JLC Detector Overview

Nov. 1. 2001 @4th ACFA LC Meeting

Y. Sugimoto KEK

Contents:

R&D Status and Plan

- CCD Vertex Detector
- Central Drift Chamber
- Calorimeter
- **Machine Design and Detector Design**
 - Mask System
 - New F.F. Optics

Parameters of the JLC Detector Model

Detector		Configuration	Performances	Channels and Data Size
PM		$\theta = 11 - 48$ mrad (r=2-8.5cm)		Number of pixels = $8.6M$
(3D Active Pi)	ixel)	300µm-thick x 2 layers	Under Study	Readout channel = $156ch$
		pixel size=100µm		Data size = 12k bytes/sec
LM		$\theta = 50-150$ mrad		Number of pads $= 16.4$ k
(W/Si)		43Xo x 16samplings	Under Study	Readout channel = $128ch$
		$Nr = 32, N\phi = 16$		Data size = 3.3k bytes/train
AM		$\theta = 150\text{-}200\text{mrad}$		Number of pads $= 5.1$ k
(W/Si)		23Xo x 8samplings	Under Study	Readout channel $= 16$
		$Nr = 10, N\phi = 32$		Data size = 5.1 k bytes/train
FT		TBD	Unknown	
VTX		$\cos \theta < 0.90$	$\sigma = 4.0 \mu m$	Number of pixels = $320M$
(CCD)		pixel size=25µm, thickness=300µm	$\delta^{2} = 7^{2} + (20/p)^{2} / \sin^{3} \theta ~[\mu m]$	Readout channel $= 2.4k$
		4 layers at $r = 2.4$, 3.6, 4.8, 6.0cm	E b=50% @ purity=93%	Data size = 1.4M bytes/train
IT		$\cos\theta < 0.90$	$\sigma = 4.0 \mu m$	Number of strips = 522k
(Si-strip)		strip width=100µm, thickness=300µm	Tracking Performance Under Study	Readout channel $= 1.0k$
		5 layers at $r = 9$, 16, 23, 30, 37cm		Data size = under study
CDC com	uouu	$\cos\theta < 0.70$ (full sample)	$\sigma_{\rm z} = 1{\rm mm}$	200MHz FADC
(Mini-jet)		$\cos\theta < 0.95 \ (1/5 \ \text{samples})$	2-track separation = 2mm	depth = $1 k$ words
27	Tesla	r = 45 - 230cm, $L = 460$ cm	$\sigma_{\rm x} = 100 \mu {\rm m}$	Readout channel = 13k
		$N_{sample} = 80$	$\sigma_{Pt} / Pt = 1 \times 10^{-4} Pt + 0.1\%$	Data size = $5.2M$ bytes/train
31	Tesla	r = 45 - 155 cm, $L = 310$ cm	σ _x =85μm	Readout channel = 8.1k
		Nsample = 50	$\sigma_{Pt} / Pt = 3 x 10^{\circ} 4 Pt + 0.1\%$	Data size = 3.3M bytes/train
Trackers Com	bined		$\sigma_{Pt} / Pt = 1 x 10^{-4} Pt + 0.1\%$	
CAL com	nom	EM = 27Xo (3sections)	$\sigma/E=15\%/VE+1\%$ (EM)	Number of cells = 144k
(Pb/Sci)		HAD = $6.5\lambda o$ (4sections)	$\sigma/E=40\%/\sqrt{E}+2\%$ (Had)	Readout channel = $5k$
		$\Delta \theta, \phi = 24$ mrad (EM), 72mrad (HAD)	e/π ID = 1/1000	Data size = $3k$ bytes/train
21	Tesla	$\cos\theta < 0.985$ (full thickness)		
		r = 250 - 400 cm, z = +-290 cm		
37	Tesla	$\cos\theta < 0.966$ (full thickness)		
		r = 160 - 340 cm, z = +- 190cm		
SHmax		scin.strip (1cm-wide) or	$\sigma = 3mm/\sqrt{E}$	Readout channel = $5k$
		Si-pad (1cm x 1cm)		Data size = 40k bytes/train
MU		$\cos\theta < 0.998$	$\sigma = 0.5 \mathrm{mm}$	Readout channel = 10k
(SWDC/RPC/	(TGC)	6 SuperLayers	Muon ID under study	
Yoke 21	Tesla	r = 5.5 m - 7.5 m, Z = 5.0 m - 7.9 m		
31	Tesla	r = 4.5 m - 7.0 m, Z = 3.9 m - 6.5 m		

R&D Status of Sub-detector Components for JLC

- Vertex Detector
- Central Drift Chamber
- Calorimeter

Vertex Detector

Present Design Parameters in JIM (JLC full Simulator)

- 4 layers of CCDs at *r* = 24, 36, 48, 60 mm --Another layer at smaller *r* ?
- Angular coverage of $|\cos\theta| < 0.9$
- Wafer thickness of 300 µm -- Thinner wafer ?
- Pixel size of 25 μm^2
- $-\sigma = 4 \ \mu m$
- $\delta^2 = 7^2 + (20/p)^2 / \sin^3\theta$ [µm]

Expected Performance of CCD Vertex Detector

Better than $7\mu m$ expected by VTX alone at large Pt due to high resolution CDC

$$\sigma_{b} = \frac{\sigma_{in} r_{out}}{r_{out} - r_{in}} \oplus \frac{\sigma_{out} r_{in}}{r_{out} - r_{in}} \oplus \frac{0.014 r_{in}}{p\beta} \sqrt{\frac{Xr}{sin^{3}\theta}}$$

R&D Status & Plan of CCD Vertex Detector

1) Spatial resolution

- Resolution of $<3\mu m$ has been confirmed with test beam
- Laser beam (1064 nm) scanner with 2µm spot size (Niigata Univ.)

2) Study of distortion of CCD wafers

Thinner wafer is desireble
--- 20μm is enough for particle detection
--- but how to support?
Thermal distortion shoud be reasonably small and has repeatability
Idea of C.Damerell's group: 50μm wafer stretched from both ends

-> proposed in TESLA TDR Another idea: Partially thinned wafer like SHOJI in traditional Japanese house

System of distortion measurement has been constructed

3) CCD radiation hardness

The result of our study so far using ⁹⁰Sr irradiation is;

```
CCD can survive > 3 years with

B = 2T

Rmin = 24 mm

Machine parameter ''A'' (Standard Luminosity)
```

But it is preferable to have

Rmin< 24 mm</th>High Luminosity ("Y") Option

-> Study of radiation hardness should be continued

Issues to be studied:

```
- Effect of readout speed
-> Fast readout (~10MHz) is needed
```

- How to inject the "Fat Zero Charge"
- Radiation damage effect on the spatial resolution
 -> @Niigata Univ.
- Radiation damage by high energy (>10MeV) electrons
 Sooner or later

4) Fast readout electronics

CCD Signal Processor chip for Digi-Cam

- Correlated double sampler
- Variable gain amp
- 10bit/40MHz or 12bit/20MHz ADC

These functions in 9x9 mm² chip size by \$6/chip

S7030-1008 bare chip

20 μm (**24.6**×6 mm²)

300 µm

Measurement System

SLD (VTX3)	JLC
------------	-----

# of pixels	307 M	> 320 M		
Readout time	200 ms	6 ms		
R.O. frequency	5 MHz	20 (40) MHz		
# of r.o. ch	384	> 2600 (1300)		
Throughput	15 Gbps	> 500 Gbps		
Fiber Optics	960Mbps x 16	3.4 Gbps (IEEE1394b) x 150 ??		

Current CDC Parameters (R&D)

Mini- jet cell structure (5 anode wires /cell) Gas mixture $CO_2(90\%) - C_4 H_{10}(10\%)$ 2-Tesla option 85 µm $\sigma_{xy} =$

L = 460 cm (Length of the chamber) n = 80 (Number of sampling points) $R_{in} = 45 \text{ cm}$ $R_{out} = 230 \text{ cm}$ = 2 T р

3-Tesla option

L = 310 cm (Length of the chamber) n = 50 (Number of sampling points) $R_{in} = 45 \text{ cm}$ $R_{out} = 155 \text{ cm}$ = 3 T മ

Progress after last ACFA meeting

Past

Gas Gain Measurement ...

NIM, A447 (2000) 459.

• Lorentz Angle Measurement ...

Subm. to NIM.

Present status and future plan

• dE/dx Measurement ...

Draft – in preparation.

• Oxygen Contamination Study ...

Draft – in preparation.

- Single Track Study (space resolution etc.) ... Draft - in preparation.
- Space charge effect study...

in progress.

Two-track separation study ...

in progress.

Signal shape study (GARFIELD, experiment)...

in progress.

Wire material study (tension problem)...

in progress.

• GEANT4 development (3T option) ...

in progress.

Neutron background study ...

Calorimeter

Baseline Design

- Sandwich Structure : Lead/Plastic scintillator EM : Pb/Sci=4mm/1mm had : Pb/Sci=8mm/2mm
 - Scheme : Tile/Fiber

with hardware compensation

• Granularity : as small as reasonably achievable...under study **Baseline Rect-Tile**

(24mrad) x 3 longitudinal samplings had : 14cmx14cm (72mrad) x 4 longitudinal samplings EM : 4cm x 4cm

Strip-EM option

1cm-wide strip-array (x-y layers) x ~20 longitudinal samplings

Shower Max Detector

Baseline : 1cm-wide strip-array (x-y layers) : 1cm x 1cm Si-pad Option

Performances

• Single-particle response (measrured with testbeam)

E/E = 15.4%/ E + 0.2% for electrons (ZUES-type) E/E = 46.7%/ E + 0.9% for pions

 $x = 2 \sim 3mm$

even at over 50GeV

e = 98%at pion rejection = 1/1400

Jet response : under simulation study

Recent Activities

[I] Granularity Optimization with Full Simulation

good performance Analysis of quick-simulation data gives very but it is not the end of the story

- 1) Construction of full-simulator
- Done for baseline design (Rect-Tile)
- not yet for optionl design (strip-EM)

a) hadron shower clustering

- 2D-JADE ; not successful yet
- 2D-contiguous ; not successful yet
- 3D-contiguous ; not successful yet
- Super-cluster = French method (below) not yet tried

•

b) decomposition of overlapping showers

whether one-to-one or plural-to-one under study including 1st principle; c) track-cluster association

[II] Hardware Studies

- 1) Strip EM option
- Bench test on photon yield and uniformity in progress
- Simulator of above properties under construction
- 2) Small Rect-Tiles (4cm x 4cm x 1mm-thick)
- WLS-fiber shape, layout and die selection under desk-study
- Bench test on photon yield and uniformity under preparation
- 3) Direct-readout SHmax ; Bench test in progress
- PIN-Si ; gain too low
- APD ; under study ... might be operational but costy

0.8

0.6

2

3

0

Paper-work in progress

b) Hybrid material

0

1000

Elongation [mm]

Coming R&D plans

1) Further full-simulation studies on granularity optimization

2) Beam tests of fine-granularity EM module

includes

- Strip-EMC
- Rect-Tile EMC
- Direct-readout SHmax
- Optimum photon detectors for each
- 3) Lead alloy and structures
- Further studies on alloys and hybrid materials
 - Make test pieces of SUS-Pb sandwich
 - Engineering studies on structure
- 4) Mass production of tiles and fiber assemblies
- Tiles ; Design optimization for "moldable" tiles
- MEGA-tile structure, groove cross section, etc.
- Fiber assemblies ; low-cost heat-splicing, mirroring, etc.

Machine Design and Detector Design

Trend of the JLC Detector Model

2 Tesla Solenoid Magnet (JLC-I)

3 Tesla Soleniod Magnet (ACFA Report)

- Less beam background hits
- Smaller detector (CDC) size

- Still less beam background hits
- Smaller inner radius for CDC & ECAL
- Better forward coverage

New Final Focus Optics

- Proposed by Pantaleo Raimondi & Andrei Seryi (SLAC)
- Length of the final focus section : 1800 m -> 500 m $@E_b=500 \text{ GeV}$
- *l** (distance between IP and QC1) : 2 m -> 4.3 m

- Optimization for JLC has to be done
- Estimation of beam background (sync. rad. etc.) needed

Detector models and Mask system

Detecto		r Model	QC1 surrounded by	Mask System		
	Old	B=2T <i>l</i> *=2m	CDC	Long tungsten(W) mask inside support tube Low-Z (graphite/CH2) mask in front of QC1		
	Now	B=3T <i>l</i> *=2m	CAL	Long W Mask inside Support Tube (Short W mask is enough) Low-Z mask		
	Future	B=3T <i>l</i> *=4.3m	Endcap Iron	Forward calorimeters (No W mask) Low-Z mask		

Simulation

Generation of pair background: CAIN Ebeam=250GeV "A" option ("Y" option)

Detector Simulation:

JIM (based on GEANT3) Ecut for γ: 10 keV Ecut for n: 1 keV B field of compensatiom mag. & QC included

3T Detector

3T Detector 3T detector with reduced W mask CDC **Endcap CAL** ~2 hits/BX by γ ~2 hits/BX by n 155cm 205cm 223 mrad LUM W Mask **Compensation Mag.** 100 mrad 150 mra 45 mrad 111120 QC1 100cm CH₂ Mask 200cm -

3T *l**=**4.3m Detector**

Impact of the new optics ($l^{*}=4.3m$) on the detector

- Huge W-mask NOT needed
- Background hit much smaller (CDC, CAL)
- No need for Compensation magnet (?)

if the B field @4.3m is weak enough

or Super conducting QC1 is adopted

- Better forward coverage for calorimetry
- Smaller R_{min} of CDC and CAL possible

Detector Model	CDC hits / BX		CAL Edep (GeV / BX)		θ_{\min}
	(γ)	(n)	(γ)	(n)	(mrad)
2 T	2	30	~0	0.6	50
3T (<i>l</i> *=2 m)	1	2	~0	0.9	50
3T (<i>l</i> *=4.3 m)	1	0.1	0.01	0.03	22

Summary

- Steady progress in R&D for JLC detector -> "ACFA Report"
- But still "holes" in the study : Particle ID, Forward Tracker, etc.
- Other options (e.g. TPC for central tracker) should also be studied
- And still many things to do for TDR
- Pantaleo's new F.F. optics is very atractive from the viewpoint of detector design
- Study on the new optics including the QC1 design is in progress