next up previous
Next: About this document ... Up: Performance of geometrical constraint Previous: Performance of fit by ks

The derivatives of $\chi ^2$

1.
${\displaystyle{\partial dr' \over \partial {\bf b}}}$

\begin{displaymath}\begin{array}{c}
{\displaystyle
{\partial dr' \over \partial ...
...' , \;\;\;
{\partial dr' \over \partial z_v } = 0 }
\end{array}\end{displaymath} (23)

2.
${\displaystyle{\partial \phi_0' \over \partial {\bf b}}}$

\begin{displaymath}\begin{array}{c}
{\displaystyle{\partial \phi_0' \over \parti...
...tial \phi_0' \over \partial\tilde{\lambda}_i } = 0}
\end{array}\end{displaymath} (24)

3.
${\displaystyle{\partial \kappa' \over \partial {\bf b}}}$

\begin{displaymath}\begin{array}{c}
{\displaystyle{\partial \kappa' \over \parti...
...tial \kappa' \over \partial \tilde{\kappa}_i } = 1}
\end{array}\end{displaymath} (25)

4.
${\displaystyle{\partial dz' \over \partial {\bf b}}}$

\begin{displaymath}\begin{array}{c}
{\displaystyle{\partial dz' \over \partial x...
... =
- {\alpha\over\tilde{\kappa}_i} (\phi_0' - A) }
\end{array}\end{displaymath} (26)

5.
${\displaystyle{\partial \tan\lambda' \over \partial {\bf b}}}$

\begin{displaymath}\begin{array}{c}
{\displaystyle{\partial \tan\lambda' \over \...
...\lambda' \over \partial \tan\tilde{\lambda}_i} = 1}
\end{array}\end{displaymath} (27)



akiya miyamoto
2000-02-28