GLD VTX Summary

Y. Sugimoto
KEK
25 Aug. 2005
@Snowmass
Towards the baseline design

• Inner diameter
 – Study of pair background for various machine parameters
 • Beam pipe radius is determined from the consideration of the shape of the pair-background core
 • High Luminosity option requires larger beam pipe radius and R_{VTX} than Nominal option by 5 mm or more for all detector concepts
 • Andrei’s new parameters for High Luminosity option are very preferable from the viewpoint of background. His approach should also be applied to 500 GeV case if possible
 – RVTX impact on physics (by Sonja Hillert)
Critical R&D

- **Sensor R&D**
 - CCD is an established technology, but there are several non-trivial issues
 - Very fine pixel
 - Radiation hardness of fully depleted CCD
 - Multi-port readout
 - Large area sensor
 - First of all, get any sample (\$\$\$)

- **Readout electronics**
 - FPCCD gives signal charge less than 1000 for inclined tracks

The followings are common to all VTX options/Concepts

- Wafer thinning and the support structure
- Endplate design
 - Material budget
 - Cabling
- Power consumption and cooling
Homework

• Optimization of layer configuration
 – Super-layers or equi-distance configuration
 – All barrel or with forward disk ← Material budget of endplate for ladders

• More study on the background rejection by hit-cluster shape (effect of δ-ray)

• Study of GLD features to compensate for the disadvantage (larger R) of GLD VTX in quark/anti-quark tag
 – Effect of PID (π/K, leptons)
 – Low momentum tracking