services but a Net Service Name does. This is necessary in order for the
client to identify the Oracle service to access on the server. To establish
this configuration, the Oracle Net Configuration Assistant tool may be
used. Launch the tool by issuing netca. On the first window choose
Local Net Service Name Configuration. Next window choose Add a Net
Service Name. Next Window choose for which Oracle version it should
be. On the next window provide the service name you want to access.

Normally it should be the Global Database Name for the database
that will be accessed in the form database-name.domain. Next choose
the appropriate protocol and finally the hostname of the server and
if the standard port 1521 should be used or another. Give the Net
Service Name a name and finish the Assistant. This tool writes a
tnsnames.ora simple text file under the path stored on $TNS_ADMIN
variable (usually /opt/oracle/product/901/network/admin if the de-
fault options were used). This file stores all the information given
and again can alternatively be modified to our convenience instead of
using the Oracle Net Configuration Assistant tool.

The server can then be accessed using SQL*Plus:

user@machine>sqlplus <username> /<password> @< Global Database
Name>

e Using the ConditionsDB Oracle implementation:

In the implementation code, the init() method is used in order to
establish a connection to the Oracle server. The syntax is the form:

condDBmgr->init("user=<username>,passwd=<passwd>,db=< Oracle_database_name>, con

The db input string should be the Oracle database name (specified
in $ORACLE_SID variable) for the local connection and the Global
Database Name for the remote connection. cond_db input string is a
general name for the ConditionsDB structure.

4.2 Using ORACLE 18

ATLAS-TDAQ Lisbon Group

5 Appendix B - Detailed test results for the

MySQL and Oracle implementation of Con-
ditionsDB

5.1 MySQL
MySQL (local) MySQL (remote)
creagelolders real Om0.134s real 0Om0.133s
user Om0.010s user Om0.020s
syz Om0.010s sys Om0.000s
storeDaga real OmO0DASs real Om0.065s
user Om0.010s user Om0.020s
sys Om0.000s sys Om0.000s
read Daga real Om0023s real Om0.046s
user Om0.020s user Om0.020s
sys 0m0.000s sys Om0.000s
exammple bject real Om0038s real Om0.060s
user Om0.020s user Om0.020s
sys Om0.000s sys Om0.000s
examnple bject Read real Om0021s real Om0.053s
user Om0.010s user Om0.010s
sys Om0.010s sys Om0.000s

Figure 15: MySQL implementation: local / remote

5 Appendix B - Detailed test results for the MySQL and Oracl#9
implementation of ConditionsDB

ATLAS-TDAQ Lisbon Group

IntensiveUsage MySOL (locaf) MySOL (remoie)
create Folden real Om0.034s real Om0.072s
user Om0.010s user Om0.020s

sys Om0.010s sys Om0.000s

storeDud 10 ods real Omldd7s real Oml.127s
user Om0010s user (m0.020s

syg Om0.010s sys Om0.010s

100 objs real Oml.388s real Om2.345s

user Om0030s user (m0.030s

sys Or0.050s sys Or0.040s

1.000 objs real Omd 056s real Omé.341s

user 0Om0.320s user 0Om0.170s

sys Om0.260s sys Om0.150s

10000 odys real Om23.175s real OmS692%s

user 0Om2.3%90s user Oml.910s

sys Oml.270s sys Oml.800s

3000 obis real 1md0.040s real 3m53.565s

user Oml2700s user Om%.1%0s

sys (m11480s sys Om8.0204

100000 adjs real 3md9.184s real 8mlé.510s

user Om26970s user Oml7 880s

sys Om24240s sys Omlé760s

Figure 16: MySQL implementation: local / remote - Intensive Usage - storeDatax

5.1 MySQL

20

ATLAS-TDAQ Lisbon Group

IntersiveUsage MySOL {iocad) ALSOL(remrote)
readDeatee 10 ods real Om0.028s real Om0.082s
user Om0.020s user Om0.010s

sys Om0.000s sys Om0.010s

100 odjs real Om0.121s real Om0.146s

user Om0.020s user (m0.030s

sys Om0.010s sys Om0.010s

1000 objs real Om0.312s real Oml.084s

user Om008s user (m0.170s

sys Om0.070s sys 000303

10000 odys real Om3.379s real Omll021s

user Om0.780s user (Oml.110s

sys Om0.680s sys Om0.430s

50000 obis real Omle.e91s real Omd9.572s

user Om3.870s user Om5420s

sys Oml.840s s¥s Oml.810s

100000 obys real Om34.258s real 1md5335s

user Om7870s user Oml0.130s

sys OmS5.710s sys Om3.270s

Figure 17: MySQL implementation: local / remote - Intensive Usage - readDatax

5.1 MySQL

21

ATLAS-TDAQ Lisbon Group

5.2 Oracle
Oracke (local) Oradle (remoie)
create Folders resl Omll.101s real Om23.086s
user Orm0.0&0s user Om0.090:
sys Or0.020s sys Orm0.110s
stoveDate real Om0.427s real Om0.633s
user Om0.030s user Om0.030:
sys Or0.010s sys Ord0.030s
reafDaga real Om0.130s real Om0.228s
user Om0.010s user OmQ0.050s
syg Om0.010s sys Om0.010s
exnpeObed real Om0.233s real Om0.293s
user Omn0.030s user Om0.010s
sys 00,000 sys Ord0.030s
exappieObjeaRead real Om0.131s real Om0.248s
user Omn0.030s user Om0.040s
sys Or0.020s sys Or0.030s
comprelensvelest real &m55.043s real Vmd2.640s
user Omll550s user 0Oml2 640s
sys Oml.210s sys Om2.280s

Figure 18: Oracle implementation: local / remote

5.2 Oracle

22

ATLAS-TDAQ Lisbon Group

IntersiveUsage Orack (local) Oracle {remoie)
crentelolder real Oml5.173s real Omll.857s
user 00,020 user Ormn0.080s

sys Om0.020s sys Or0.040s

sioreDavwe 10 oys real Omd $73s real (Om5.434s
user 0Om0.020s user 0Om0.0&0s

sys OmD.000s syg Om0.030s

100 ofyz resl OmS 749 real Oml5.820s

user Om0.140s user Om0.130s

sys Om0.030s sys Or0.0%0s

1.000 abiz resl 1m2.375s real Im2.850s

user Omn0.830s user Oml 150s

sys Om0.120s sys Or0.170s

10000 odys real Pm22.103s real 11ml2554s

user 0Om8.470s user 0ml0.110s

sys Oml.510s sys Oml.&30s

50000 obis real 53m48330s real 52mA2003s

user Omdl.140s user Omd8.950s

sys Om5.260s sys Om/.220s

100000 ofys real 109md0.878s real 104ml13.283s

user 1m?26.100s user 1m35.490s

sys Oml12410s sys Om15380s

Figure 19: Oracle implementation: local / remote - Intensive Usage - storeDatax

5.2 Oracle

23

ATLAS-TDAQ Lisbon Group

IntersivelUsage Oracke floced) Omecle (remoie)
readDetee 10 ods real Om0.513s real Om0.311s
user Om0.030s user Om0.070s

sys Or0.000s sys Om0.030s

100 odys real Oml.075s real Oml.531s

user Om0.280s user Om0.270s

sys Or0.040s sys Om0.070s

L0900 objs real Omeddls real Oml3.571s

user Oml.8%0s user (m2.0%s

sys Om0.370s sys Om0.380s

10000 obis real 1m8.759s real 2ml19.243s

user Oml7.040s user Om21.570s

sys Oml.710s sys Om3.710s

SO000 odfs real 6m57.175s real 13m12387s

user 1mA0.250s user 1m34.300s

sys Oml9.150s sy (ml14.500s
100000 obys real 12m18258s real 30mld354s

user 3m26.630s user 3m3R.0840s

svs Om38670s sys 037030

Figure 20: Oracle implementation: local / remote - Intensive Usage - readDatax

5.2 Oracle

24

ATLAS-TDAQ Lisbon Group

6 Appendix C - Graphical representation of
the results for the Large Scale Tests

6 Appendix C - Graphical representation of the results for the 25
Large Scale Tests

ATLAS-TDAQ Lisbon Group

SI30QU0D 01 ¢
S139]|0AU0D 09
$13]|0JU02 ¢
$13][01JU02 7 =
SI9J0AU0D () +

Ly

s)alqo

0000 00008 OOOCf 0009 00005 OoOdy OOOCE 0002 Oodok - O
00-00.0

a8z
Ye-£5.0
pi-32-
bS5
0-v2c
Br-isd

Yellk

gq Jualajip - ejegalIo)s

awn

Figure 21: Objects stored vs. time spent - fixating the number of controllers

6 Appendix C - Graphical representation of the results for the 26

Large Scale Tests

ATLAS-TDAQ Lisbon Group

mﬂ
>
» = @
v o W TS
£2£53
@
Qs —
= = O
=S 8=
= A
P R R
_— e e e
#» m A
| —
=
| —)
[y}
=
(a0
(=}
r—
. =
r =
| -
T o
oy @
oz = o
1 =
=
~o S
[y = 2
) R
=
a»
| N—. | -
o o =
e il -
oh E
=
=
| —
[}
| —
[|
=
|)
e o = Y = a0
T = = — 4 T =
L e ' e T T I S N A)
auwl)

Figure 22: Number of controllers vs. time spent - fixating the number of objects
stored

6 Appendix C - Graphical representation of the results for the 27
Large Scale Tests

ATLAS-TDAQ Lisbon Group

$13[10.1U09 Q| *
S13]j0)U09 8 *
$13[10JJU09 (g
$13[j0J)U09 07 s
$13]10.)U09 } +

s)aalqo
00000} D0ODG 00D DO 000D 000G 00DOY OODOE 00OOZ 000!

I

gq jusizjp - Ejeqpesi

0000
£5-200
9500
AE-B00
£
izl

awn

Figure 23: Objects stored vs. time spent - fixating the number of controllers

6 Appendix C - Graphical representation of the results for the 28

Large Scale Tests

ATLAS-TDAQ Lisbon Group

o
oy
ol]
v S @
wr o M TaT
8583
ar
2= —
= = o
o o o o
o 22 oS
e B e
— —— —_— —_—
L - -] -
[—
[—
| —
[}
| —
oo
(wn]
(-]
e
— =
b w0
@ T
— =
- — [] —
[l }
E= o
1 —4
-
= S
e B2 O
() (=]
:, B
(o] @
a = =
— E
=
o
[—
[t}
[—
[|
[—
[m—)
[| [m—) — - _— o0 [) () [—
| —) _— _— [t | [] [] - L [—
[| [| _— —_— —_— [[m— | m—) [—)
2u1)

Figure 24: Number of controllers vs. time spent - fixating the number of objects
stored

6 Appendix C - Graphical representation of the results for the 29
Large Scale Tests

ATLAS-TDAQ Lisbon Group

oy oy
il fruileh
A _ad
o L
[sl
—_— =
— —
[] [}
L] e)
- oo
- LD
L]
=
=
=
=
=
=
=
=
=
=
=
=
=
=
[as]
o0 =
(- =
=
=
@ =
[an =
o =
. o]
oo _,_."'"'
-— =
tu = a»
o 2 =
=
L= [=
@ =
| - =
-
=
=
=
=
]
=
=
=
=
]
=
=
=
=
=
[Tu) - o = o - o =
LR - - — = L] L - —
[= 2] oo oo — - e =
= = = = = = = =
awlin

Figure 25: Objects stored vs. time spent - fixating the number of controllers

6 Appendix C - Graphical representation of the results for the 30
Large Scale Tests

ATLAS-TDAQ Lisbon Group

m-ﬂ
>
L T @
LT
gL£532
e (o
= P o o
o o o o
o 2 o o
- v T M
 m @ - s
|
L)
L
-t
| —
-
(]
(-]
&
b W
= —
] QD
P - =
' = g
c
f—
[y o
(] e D
- . —
& o
| -
Q >
=~ E
S
=
Lo
=
L
[)
- N e I s B o | == =
| s L o N L e R S e |
s s N N s B i | [R o N |
auul

Figure 26: Number of controllers vs. time spent - fixating the number of objects
stored

6 Appendix C - Graphical representation of the results for the 31
Large Scale Tests

