
A Library of Function Objects

J. Boudreau, Mark Fischler, Petar Maksimovic

April 2, 2018



0.1 Why Function Objects?

In many applications it is desireable to treat mathematical functions as objects; the action of function-
objects on their arguments and on each other (in other words, their algebra) can be defined in C++ so
that it reflects the acutal mathematics, and instances of thes functions can be applied flexibly at run time
either to data representing arugments or to other functions. Well-known use cases include: plotting, data
modelling, simulation, function approximation, and integral transforms.

Using pointers-to-functions is a frequently used approach in either C or FORTRAN which gives some run-
time flexibility but not nearly the power of function-objects. Using the native C math library we can write
sin(x)+exp(x), but we cannot write sin+exp nor pass this sum to other procedures. However, since we are
free to overload operators in C++, we can get around this shortcoming by endowing the abstract interface
to all function classes with all the operations we want our functions to have. For clarity we have attempted
to restrict this interface to mathematically well defined operations, which will be discussed below. Another
way to view this design is as one in which the abstract interface to functions permits the function library to
be extended not only through subclassing, but also through “composition”1. We believe that the composition
of functions through arithmetic operations is simple and intuitive since it is based on algebraic rules we’ve
learned during childhood and is expressed in the same natural language.

In addition, we want to control the shape of a function: when we fit a function to data, for example. We can
do so by possibly associating one or more parameters to a function, such as amplitude or frequency, lifetime,
or width. This can be accomplished in C++ with parameter objects that can be part of or composed together
with the functions. Altering a parameter alters the function or functions of which it is a component.

We have written a small class library (“GenericFunctions”) which implements the features described above,
for inclusion in the CLHEP project. Although our class library does not contain a comprehensive set
of functions for mathematics and physics, it does provide an extensible framework for developing such a
library. At the present writing it contains:

• An abstract base class for functions.

• Classes representing parameters.

• Arithmetic operations acting on both functions and parameters

• Class representing a possibly multidimensional argument to a function

• A small set of implemented functions

0.2 A Word to the Wise

Somebody told you once that C++ software is self-documenting. Being generally a trusting individual, you
believed this for a while. But now, you’re not so naive.

You’re going to need documentation in order to make sense of the Generic Functions library. This is the
documentation you’ll need. There are a large number of classes here that you as a user don’t need to know
about at all. The header files aren’t encrypted so you can browse them if you like, but you won’t learn much
that way. Read this documention instead. Thank you.

1here we mean composition in the sense of obect composition not function composition

1



0.3 Example Application

Our example application is a program to demonstrate the phenomena of interference and diffraction. This
standalone program should allow one to control the width and separation of two slits in a filter, and also the
intensity of light from each of the slits. As we change the parameters describing these variables we wish to
see the impulse function, or the intensity of light radiation at the position of the filter, change in real time.
Also we wish to simultaneously see the response function or the intensity pattern on the far screen, change in
a way that is controlled by the same parameters. For this example, we are not going to worry about how to
display the function. Graphics are outside the scope of the Generic Functions library. However just imagine
that there is a plotter somewhere that gets a function object f and invokes the function-call operator during
plotting, like this:

double y = f(x); // f is a function object

The construction of functions is more involved than their invocation, so we’re going to look at the code
that sets up the functions and ties their shapes to the four parameters listed above. This code is shown in
Example ??, while screen shots from an application are shown in Figs. ??, ??, and ??.

Fig. ?? shows both slits wide open and the classic double-slit interference pattern on the screen. Fig. ??
shows the the pattern when one of the slits is partially closed and the interference fringes are less sharp, and
Fig ?? shows the one of the slits fully closed. In this last case you can see that the interference pattern has
turned into a single-slit diffraction pattern.

We have two functions that need to be displayed: the impulse function and the response function. Neither
of these functions are part of the library per se, but we can build them both out of the primitive functions
Rectangular (for the impulse function) and Sin and Cos (for the response function). which are in the
library. The response function, by the way, is given by the following expression:

I = [A0 sin ax/2/(ax/2)]
2
+ [A1 sin ax/2/(ax/2)]

2
+ 2A0A1 [sin ax/2/(ax/2)]

2
cos dx

where x = sin θ and a is equal to the slit widht in units of the wavelength, d is equal to the separation between
the slits in units of the wavelength, and A0 and A1 are the amplitudes from the two slits. The functions
we require are simple enough to be built easily but complicated enough to illustrate several fundamental
features of the library.

The basic parameters of the model are the intensities of the two slits, the width of the slits (this program
does not allow the two slit widths to be varied independently) and the separation. These parameters are set
up in lines 1-4 of the example. The variables corresponding to these parameters are called a1, a2, s, and d.

However some parameters of the impulse and response functions do not conveniently map onto these pa-
rameters but to simple combinations thereof. So, we can make derived parameters out of the basic input
parameters. A derived parameter is a GENPARAMETER. This is shown in lines 5-8 where derived parameters
x0_0, x0_1, x1_0, x1_1 are defined in terms of input parameters.

The impulse function will be built out of two rectangular functions. So, we instantiate these functions (Line
9), connect their internal parameters to the input parameters (Line 10-11) and to the derived parameters
(Lines 12-15). The input parameters are now referenced both by the derived parameters and by functions
and must not go out of scope until the functions and derived parameters are no longer needed.

Now, whenever we vary the external parameter we’re going to change the shape of the function. The two
rectangular functions can be added to obtain the response function (Line 16). The sum of the two functions
maintains its connections to the controlling parameters. The four parameters with variable names a1, a2, s,
and d now not only control the two rectangular functions, but also their sum.

In the next few lines we build the response function, which is somewhat more involved. First we make
instances of the functions we’re going to use (Lines 17-20). Among these functions is a function x of class

2


