// @(#)root/matrix:$Name: $:$Id: TMatrixD.cxx,v 1.39 2003/05/07 17:52:27 brun Exp $ // Author: Fons Rademakers 03/11/97 /************************************************************************* * Copyright (C) 1995-2000, Rene Brun and Fons Rademakers. * * All rights reserved. * * * * For the licensing terms see $ROOTSYS/LICENSE. * * For the list of contributors see $ROOTSYS/README/CREDITS. * *************************************************************************/ ////////////////////////////////////////////////////////////////////////// // // // Linear Algebra Package // // // // The present package implements all the basic algorithms dealing // // with vectors, matrices, matrix columns, rows, diagonals, etc. // // // // Matrix elements are arranged in memory in a COLUMN-wise // // fashion (in FORTRAN's spirit). In fact, it makes it very easy to // // feed the matrices to FORTRAN procedures, which implement more // // elaborate algorithms. // // // // Unless otherwise specified, matrix and vector indices always start // // with 0, spanning up to the specified limit-1. However, there are // // constructors to which one can specify aribtrary lower and upper // // bounds, e.g. TMatrixD m(1,10,1,5) defines a matrix that ranges, and // // that can be addresses, from 1..10, 1..5 (a(1,1)..a(10,5)). // // // // The present package provides all facilities to completely AVOID // // returning matrices. Use "TMatrixD A(TMatrixD::kTransposed,B);" and // // other fancy constructors as much as possible. If one really needs // // to return a matrix, return a TLazyMatrixD object instead. The // // conversion is completely transparent to the end user, e.g. // // "TMatrixD m = THaarMatrix(5);" and _is_ efficient. // // // // Since TMatrixD et al. are fully integrated in ROOT they of course // // can be stored in a ROOT database. // // // // // // How to efficiently use this package // // ----------------------------------- // // // // 1. Never return complex objects (matrices or vectors) // // Danger: For example, when the following snippet: // // TMatrixD foo(int n) // // { // // TMatrixD foom(n,n); fill_in(foom); return foom; // // } // // TMatrixD m = foo(5); // // runs, it constructs matrix foo:foom, copies it onto stack as a // // return value and destroys foo:foom. Return value (a matrix) // // from foo() is then copied over to m (via a copy constructor), // // and the return value is destroyed. So, the matrix constructor is // // called 3 times and the destructor 2 times. For big matrices, // // the cost of multiple constructing/copying/destroying of objects // // may be very large. *Some* optimized compilers can cut down on 1 // // copying/destroying, but still it leaves at least two calls to // // the constructor. Note, TLazyMatrices (see below) can construct // // TMatrixD m "inplace", with only a _single_ call to the // // constructor. // // // // 2. Use "two-address instructions" // // "void TMatrixD::operator += (const TMatrixD &B);" // // as much as possible. // // That is, to add two matrices, it's much more efficient to write // // A += B; // // than // // TMatrixD C = A + B; // // (if both operand should be preserved, // // TMatrixD C = A; C += B; // // is still better). // // // // 3. Use glorified constructors when returning of an object seems // // inevitable: // // "TMatrixD A(TMatrixD::kTransposed,B);" // // "TMatrixD C(A,TMatrixD::kTransposeMult,B);" // // // // like in the following snippet (from $ROOTSYS/test/vmatrix.cxx) // // that verifies that for an orthogonal matrix T, T'T = TT' = E. // // // // TMatrixD haar = THaarMatrix(5); // // TMatrixD unit(TMatrixD::kUnit,haar); // // TMatrixD haar_t(TMatrixD::kTransposed,haar); // // TMatrixD hth(haar,TMatrixD::kTransposeMult,haar); // // TMatrixD hht(haar,TMatrixD::kMult,haar_t); // // TMatrixD hht1 = haar; hht1 *= haar_t; // // VerifyMatrixIdentity(unit,hth); // // VerifyMatrixIdentity(unit,hht); // // VerifyMatrixIdentity(unit,hht1); // // // // 4. Accessing row/col/diagonal of a matrix without much fuss // // (and without moving a lot of stuff around): // // // // TMatrixD m(n,n); TVectorD v(n); TMatrixDDiag(m) += 4; // // v = TMatrixDRow(m,0); // // TMatrixDColumn m1(m,1); m1(2) = 3; // the same as m(2,1)=3; // // Note, constructing of, say, TMatrixDDiag does *not* involve any // // copying of any elements of the source matrix. // // // // 5. It's possible (and encouraged) to use "nested" functions // // For example, creating of a Hilbert matrix can be done as follows: // // // // void foo(const TMatrixD &m) // // { // // TMatrixD m1(TMatrixD::kZero,m); // // struct MakeHilbert : public TElementPosAction { // // void Operation(Double_t &element) { element = 1./(fI+fJ-1); } // // }; // // m1.Apply(MakeHilbert()); // // } // // // // of course, using a special method THilbertMatrix() is // // still more optimal, but not by a whole lot. And that's right, // // class MakeHilbert is declared *within* a function and local to // // that function. It means one can define another MakeHilbert class // // (within another function or outside of any function, that is, in // // the global scope), and it still will be OK. Note, this currently // // is not yet supported by the interpreter CINT. // // // // Another example is applying of a simple function to each matrix // // element: // // // // void foo(TMatrixD &m, TMatrixD &m1) // // { // // typedef double (*dfunc_t)(double); // // class ApplyFunction : public TElementActionD { // // dfunc_t fFunc; // // void Operation(Double_t &element) { element=fFunc(element); } // // public: // // ApplyFunction(dfunc_t func):fFunc(func) {} // // }; // // ApplyFunction x(TMath::Sin); // // m.Apply(x); // // } // // // // Validation code $ROOTSYS/test/vmatrix.cxx and vvector.cxx contain // // a few more examples of that kind. // // // // 6. Lazy matrices: instead of returning an object return a "recipe" // // how to make it. The full matrix would be rolled out only when // // and where it's needed: // // TMatrixD haar = THaarMatrix(5); // // THaarMatrix() is a *class*, not a simple function. However // // similar this looks to a returning of an object (see note #1 // // above), it's dramatically different. THaarMatrix() constructs a // // TLazyMatrixD, an object of just a few bytes long. A // "TMatrixD(const TLazyMatrixD &recipe)" constructor follows the // // recipe and makes the matrix haar() right in place. No matrix // // element is moved whatsoever! // // // // The implementation is based on original code by // // Oleg E. Kiselyov (oleg@pobox.com). // // // ////////////////////////////////////////////////////////////////////////// #include "TMatrixD.h" #include "TROOT.h" #include "TClass.h" #include "TPluginManager.h" #include "TVirtualUtilHist.h" ClassImp(TMatrixD) //______________________________________________________________________________ void TMatrixD::Allocate(Int_t no_rows, Int_t no_cols, Int_t row_lwb, Int_t col_lwb) { // Allocate new matrix. Arguments are number of rows, columns, row // lowerbound (0 default) and column lowerbound (0 default). Invalidate(); if (no_rows <= 0) { Error("Allocate", "no of rows has to be positive"); return; } if (no_cols <= 0) { Error("Allocate", "no of columns has to be positive"); return; } fNrows = no_rows; fNcols = no_cols; fRowLwb = row_lwb; fColLwb = col_lwb; fNelems = fNrows * fNcols; fElements = new Double_t[fNelems]; if (fElements) memset(fElements, 0, fNelems*sizeof(Double_t)); if (fNcols == 1) { // Only one col - fIndex is dummy actually fIndex = &fElements; return; } fIndex = new Double_t*[fNcols]; if (fIndex) memset(fIndex, 0, fNcols*sizeof(Double_t*)); Int_t i; Double_t *col_p; for (i = 0, col_p = &fElements[0]; i < fNcols; i++, col_p += fNrows) fIndex[i] = col_p; } //______________________________________________________________________________ TMatrixD::~TMatrixD() { // TMatrixD destructor. if (IsValid()) { if (fNcols != 1) delete [] fIndex; delete [] fElements; } Invalidate(); } //______________________________________________________________________________ void TMatrixD::Draw(Option_t *option) { // Draw this matrix using an intermediate histogram // The histogram is named "TMatrixD" by default and no title //create the hist utility manager (a plugin) TVirtualUtilHist *util = (TVirtualUtilHist*)gROOT->GetListOfSpecials()->FindObject("R__TVirtualUtilHist"); if (!util) { TPluginHandler *h; if ((h = gROOT->GetPluginManager()->FindHandler("TVirtualUtilHist"))) { if (h->LoadPlugin() == -1) return; h->ExecPlugin(0); util = (TVirtualUtilHist*)gROOT->GetListOfSpecials()->FindObject("R__TVirtualUtilHist"); } } util->PaintMatrix(*this,option); } //______________________________________________________________________________ void TMatrixD::ResizeTo(Int_t nrows, Int_t ncols) { // Erase the old matrix and create a new one according to new boundaries // with indexation starting at 0. if (IsValid()) { if (fNrows == nrows && fNcols == ncols) return; if (fNcols != 1) delete [] fIndex; delete [] fElements; } Allocate(nrows, ncols); } //______________________________________________________________________________ void TMatrixD::ResizeTo(Int_t row_lwb, Int_t row_upb, Int_t col_lwb, Int_t col_upb) { // Erase the old matrix and create a new one according to new boudaries. Int_t new_nrows = row_upb - row_lwb + 1; Int_t new_ncols = col_upb - col_lwb + 1; if (IsValid()) { fRowLwb = row_lwb; fColLwb = col_lwb; if (fNrows == new_nrows && fNcols == new_ncols) return; if (fNcols != 1) delete [] fIndex; delete [] fElements; } Allocate(new_nrows, new_ncols, row_lwb, col_lwb); } //______________________________________________________________________________ TMatrixD::TMatrixD(EMatrixCreatorsOp1 op, const TMatrixD &prototype) { // Create a matrix applying a specific operation to the prototype. // Example: TMatrixD a(10,12); ...; TMatrixD b(TMatrixD::kTransposed, a); // Supported operations are: kZero, kUnit, kTransposed, kInverted and kInvertedPosDef. Invalidate(); if (!prototype.IsValid()) { Error("TMatrixD(EMatrixCreatorOp1)", "prototype matrix not initialized"); return; } switch(op) { case kZero: Allocate(prototype.fNrows, prototype.fNcols, prototype.fRowLwb, prototype.fColLwb); break; case kUnit: Allocate(prototype.fNrows, prototype.fNcols, prototype.fRowLwb, prototype.fColLwb); UnitMatrix(); break; case kTransposed: Transpose(prototype); break; case kInverted: Invert(prototype); break; case kInvertedPosDef: InvertPosDef(prototype); break; default: Error("TMatrixD(EMatrixCreatorOp1)", "operation %d not yet implemented", op); } } //______________________________________________________________________________ TMatrixD::TMatrixD(const TMatrixD &a, EMatrixCreatorsOp2 op, const TMatrixD &b) { // Create a matrix applying a specific operation to two prototypes. // Example: TMatrixD a(10,12), b(12,5); ...; TMatrixD c(a, TMatrixD::kMult, b); // Supported operations are: kMult (a*b), kTransposeMult (a'*b), // kInvMult,kInvPosDefMult (a^(-1)*b) and kAtBA (a'*b*a). Invalidate(); if (!a.IsValid()) { Error("TMatrixD(EMatrixCreatorOp2)", "matrix a not initialized"); return; } if (!b.IsValid()) { Error("TMatrixD(EMatrixCreatorOp2)", "matrix b not initialized"); return; } switch(op) { case kMult: AMultB(a, b); break; case kTransposeMult: AtMultB(a, b); break; default: Error("TMatrixD(EMatrixCreatorOp2)", "operation %d not yet implemented", op); } } //______________________________________________________________________________ TMatrixD &TMatrixD::MakeSymmetric() { // symmetrize matrix (matrix needs to be a square one). if (!IsValid()) { Error("MakeSymmetric", "matrix not initialized"); return *this; } if (fNrows != fNcols) { Error("MakeSymmetric", "matrix to symmetrize must be square"); return *this; } Int_t irow; for (irow = 0; irow < fNrows; irow++) { Int_t icol; for (icol = 0; icol < irow; icol++) { fElements[irow*fNrows+icol] += fElements[icol*fNrows+irow]; fElements[irow*fNrows+icol] /= 2.0; fElements[icol*fNrows+irow] = fElements[irow*fNrows+icol]; } } return *this; } //______________________________________________________________________________ TMatrixD &TMatrixD::UnitMatrix() { // make a unit matrix (matrix need not be a square one). The matrix // is traversed in the natural (that is, column by column) order. if (!IsValid()) { Error("UnitMatrix", "matrix not initialized"); return *this; } Double_t *ep = fElements; Int_t i, j; for (j = 0; j < fNcols; j++) for (i = 0; i < fNrows; i++) *ep++ = (i==j ? 1.0 : 0.0); return *this; } //______________________________________________________________________________ TMatrixD &TMatrixD::operator=(Double_t val) { // Assign val to every element of the matrix. if (!IsValid()) { Error("operator=", "matrix not initialized"); return *this; } Double_t *ep = fElements; while (ep < fElements+fNelems) *ep++ = val; return *this; } //______________________________________________________________________________ TMatrixD &TMatrixD::operator+=(Double_t val) { // Add val to every element of the matrix. if (!IsValid()) { Error("operator+=", "matrix not initialized"); return *this; } Double_t *ep = fElements; while (ep < fElements+fNelems) *ep++ += val; return *this; } //______________________________________________________________________________ TMatrixD &TMatrixD::operator-=(Double_t val) { // Subtract val from every element of the matrix. if (!IsValid()) { Error("operator-=", "matrix not initialized"); return *this; } Double_t *ep = fElements; while (ep < fElements+fNelems) *ep++ -= val; return *this; } //______________________________________________________________________________ TMatrixD &TMatrixD::operator*=(Double_t val) { // Multiply every element of the matrix with val. if (!IsValid()) { Error("operator*=", "matrix not initialized"); return *this; } Double_t *ep = fElements; while (ep < fElements+fNelems) *ep++ *= val; return *this; } //______________________________________________________________________________ Bool_t TMatrixD::operator==(Double_t val) const { // Are all matrix elements equal to val? if (!IsValid()) { Error("operator==", "matrix not initialized"); return kFALSE; } Double_t *ep = fElements; while (ep < fElements+fNelems) if (!(*ep++ == val)) return kFALSE; return kTRUE; } //______________________________________________________________________________ Bool_t TMatrixD::operator!=(Double_t val) const { // Are all matrix elements not equal to val? if (!IsValid()) { Error("operator!=", "matrix not initialized"); return kFALSE; } Double_t *ep = fElements; while (ep < fElements+fNelems) if (!(*ep++ != val)) return kFALSE; return kTRUE; } //______________________________________________________________________________ Bool_t TMatrixD::operator<(Double_t val) const { // Are all matrix elements < val? if (!IsValid()) { Error("operator<", "matrix not initialized"); return kFALSE; } Double_t *ep = fElements; while (ep < fElements+fNelems) if (!(*ep++ < val)) return kFALSE; return kTRUE; } //______________________________________________________________________________ Bool_t TMatrixD::operator<=(Double_t val) const { // Are all matrix elements <= val? if (!IsValid()) { Error("operator<=", "matrix not initialized"); return kFALSE; } Double_t *ep = fElements; while (ep < fElements+fNelems) if (!(*ep++ <= val)) return kFALSE; return kTRUE; } //______________________________________________________________________________ Bool_t TMatrixD::operator>(Double_t val) const { // Are all matrix elements > val? if (!IsValid()) { Error("operator>", "matrix not initialized"); return kFALSE; } Double_t *ep = fElements; while (ep < fElements+fNelems) if (!(*ep++ > val)) return kFALSE; return kTRUE; } //______________________________________________________________________________ Bool_t TMatrixD::operator>=(Double_t val) const { // Are all matrix elements >= val? if (!IsValid()) { Error("operator>=", "matrix not initialized"); return kFALSE; } Double_t *ep = fElements; while (ep < fElements+fNelems) if (!(*ep++ >= val)) return kFALSE; return kTRUE; } //______________________________________________________________________________ TMatrixD &TMatrixD::Abs() { // Take an absolute value of a matrix, i.e. apply Abs() to each element. if (!IsValid()) { Error("Abs", "matrix not initialized"); return *this; } Double_t *ep; for (ep = fElements; ep < fElements+fNelems; ep++) *ep = TMath::Abs(*ep); return *this; } //______________________________________________________________________________ TMatrixD &TMatrixD::Sqr() { // Square each element of the matrix. if (!IsValid()) { Error("Sqr", "matrix not initialized"); return *this; } Double_t *ep; for (ep = fElements; ep < fElements+fNelems; ep++) *ep = (*ep) * (*ep); return *this; } //______________________________________________________________________________ TMatrixD &TMatrixD::Sqrt() { // Take square root of all elements. if (!IsValid()) { Error("Sqrt", "matrix not initialized"); return *this; } Double_t *ep; for (ep = fElements; ep < fElements+fNelems; ep++) if (*ep >= 0) *ep = TMath::Sqrt(*ep); else Error("Sqrt", "(%d,%d)-th element, %g, is negative, can't take the square root", (ep-fElements) % fNrows + fRowLwb, (ep-fElements) / fNrows + fColLwb, *ep); return *this; } //______________________________________________________________________________ Bool_t operator==(const TMatrixD &im1, const TMatrixD &im2) { // Check to see if two matrices are identical. if (!AreCompatible(im1, im2)) return kFALSE; return (memcmp(im1.fElements, im2.fElements, im1.fNelems*sizeof(Double_t)) == 0); } //______________________________________________________________________________ TMatrixD &operator+=(TMatrixD &target, const TMatrixD &source) { // Add the source matrix to the target matrix. if (!AreCompatible(target, source)) { Error("operator+=", "matrices are not compatible"); return target; } Double_t *sp = source.fElements; Double_t *tp = target.fElements; for ( ; tp < target.fElements+target.fNelems; ) *tp++ += *sp++; return target; } //______________________________________________________________________________ TMatrixD &operator-=(TMatrixD &target, const TMatrixD &source) { // Subtract the source matrix from the target matrix. if (!AreCompatible(target, source)) { Error("operator-=", "matrices are not compatible"); return target; } Double_t *sp = source.fElements; Double_t *tp = target.fElements; for ( ; tp < target.fElements+target.fNelems; ) *tp++ -= *sp++; return target; } //______________________________________________________________________________ TMatrixD operator+(const TMatrixD &source1, const TMatrixD &source2) { TMatrixD target(source1); target += source2; return target; } //______________________________________________________________________________ TMatrixD operator-(const TMatrixD &source1, const TMatrixD &source2) { TMatrixD target(source1); target -= source2; return target; } //______________________________________________________________________________ TMatrixD operator*(const TMatrixD &source1, const TMatrixD &source2) { TMatrixD target(source1,TMatrixD::kMult,source2); return target; } //______________________________________________________________________________ TMatrixD &Add(TMatrixD &target, Double_t scalar, const TMatrixD &source) { // Modify addition: target += scalar * source. if (!AreCompatible(target, source)) { Error("Add", "matrices are not compatible"); return target; } Double_t *sp = source.fElements; Double_t *tp = target.fElements; for ( ; tp < target.fElements+target.fNelems; ) *tp++ += scalar * (*sp++); return target; } //______________________________________________________________________________ TMatrixD &ElementMult(TMatrixD &target, const TMatrixD &source) { // Multiply target by the source, element-by-element. if (!AreCompatible(target, source)) { Error("ElementMult", "matrices are not compatible"); return target; } Double_t *sp = source.fElements; Double_t *tp = target.fElements; for ( ; tp < target.fElements+target.fNelems; ) *tp++ *= *sp++; return target; } //______________________________________________________________________________ TMatrixD &ElementDiv(TMatrixD &target, const TMatrixD &source) { // Divide target by the source, element-by-element. if (!AreCompatible(target, source)) { Error("ElementDiv", "matrices are not compatible"); return target; } Double_t *sp = source.fElements; Double_t *tp = target.fElements; for ( ; tp < target.fElements+target.fNelems; ) *tp++ /= *sp++; return target; } //______________________________________________________________________________ Double_t TMatrixD::RowNorm() const { // Row matrix norm, MAX{ SUM{ |M(i,j)|, over j}, over i}. // The norm is induced by the infinity vector norm. if (!IsValid()) { Error("RowNorm", "matrix not initialized"); return 0.0; } Double_t *ep = fElements; Double_t norm = 0; // Scan the matrix row-after-row while (ep < fElements+fNrows) { Int_t j; Double_t sum = 0; // Scan a row to compute the sum for (j = 0; j < fNcols; j++, ep += fNrows) sum += TMath::Abs(*ep); ep -= fNelems - 1; // Point ep to the beginning of the next row norm = TMath::Max(norm, sum); } Assert(ep == fElements + fNrows); return norm; } //______________________________________________________________________________ Double_t TMatrixD::ColNorm() const { // Column matrix norm, MAX{ SUM{ |M(i,j)|, over i}, over j}. // The norm is induced by the 1 vector norm. if (!IsValid()) { Error("ColNorm", "matrix not initialized"); return 0.0; } Double_t *ep = fElements; Double_t norm = 0; // Scan the matrix col-after-col (i.e. in the natural order of elems) while (ep < fElements+fNelems) { Int_t i; Double_t sum = 0; // Scan a col to compute the sum for (i = 0; i < fNrows; i++) sum += TMath::Abs(*ep++); norm = TMath::Max(norm, sum); } Assert(ep == fElements + fNelems); return norm; } //______________________________________________________________________________ Double_t TMatrixD::E2Norm() const { // Square of the Euclidian norm, SUM{ m(i,j)^2 }. if (!IsValid()) { Error("E2Norm", "matrix not initialized"); return 0.0; } Double_t *ep; Double_t sum = 0; for (ep = fElements; ep < fElements+fNelems; ep++) sum += (*ep) * (*ep); return sum; } //______________________________________________________________________________ Double_t E2Norm(const TMatrixD &m1, const TMatrixD &m2) { // Square of the Euclidian norm of the difference between two matrices. if (!AreCompatible(m1, m2)) { Error("E2Norm", "matrices are not compatible"); return 0.0; } Double_t *mp1 = m1.fElements; Double_t *mp2 = m2.fElements; Double_t sum = 0; for (; mp1 < m1.fElements+m1.fNelems; mp1++, mp2++) sum += (*mp1 - *mp2) * (*mp1 - *mp2); return sum; } //______________________________________________________________________________ TMatrixD &TMatrixD::NormByDiag(const TVectorD &v, Option_t *option) { // b(i,j) = a(i,j)/sqrt(abs*(v(i)*v(j))) if (!IsValid()) { Error("NormByDiag", "matrix not initialized"); return *this; } if (!v.IsValid()) { Error("NormByDiag", "vector is not initialized"); return *this; } const Int_t nMax = TMath::Max(fNrows,fNcols); if (v.fNrows < nMax) { Error("NormByDiag", "norm vector is too short"); return *this; } TString opt(option); opt.ToUpper(); const Int_t divide = (opt.Contains("D")) ? 1 : 0; const Double_t* pV = v.fElements; Double_t *mp = fElements; Int_t irow; if (divide) { for (irow = 0; irow < fNrows; irow++) { Int_t icol; for (icol = 0; icol < fNcols; icol++) { Double_t val = TMath::Sqrt(TMath::Abs(pV[irow]*pV[icol])); Assert(val != 0.0); mp[irow*fNcols+icol] /= val; } } } else { for (irow = 0; irow < fNrows; irow++) { Int_t icol; for (icol = 0; icol < fNcols; icol++) { Double_t val = TMath::Sqrt(TMath::Abs(pV[irow]*pV[icol])); mp[irow*fNcols+icol] *= val; } } } return *this; } //______________________________________________________________________________ TMatrixD &TMatrixD::NormByColumn(const TVectorD &v, Option_t *option) { // Multiply/divide a matrix columns with a vector: // matrix(i,j) *= v(i) if (!IsValid()) { Error("NormByColumn", "matrix not initialized"); return *this; } if (!v.IsValid()) { Error("NormByColumn", "vector is not initialized"); return *this; } if (fNcols != v.fNrows) { Error("NormByColumn", "matrix cannot be normed column-wise by this vector"); return *this; } TString opt(option); opt.ToUpper(); const Int_t divide = (opt.Contains("D")) ? 1 : 0; const Double_t* pv = v.fElements; Double_t *mp = fElements; Int_t i; if (divide) { for ( ; mp < fElements + fNelems; pv++) for (i = 0; i < fNrows; i++) { Assert(*pv != 0.0); *mp++ /= *pv; } } else { for ( ; mp < fElements + fNelems; pv++) for (i = 0; i < fNrows; i++) *mp++ *= *pv; } return *this; } //______________________________________________________________________________ TMatrixD &TMatrixD::NormByRow(const TVectorD &v, Option_t *option) { // Multiply/divide a matrix row with a vector: // matrix(i,j) *= v(j) if (!IsValid()) { Error("NormByRow", "matrix not initialized"); return *this; } if (!v.IsValid()) { Error("NormByRow", "vector is not initialized"); return *this; } if (fNcols != v.fNrows) { Error("NormByRow", "matrix cannot be normed column-wise by this vector"); return *this; } TString opt(option); opt.ToUpper(); const Int_t divide = (opt.Contains("D")) ? 1 : 0; const Double_t* pv = v.fElements; Double_t *mp = fElements; Int_t i; if (divide) { for ( ; mp < fElements + fNelems; pv = v.fElements) { for (i = 0; i < fNrows; i++) { Assert(*pv != 0.0); *mp++ /= *pv++; } } } else { for ( ; mp < fElements + fNelems; pv = v.fElements) for (i = 0; i < fNrows; i++) *mp++ *= *pv++; } return *this; } //______________________________________________________________________________ void TMatrixD::Print(Option_t *) const { // Print the matrix as a table of elements (zeros are printed as dots). if (!IsValid()) { Error("Print", "matrix not initialized"); return; } printf("nMatrix %dx%d is as follows", fNrows, fNcols); Int_t cols_per_sheet = 5; Int_t sheet_counter; for (sheet_counter = 1; sheet_counter <= fNcols; sheet_counter += cols_per_sheet) { printf("n\n |"); Int_t i, j; for (j = sheet_counter; j < sheet_counter+cols_per_sheet && j <= fNcols; j++) printf(" %6d |", j+fColLwb-1); printf("n%sn", "------------------------------------------------------------------"); for (i = 1; i <= fNrows; i++) { printf("%4d |", i+fRowLwb-1); for (j = sheet_counter; j < sheet_counter+cols_per_sheet && j <= fNcols; j++) printf("%11.4g ", (*this)(i+fRowLwb-1, j+fColLwb-1)); printf("n"); } } printf("n"); } //______________________________________________________________________________ void TMatrixD::Transpose(const TMatrixD &prototype) { // Transpose a matrix. if (!prototype.IsValid()) { Error("Transpose", "prototype matrix not initialized"); return; } Allocate(prototype.fNcols, prototype.fNrows, prototype.fColLwb, prototype.fRowLwb); Double_t *rsp = prototype.fElements; // Row source pointer Double_t *tp = fElements; // (This: target) matrix is traversed in the natural, column-wise way, // whilst the source (prototype) matrix is scanned row-by-row while (tp < fElements + fNelems) { Double_t *sp = rsp++; // sp = @ms[j,i] for i=0 // Move tp to the next elem in the col and sp to the next el in the curr row while (sp < prototype.fElements + prototype.fNelems) *tp++ = *sp, sp += prototype.fNrows; } Assert(tp == fElements + fNelems && rsp == prototype.fElements + prototype.fNrows); } //______________________________________________________________________________ TMatrixD &TMatrixD::Invert(Double_t *determ_ptr) { // The most general (Gauss-Jordan) matrix inverse // // This method works for any matrix (which of course must be square and // non-singular). Use this method only if none of specialized algorithms // (for symmetric, tridiagonal, etc) matrices isn't applicable/available. // Also, the matrix to invert has to be _well_ conditioned: // Gauss-Jordan eliminations (even with pivoting) perform poorly for // near-singular matrices (e.g., Hilbert matrices). // // The method inverts matrix inplace and returns the determinant if // determ_ptr was specified as not 0. Determinant will be exactly zero // if the matrix turns out to be (numerically) singular. If determ_ptr is // 0 and matrix happens to be singular, throw up. // // The algorithm perform inplace Gauss-Jordan eliminations with // full pivoting. It was adapted from my Algol-68 "translation" (ca 1986) // of the FORTRAN code described in // Johnson, K. Jeffrey, "Numerical methods in chemistry", New York, // N.Y.: Dekker, c1980, 503 pp, p.221 // // Note, since it's much more efficient to perform operations on matrix // columns rather than matrix rows (due to the layout of elements in the // matrix), the present method implements a "transposed" algorithm. if (!IsValid()) { Error("Invert(Double_t*)", "matrix not initialized"); return *this; } if (fNrows != fNcols) { Error("Invert(Double_t*)", "matrix to invert must be square"); return *this; } Double_t determinant = 1; const Double_t singularity_tolerance = 1e-35; if (fNrows <= 3) { Double_t *m = fElements; if (fNrows == 1) { determinant = m[0]; } else if (fNrows == 2) { determinant = m[0]*m[3]-m[1]*m[2]; } else if (fNrows == 3) { determinant = m[0]*(m[4]*m[8]-m[7]*m[5]) -m[3]*(m[1]*m[8]-m[7]*m[2]) +m[6]*(m[1]*m[5]-m[4]*m[2]); } if (TMath::Abs(determinant) < singularity_tolerance) { if (determ_ptr) { *determ_ptr = 0; return *this; } else { Error("Invert(Double_t*)", "matrix turns out to be singular: can't invert"); return *this; } } if (fNrows == 1) { m[0] = 1/m[0]; } else if (fNrows == 2) { Double_t *o = new Double_t[fNelems]; memcpy(o,m,fNelems*sizeof(Double_t)); m[0] = o[3]/determinant; m[1] = -o[1]/determinant; m[2] = -o[2]/determinant; m[3] = o[0]/determinant; delete [] o; } else if (fNrows == 3) { Double_t *o = new Double_t[fNelems]; memcpy(o,m,fNelems*sizeof(Double_t)); m[0] = +(o[4]*o[8]-o[5]*o[7])/determinant; m[1] = -(o[1]*o[8]-o[2]*o[7])/determinant; m[2] = +(o[1]*o[5]-o[2]*o[4])/determinant; m[3] = -(o[3]*o[8]-o[5]*o[6])/determinant; m[4] = +(o[0]*o[8]-o[2]*o[6])/determinant; m[5] = -(o[0]*o[5]-o[2]*o[3])/determinant; m[6] = +(o[3]*o[7]-o[4]*o[6])/determinant; m[7] = -(o[0]*o[7]-o[1]*o[6])/determinant; m[8] = +(o[0]*o[4]-o[1]*o[3])/determinant; delete [] o; } if (determ_ptr) *determ_ptr = determinant; return *this; } const Int_t symmetric = IsSymmetric(); // condition the matrix TVectorD diag(fNrows); if (symmetric) { diag = TMatrixDDiag(*this); for (Int_t idx = 0; idx < diag.fNrows; idx++) { if (diag.fElements[idx] == 0.0) diag.fElements[idx] = 1.0; } this->NormByDiag(diag); } // Locations of pivots (indices start with 0) struct Pivot_t { int row, col; } *const pivots = new Pivot_t[fNcols]; Bool_t *const was_pivoted = new Bool_t[fNrows]; memset(was_pivoted, 0, fNrows*sizeof(Bool_t)); Pivot_t *pivotp; for (pivotp = &pivots[0]; pivotp < &pivots[fNcols]; pivotp++) { Int_t prow = 0, pcol = 0; // Location of a pivot to be { // Look through all non-pivoted cols Double_t max_value = 0; // (and rows) for a pivot (max elem) for (Int_t j = 0; j < fNcols; j++) if (!was_pivoted[j]) { Double_t *cp; Int_t k; Double_t curr_value = 0; for (k = 0, cp = fIndex[j]; k < fNrows; k++, cp++) if (!was_pivoted[k] && (curr_value = TMath::Abs(*cp)) > max_value) max_value = curr_value, prow = k, pcol = j; } if (max_value < singularity_tolerance) { // free allocated heap memory before returning delete [] pivots; delete [] was_pivoted; if (determ_ptr) { *determ_ptr = 0; return *this; } else { Error("Invert(Double_t*)", "matrix turns out to be singular: can't invert"); return *this; } } pivotp->row = prow; pivotp->col = pcol; } // Swap prow-th and pcol-th columns to bring the pivot to the diagonal if (prow != pcol) { Double_t *cr = fIndex[prow]; Double_t *cc = fIndex[pcol]; for (Int_t k = 0; k < fNrows; k++) { Double_t temp = *cr; *cr++ = *cc; *cc++ = temp; } } was_pivoted[prow] = kTRUE; { // Normalize the pivot column and Double_t *pivot_cp = fIndex[prow]; Double_t pivot_val = pivot_cp[prow]; // pivot is at the diagonal determinant *= pivot_val; // correct the determinant pivot_cp[prow] = kTRUE; for (Int_t k=0; k < fNrows; k++) *pivot_cp++ /= pivot_val; } { // Perform eliminations Double_t *pivot_rp = fElements + prow; // pivot row for (Int_t k = 0; k < fNrows; k++, pivot_rp += fNrows) if (k != prow) { Double_t temp = *pivot_rp; *pivot_rp = 0; Double_t *pivot_cp = fIndex[prow]; // pivot column Double_t *elim_cp = fIndex[k]; // elimination column for (Int_t l = 0; l < fNrows; l++) *elim_cp++ -= temp * *pivot_cp++; } } } Int_t no_swaps = 0; // Swap exchanged *rows* back in place for (pivotp = &pivots[fNcols-1]; pivotp >= &pivots[0]; pivotp--) if (pivotp->row != pivotp->col) { no_swaps++; Double_t *rp = fElements + pivotp->row; Double_t *cp = fElements + pivotp->col; for (Int_t k = 0; k < fNcols; k++, rp += fNrows, cp += fNrows) { Double_t temp = *rp; *rp = *cp; *cp = temp; } } // revert our scaling if (symmetric) { this->NormByDiag(diag); if (determ_ptr) { Int_t irow; for (irow = 0; irow < fNrows; irow++) determinant *= TMath::Abs(diag(irow)); } } if (determ_ptr) *determ_ptr = (no_swaps & 1 ? -determinant : determinant); delete [] was_pivoted; delete [] pivots; return *this; } //______________________________________________________________________________ Bool_t TMatrixD::IsSymmetric() const { if (!IsValid()) { Error("IsSymmetric", "matrix not initialized"); return 0; } if (fNrows != fNcols) { Error("IsSymmetric", "matrix is not square"); return 0; } if (fRowLwb != fColLwb) { Error("IsSymmetric", "row and column start at different values"); return 0; } Int_t irow; for (irow = 0; irow < fNrows; irow++) { Int_t icol; for (icol = 0; icol < irow; icol++) { if (fElements[irow*fNrows+icol] != fElements[icol*fNrows+irow]) { return 0; } } } return 1; } //______________________________________________________________________________ void TMatrixD::Invert(const TMatrixD &m) { // Allocate new matrix and set it to inv(m). if (!m.IsValid()) { Error("Invert(const TMatrixD&)", "matrix m not initialized"); return; } ResizeTo(m); *this = m; // assignment operator Invert(0); } //______________________________________________________________________________ TMatrixD &TMatrixD::InvertPosDef() { if (!IsValid()) { Error("InvertPosDef(Double_t*)", "matrix not initialized"); return *this; } if (fNrows != fNcols) { Error("InvertPosDef(Double_t*)", "matrix to invert must be square"); return *this; } if (fNrows <= 3) { const Double_t singularity_tolerance = 1e-35; Double_t determinant = 1; Double_t *m = fElements; if (fNrows == 1) { determinant = m[0]; } else if (fNrows == 2) { determinant = m[0]*m[3]-m[1]*m[2]; } else if (fNrows == 3) { determinant = m[0]*(m[4]*m[8]-m[7]*m[5]) -m[3]*(m[1]*m[8]-m[7]*m[2]) +m[6]*(m[1]*m[5]-m[4]*m[2]); } if (TMath::Abs(determinant) < singularity_tolerance) { Error("InvertPosDef", "matrix turns out to be singular: can't invert"); return *this; } if (fNrows == 1) { m[0] = 1/m[0]; } else if (fNrows == 2) { Double_t *o = new Double_t[fNelems]; memcpy(o,m,fNelems*sizeof(Double_t)); m[0] = o[3]/determinant; m[1] = -o[1]/determinant; m[2] = m[1]; m[3] = o[0]/determinant; delete [] o; } else if (fNrows == 3) { Double_t *o = new Double_t[fNelems]; memcpy(o,m,fNelems*sizeof(Double_t)); m[0] = +(o[4]*o[8]-o[5]*o[7])/determinant; m[1] = -(o[3]*o[8]-o[5]*o[6])/determinant; m[2] = +(o[3]*o[7]-o[4]*o[6])/determinant; m[3] = m[1]; m[4] = +(o[0]*o[8]-o[2]*o[6])/determinant; m[5] = -(o[0]*o[7]-o[1]*o[6])/determinant; m[6] = m[2]; m[7] = m[5]; m[8] = +(o[0]*o[4]-o[1]*o[3])/determinant; delete [] o; } return *this; } const Int_t n = fNrows; Double_t *pa = fElements; Double_t *pu = new Double_t[n*n]; // step 1: Cholesky decomposition if (Pdcholesky(pa,pu,n)) { Error("InvertPosDef","matrix not positive definite ?, Gauss-Jordan inversion applied"); delete [] pu; Invert(0); return *this; } const Int_t off_n = (n-1)*n; Int_t i,l; for (i = 0; i < n; i++) { const Int_t off_i = i*n; // step 2: Forward substitution for (l = i; l < n; l++) { if (l == i) pa[off_n+l] = 1./pu[l*n+l]; else { pa[off_n+l] = 0.; for (Int_t k = i; k <= l-1; k++) pa[off_n+l] = pa[off_n+l]-pu[k*n+l]*pa[off_n+k]; pa[off_n+l] = pa[off_n+l]/pu[l*n+l]; } } // step 3: Back substitution for (l = n-1; l >= i; l--) { const Int_t off_l = l*n; if (l == n-1) pa[off_i+l] = pa[off_n+l]/pu[off_l+l]; else { pa[off_i+l] = pa[off_n+l]; for (Int_t k = n-1; k >= l+1; k--) pa[off_i+l] = pa[off_i+l]-pu[off_l+k]*pa[off_i+k]; pa[off_i+l] = pa[off_i+l]/pu[off_l+l]; } } } // Fill lower triangle symmetrically if (n > 1) { for (Int_t i = 0; i < n; i++) { for (Int_t l = 0; l <= i-1; l++) pa[i*n+l] = pa[l*n+i]; } } delete [] pu; return *this; } //______________________________________________________________________________ Int_t TMatrixD::Pdcholesky(const Double_t *a, Double_t *u, const Int_t n) { // Program Pdcholesky inverts a positiv definite (n x n) - matrix A, // using the Cholesky decomposition // // Input: a - (n x n)- Matrix A // n - dimensions n of matrices // // Output: u - (n x n)- Matrix U so that U^T . U = A // return - 0 decomposition succesful // - 1 decomposition failed memset(u,0,n*n*sizeof(Double_t)); Int_t status = 0; for (Int_t k = 0; k < n; k++) { Double_t s = 0.; const Int_t off_k = k*n; for (Int_t j = k; j < n; j++) { if (k > 0) { s = 0.; for (Int_t l = 0; l <= k-1; l++) { const Int_t off_l = l*n; s += u[off_l+k]*u[off_l+j]; } } u[off_k+j] = a[off_k+j]-s; if (k == j) { if (u[off_k+j] < 0) status = 1; u[off_k+j] = TMath::Sqrt(TMath::Abs(u[off_k+j])); } else u[off_k+j] = u[off_k+j]/u[off_k+k]; } } return status; } //______________________________________________________________________________ void TMatrixD::InvertPosDef(const TMatrixD &m) { // Allocate new matrix and set it to inv(m). if (!m.IsValid()) { Error("InvertPosDef(const TMatrixD&)", "matrix m not initialized"); return; } ResizeTo(m); *this = m; // assignment operator InvertPosDef(); } //____________________________________________________________________ const TMatrixD TMatrixD::EigenVectors(TVectorD &eigenValues) const { // Return a matrix containing the eigen-vectors; also fill the // supplied vector with the eigen values. if (IsSymmetric()) { TMatrixD eigenVectors = *this; eigenValues.ResizeTo(fNrows); TVectorD offDiag(fNrows); // Tridiagonalize matrix MakeTridiagonal(eigenVectors,eigenValues,offDiag); // Make eigenvectors and -values MakeEigenVectors(eigenValues,offDiag,eigenVectors); // Order eigenvalues and -vectors EigenSort(eigenVectors,eigenValues); return eigenVectors; } else { Error("EigenVectors","Not yet implemented for non-symmetric matrix"); return *this; } } //____________________________________________________________________ void TMatrixD::MakeTridiagonal(TMatrixD &a, TVectorD &d, TVectorD &e) { // The comments in this algorithm are modified version of those in // "Numerical ...". Please refer to that book (web-page) for more on // the algorithm. // /* PRIVATE METHOD:
Tridiagonalise the covariance matrix according to the Householder method as described in Numerical Recipes in C section 11.2.The basic idea is to perform orthogonal transformation, where each transformation eat away the off-diagonal elements, except the inner most. */ // const Int_t n = a.fNrows; if (!a.IsValid()) { gROOT->Error("Maketridiagonal", "matrix not initialized"); return; } if (a.fNrows != a.fNcols) { gROOT->Error("Maketridiagonal", "matrix to tridiagonalize must be square"); return; } if (!a.IsSymmetric()) { gROOT->Error("MakeTridiagonal", "Can only tridiagonalise symmetric matrix"); a.Zero(); d.Zero(); e.Zero(); return; } Double_t *pa = a.fElements; Double_t *pd = d.fElements; Double_t *pe = e.fElements; Int_t i; for (i = n-1; i > 0; i--) { const Int_t l = i-1; Double_t h = 0; Double_t scale = 0; if (l > 0) { for (Int_t k = 0; k <= l; k++) scale += TMath::Abs(pa[i+k*n]); if (scale == 0) // Skip transformation pe[i] = pa[i+l*n]; else { Int_t k; for (k = 0; k <= l; k++) { // Use scaled elements of a for transformation pa[i+k*n] /= scale; // Calculate sigma in h h += pa[i+k*n]*pa[i+k*n]; } Double_t f = pa[i+l*n]; Double_t g = (f >= 0. ? -TMath::Sqrt(h) : TMath::Sqrt(h)); pe[i] = scale*g; h -= f*g; // Now h is eq. (11.2.4) in "Numerical ..." pa[i+l*n] = f-g; f = 0; Int_t j; for (j = 0; j <= l; j++) { // Store the u/H in ith column of a; pa[j+i*n] = pa[i+j*n]/h; // Form element A dot u in g; g = 0; Int_t k; for (k = 0; k <= j; k++) g += pa[j+k*n]*pa[i+k*n]; for (k = j+1; k <= l; k++) g += pa[k+j*n]*pa[i+k*n]; // Form element of vector p in temporarily unused element of // e pe[j] = g/h; f += pe[j]*pa[i+j*n]; } // Form K eq (11.2.11) const Double_t hh = f/(h+h); // Form vector q and store in e overwriting p for (j = 0; j <= l; j++) { f = pa[i+j*n]; pe[j] = g = pe[j]-hh*f; Int_t k; for (k = 0; k <= j; k++) // Reduce a, eq (11.2.13) pa[j+k*n] -= (f*pe[k]+g*pa[i+k*n]); } } } else pe[i] = pa[i+l*n]; pd[i] = h; } pd[0] = 0; pe[0] = 0; for (i = 0; i < n; i++) { // Begin accumulation of transformation matrix const Int_t l = i-1; if (pd[i]) { // This block is skipped if i = 0; Int_t j; for (j = 0; j <= l; j++) { Double_t g = 0; Int_t k; for (k = 0; k <= l; k++) // Use vector u/H stored in a to form P dot Q g += pa[i+k*n]*pa[k+j*n]; for (k = 0; k <= l; k++) pa[k+j*n] -= g*pa[k+i*n]; } } pd[i] = pa[i+i*n]; pa[i+i*n] = 1; Int_t j; for (j = 0; j <= l; j++) { pa[j+i*n] = pa[i+j*n] = 0; } } } //____________________________________________________________________ void TMatrixD::MakeEigenVectors(TVectorD &d, TVectorD &e, TMatrixD &z) { // /* PRIVATE METHOD:
Find eigenvalues and vectors of tridiagonalised covariance matrix according to the QL with implicit shift algorithm from Numerical Recipes in C section 11.3.The basic idea is to find matrices and so that , where is orthogonal and is lower triangular. The QL algorithm consist of a sequence of orthogonal transformations
(1) If have eigenvalues with different absolute value , then [lower triangular form] as . The eigenvalues appear on the diagonal in increasing order of absolute magnitude. (2) If If has an eigenvalue of multiplicty of order , [lower triangular form] as , except for a diagona block matrix of order , whose eigenvalues . */ // const Int_t n = z.fNrows; Double_t *pd = d.fElements; Double_t *pe = e.fElements; Double_t *pz = z.fElements; // It's convenient to renumber the e vector elements Int_t l; for (l = 1; l < n; l++) pe[l-1] = pe[l]; pe[n-1] = 0; for (l = 0; l < n; l++) { Int_t iter = 0; Int_t m = 0; do { for (m = l; m < n-1; m++) { // Look for a single small sub-diagonal element to split the // matrix const Double_t dd = TMath::Abs(pd[m])+TMath::Abs(pd[m+1]); if ((Double_t)(TMath::Abs(pe[m])+dd) == dd) break; } if (m != l) { if (iter++ == 30) { gROOT->Error("MakeEigenVectors","too many iterationsn"); return; } // Form shift Double_t g = (pd[l+1]-pd[l])/(2*pe[l]); Double_t r = TMath::Sqrt(g*g+1); // This is d_m-k_s g = pd[m]-pd[l]+pe[l]/(g+TMath::Sign(r,g)); Double_t s = 1; Double_t c = 1; Double_t p = 0; Int_t i = 0; for (i = m-1; i >= l; i--) { // A plane rotation as in the original QL, followed by // Givens rotations to restore tridiagonal form Double_t f = s*pe[i]; const Double_t b = c*pe[i]; r = TMath::Sqrt(f*f+g*g); pe[i+1] = r; if (r == 0) { // Recover from underflow pd[i+1] -= p; pe[m] = 0; break; } s = f/r; c = g/r; g = pd[i+1]-p; r = (pd[i]-g)*s+2*c*b; p = s*r; pd[i+1] = g+p; g = c*r-b; Int_t k; for (k = 0; k < n; k++) { // Form Eigenvectors f = pz[k+(i+1)*n]; pz[k+(i+1)*n] = s*pz[k+i*n]+c*f; pz[k+i*n] = c*pz[k+i*n]-s*f; } } // for (i = m) if (r == 0 && i >= l) continue; pd[l] -= p; pe[l] = g; pe[m] = 0; } // if (m != l) } while (m != l); } // for (l = 0) } //____________________________________________________________________ void TMatrixD::EigenSort(TMatrixD &eigenVectors, TVectorD &eigenValues) { // /* PRIVATE METHOD:
Order the eigenvalues and vectors by ascending eigenvalue. The algorithm is a straight insertion. It's taken from Numerical Recipes in C section 11.1. */ // Int_t n = eigenVectors.fNrows; Double_t *pVec = eigenVectors.fElements; Double_t *pVal = eigenValues.fElements; Int_t i; for (i = 0; i < n; i++) { Int_t k = i; Double_t p = pVal[i]; Int_t j; for (j = i + 1; j < n; j++) if (pVal[j] >= p) { k = j; p = pVal[j]; } if (k != i) { pVal[k] = pVal[i]; pVal[i] = p; for (j = 0; j < n; j++) { p = pVec[j+i*n]; pVec[j+i*n] = pVec[j+k*n]; pVec[j+k*n] = p; } } } } //______________________________________________________________________________ const Double_t &TMatrixD::operator()(Int_t rown, Int_t coln) const { // Access single matrix element. static Double_t err; err = 0.0; if (!IsValid()) { Error("operator()", "matrix is not initialized"); return err; } Int_t arown = rown - fRowLwb; // Effective indices Int_t acoln = coln - fColLwb; if (arown >= fNrows || arown < 0) { Error("operator()", "row index %d is out of matrix boundaries [%d,%d]", rown, fRowLwb, fNrows+fRowLwb-1); return err; } if (acoln >= fNcols || acoln < 0) { Error("operator()", "col index %d is out of matrix boundaries [%d,%d]", coln, fColLwb, fNcols+fColLwb-1); return err; } return (fIndex[acoln])[arown]; } //______________________________________________________________________________ TMatrixD &TMatrixD::operator*=(const TMatrixD &source) { // Compute target = target * source inplace. Strictly speaking, it can't be // done inplace, though only the row of the target matrix needs // to be saved. "Inplace" multiplication is only possible // when the 'source' matrix is square. if (!IsValid()) { Error("operator*=(const TMatrixD&)", "matrix not initialized"); return *this; } if (!source.IsValid()) { Error("operator*=(const TMatrixD&)", "source matrix not initialized"); return *this; } if (fRowLwb != source.fColLwb || fNcols != source.fNrows || fColLwb != source.fColLwb || fNcols != source.fNcols) Error("operator*=(const TMatrixD&)", "matrices above are unsuitable for the inplace multiplication"); // One row of the old_target matrix Double_t *const one_row = new Double_t[fNcols]; const Double_t *one_row_end = &one_row[fNcols]; Double_t *trp = fElements; // Pointer to the i-th row for ( ; trp < &fElements[fNrows]; trp++) { // Go row-by-row in the target Double_t *wrp, *orp; // work row pointers for (wrp = trp, orp = one_row; orp < one_row_end; ) *orp++ = *wrp, wrp += fNrows; // Copy a row of old_target Double_t *scp = source.fElements; // Source column pointer for (wrp = trp; wrp < fElements+fNelems; wrp += fNrows) { Double_t sum = 0; // Multiply a row of old_target for (orp = one_row; orp < one_row_end; ) // by each col of source sum += *orp++ * *scp++; // to get a row of new_target *wrp = sum; } } delete [] one_row; return *this; } //______________________________________________________________________________ TMatrixD &TMatrixD::operator*=(const TMatrixDDiag &diag) { // Multiply a matrix by the diagonal of another matrix // matrix(i,j) *= diag(j) if (!IsValid()) { Error("operator*=(const TMatrixDDiag&)", "matrix not initialized"); return *this; } if (!diag.fMatrix->IsValid()) { Error("operator*=(const TMatrixDDiag&)", "diag matrix not initialized"); return *this; } if (fNcols != diag.fNdiag) { Error("operator*=(const TMatrixDDiag&)", "matrix cannot be divided by the diagonal of the other matrix"); return *this; } Double_t *dp = diag.fPtr; // Diag ptr Double_t *mp = fElements; // Matrix ptr Int_t i; for ( ; mp < fElements + fNelems; dp += diag.fInc) for (i = 0; i < fNrows; i++) *mp++ *= *dp; Assert(dp < diag.fPtr + diag.fMatrix->fNelems + diag.fInc); return *this; } //______________________________________________________________________________ TMatrixD &TMatrixD::operator/=(const TMatrixDDiag &diag) { // Divide a matrix by the diagonal of another matrix // matrix(i,j) *= diag(j) if (!IsValid()) { Error("operator/=(const TMatrixDDiag&)", "matrix not initialized"); return *this; } if (!diag.fMatrix->IsValid()) { Error("operator/=(const TMatrixDDiag&)", "diag matrix not initialized"); return *this; } if (fNcols != diag.fNdiag) { Error("operator/=(const TMatrixDDiag&)", "matrix cannot be divided row-wise by the diagonal of the other matrix"); return *this; } Double_t *dp = diag.fPtr; // Diag ptr Double_t *mp = fElements; // Matrix ptr Int_t i; for ( ; mp < fElements + fNelems; dp += diag.fInc) { Assert(*dp != 0.0); for (i = 0; i < fNrows; i++) *mp++ /= *dp; } Assert(dp < diag.fPtr + diag.fMatrix->fNelems + diag.fInc); return *this; } //______________________________________________________________________________ TMatrixD &TMatrixD::operator*=(const TMatrixDColumn &col) { // Multiply a matrix by the column of another matrix // matrix(i,j) *= another(i,k) for fixed k if (!IsValid()) { Error("operator*=(const TMatrixDColumn&)", "matrix not initialized"); return *this; } if (!col.fMatrix->IsValid()) { Error("operator*=(const TMatrixDColumn&)", "column matrix not initialized"); return *this; } if (fNcols != col.fMatrix->fNcols) { Error("operator*=(const TMatrixDColumn&)", "matrix cannot be multiplied by the column of the other matrix"); return *this; } Double_t *cp = col.fPtr; // Column ptr Double_t *mp = fElements; // Matrix ptr Int_t i; for ( ; mp < fElements + fNelems; cp++) for (i = 0; i < fNrows; i++) *mp++ *= *cp; Assert(cp < col.fPtr + col.fMatrix->fNelems); return *this; } //______________________________________________________________________________ TMatrixD &TMatrixD::operator/=(const TMatrixDColumn &col) { // Divide a matrix by the column of another matrix // matrix(i,j) /= another(i,k) for fixed k if (!IsValid()) { Error("operator/=(const TMatrixDColumn&)", "matrix not initialized"); return *this; } if (!col.fMatrix->IsValid()) { Error("operator/=(const TMatrixDColumn&)", "column matrix not initialized"); return *this; } if (fNcols != col.fMatrix->fNcols) { Error("operator/=(const TMatrixDColumn&)", "matrix cannot be divided by the column of the other matrix"); return *this; } Double_t *cp = col.fPtr; // Column ptr Double_t *mp = fElements; // Matrix ptr Int_t i; for ( ; mp < fElements + fNelems; cp++) { Assert(*cp != 0.0); for (i = 0; i < fNrows; i++) *mp++ /= *cp; } Assert(cp < col.fPtr + col.fMatrix->fNelems); return *this; } //______________________________________________________________________________ TMatrixD &TMatrixD::operator*=(const TMatrixDRow &row) { // Multiply a matrix by the row of another matrix // matrix(i,j) *= another(k,j) for fixed k if (!IsValid()) { Error("operator*=(const TMatrixDRow&)", "matrix not initialized"); return *this; } if (!row.fMatrix->IsValid()) { Error("operator*=(const TMatrixDRow&)", "row matrix not initialized"); return *this; } if (fNrows != row.fMatrix->fNrows) { Error("operator*=(const TMatrixDRow&)", "matrix cannot be multiplied by the row of the other matrix"); return *this; } Double_t *rp = row.fPtr; // Row ptr Double_t *mp = fElements; // Matrix ptr Int_t i; for ( ; mp < fElements + fNelems; rp = row.fPtr) { for (i = 0; i < fNrows; i++) { Assert(rp < row.fPtr+row.fMatrix->fNelems); *mp++ *= *rp; rp += row.fInc; } } return *this; } //______________________________________________________________________________ TMatrixD &TMatrixD::operator/=(const TMatrixDRow &row) { // Divide a matrix by the row of another matrix // matrix(i,j) /= another(k,j) for fixed k if (!IsValid()) { Error("operator/=(const TMatrixDRow&)", "matrix not initialized"); return *this; } if (!row.fMatrix->IsValid()) { Error("operator/=(const TMatrixDRow&)", "row matrix not initialized"); return *this; } if (fNrows != row.fMatrix->fNrows) { Error("operator/=(const TMatrixDRow&)", "matrix cannot be divided by the row of the other matrix"); return *this; } Double_t *rp = row.fPtr; // Row ptr Double_t *mp = fElements; // Matrix ptr Int_t i; for ( ; mp < fElements + fNelems; rp = row.fPtr) { for (i = 0; i < fNrows; i++) { Assert(rp < row.fPtr+row.fMatrix->fNelems); Assert(*rp != 0.0); *mp++ /= *rp; rp += row.fInc; } } return *this; } //______________________________________________________________________________ void TMatrixD::AMultB(const TMatrixD &a, const TMatrixD &b) { // General matrix multiplication. Create a matrix C such that C = A * B. // Note, matrix C needs to be allocated. if (!a.IsValid()) { Error("AMultB", "matrix a not initialized"); return; } if (!b.IsValid()) { Error("AMultB", "matrix b not initialized"); return; } if (a.fNcols != b.fNrows || a.fColLwb != b.fRowLwb) { Error("AMultB", "matrices a and b cannot be multiplied"); return; } Allocate(a.fNrows, b.fNcols, a.fRowLwb, b.fColLwb); Double_t *arp; // Pointer to the i-th row of A Double_t *bcp = b.fElements; // Pointer to the j-th col of B Double_t *cp = fElements; // C is to be traversed in the natural while (cp < fElements + fNelems) { // order, col-after-col for (arp = a.fElements; arp < a.fElements + a.fNrows; ) { Double_t cij = 0; Double_t *bccp = bcp; // To scan the jth col of B while (arp < a.fElements + a.fNelems) // Scan the i-th row of A and cij += *bccp++ * *arp, arp += a.fNrows; // the j-th col of B *cp++ = cij; arp -= a.fNelems - 1; // arp points to (i+1)-th row } bcp += b.fNrows; // We're done with j-th col of both } // B and C. Set bcp to the (j+1)-th col Assert(cp == fElements + fNelems && bcp == b.fElements + b.fNelems); } //______________________________________________________________________________ void TMatrixD::Mult(const TMatrixD &a, const TMatrixD &b) { // Compute C = A*B. The same as AMultB(), only matrix C is already // allocated, and it is *this. if (!a.IsValid()) { Error("Mult", "matrix a not initialized"); return; } if (!b.IsValid()) { Error("Mult", "matrix b not initialized"); return; } if (!IsValid()) { Error("Mult", "matrix not initialized"); return; } if (a.fNcols != b.fNrows || a.fColLwb != b.fRowLwb) { Error("Mult", "matrices a and b cannot be multiplied"); return; } if (fNrows != a.fNrows || fNcols != b.fNcols || fRowLwb != a.fRowLwb || fColLwb != b.fColLwb) { Error("Mult", "product A*B is incompatible with the given matrix"); return; } Double_t *arp; // Pointer to the i-th row of A Double_t *bcp = b.fElements; // Pointer to the j-th col of B Double_t *cp = fElements; // C is to be traversed in the natural while (cp < fElements + fNelems) { // order, col-after-col for (arp = a.fElements; arp < a.fElements + a.fNrows; ) { Double_t cij = 0; Double_t *bccp = bcp; // To scan the jth col of B while (arp < a.fElements + a.fNelems) // Scan the i-th row of A and cij += *bccp++ * *arp, arp += a.fNrows; // the j-th col of B *cp++ = cij; arp -= a.fNelems - 1; // arp points to (i+1)-th row } bcp += b.fNrows; // We're done with j-th col of both } // B and C. Set bcp to the (j+1)-th col Assert(cp == fElements + fNelems && bcp == b.fElements + b.fNelems); } //______________________________________________________________________________ void TMatrixD::AtMultB(const TMatrixD &a, const TMatrixD &b) { // Create a matrix C such that C = A' * B. In other words, // c[i,j] = SUM{ a[k,i] * b[k,j] }. Note, matrix C needs to be allocated. if (!a.IsValid()) { Error("AtMultB", "matrix a not initialized"); return; } if (!b.IsValid()) { Error("AtMultB", "matrix b not initialized"); return; } if (a.fNrows != b.fNrows || a.fRowLwb != b.fRowLwb) { Error("AtMultB", "matrices above are unsuitable for A'B multiplication"); return; } Allocate(a.fNcols, b.fNcols, a.fColLwb, b.fColLwb); Double_t *acp; // Pointer to the i-th col of A Double_t *bcp = b.fElements; // Pointer to the j-th col of B Double_t *cp = fElements; // C is to be traversed in the natural while (cp < fElements + fNelems) { // order, col-after-col for (acp = a.fElements; acp < a.fElements + a.fNelems; ) { Double_t cij = 0; // Scan all cols of A Double_t *bccp = bcp; // To scan the jth col of B for (int i = 0; i < a.fNrows; i++) // Scan the i-th row of A and cij += *bccp++ * *acp++; // the j-th col of B *cp++ = cij; } bcp += b.fNrows; // We're done with j-th col of both } // B and C. Set bcp to the (j+1)-th col Assert(cp == fElements + fNelems && bcp == b.fElements + b.fNelems); } //______________________________________________________________________________ Double_t TMatrixD::Determinant() const { // Compute the determinant of a general square matrix. // Example: Matrix A; Double_t A.Determinant(); // // Gauss-Jordan transformations of the matrix with a slight // modification to take advantage of the *column*-wise arrangement // of Matrix elements. Thus we eliminate matrix's columns rather than // rows in the Gauss-Jordan transformations. Note that determinant // is invariant to matrix transpositions. // The matrix is copied to a special object of type TMatrixDPivoting, // where all Gauss-Jordan eliminations with full pivoting are to // take place. if (!IsValid()) { Error("Determinant", "matrix not initialized"); return 0.0; } if (fNrows != fNcols) { Error("Determinant", "can't obtain determinant of a non-square matrix"); return 0.0; } if (fRowLwb != fColLwb) { Error("Determinant", "row and col lower bounds are inconsistent"); return 0.0; } Double_t det = 1; const Double_t *m = fElements; if (fNrows == 1) { det = m[0]; } else if (fNrows == 2) { det = m[0]*m[3]-m[1]*m[2]; } else if (fNrows == 3) { det = m[0]*(m[4]*m[8]-m[7]*m[5]) -m[3]*(m[1]*m[8]-m[7]*m[2]) +m[6]*(m[1]*m[5]-m[4]*m[2]); } else { TMatrixDPivoting mp(*this); Int_t k; for (k = 0; k < fNcols && det != 0; k++) det *= mp.PivotingAndElimination(); } return det; } //______________________________________________________________________________ void TMatrixD::Streamer(TBuffer &R__b) { // Stream an object of class TMatrixD. if (R__b.IsReading()) { UInt_t R__s, R__c; Version_t R__v = R__b.ReadVersion(&R__s, &R__c); if (R__v > 1) { TMatrixD::Class()->ReadBuffer(R__b, this, R__v, R__s, R__c); if (fNcols == 1) { fIndex = &fElements; } else { fIndex = new Double_t*[fNcols]; if (fIndex) memset(fIndex, 0, fNcols*sizeof(Double_t*)); Int_t i; Double_t *col_p; for (i = 0, col_p = &fElements[0]; i < fNcols; i++, col_p += fNrows) fIndex[i] = col_p; } return; } //====process old versions before automatic schema evolution TObject::Streamer(R__b); R__b >> fNrows; R__b >> fNcols; R__b >> fRowLwb; R__b >> fColLwb; fNelems = R__b.ReadArray(fElements); if (fNcols == 1) { fIndex = &fElements; } else { fIndex = new Double_t*[fNcols]; if (fIndex) memset(fIndex, 0, fNcols*sizeof(Double_t*)); Int_t i; Double_t *col_p; for (i = 0, col_p = &fElements[0]; i < fNcols; i++, col_p += fNrows) fIndex[i] = col_p; } R__b.CheckByteCount(R__s, R__c, TMatrixD::IsA()); //====end of old versions } else { TMatrixD::Class()->WriteBuffer(R__b,this); } } //______________________________________________________________________________ void Compare(const TMatrixD &matrix1, const TMatrixD &matrix2) { // Compare two matrices and print out the result of the comparison. Int_t i, j; if (!AreCompatible(matrix1, matrix2)) { Error("Compare", "matrices are not compatible"); return; } printf("n\nComparison of two TMatrices:n"); Double_t norm1 = 0, norm2 = 0; // Norm of the Matrices Double_t ndiff = 0; // Norm of the difference Int_t imax = 0, jmax = 0; // For the elements that differ most Double_t difmax = -1; Double_t *mp1 = matrix1.fElements; // Matrix element pointers Double_t *mp2 = matrix2.fElements; for (j = 0; j < matrix1.fNcols; j++) // Due to the column-wise arrangement, for (i = 0; i < matrix1.fNrows; i++) { // the row index changes first Double_t mv1 = *mp1++; Double_t mv2 = *mp2++; Double_t diff = TMath::Abs(mv1-mv2); if (diff > difmax) { difmax = diff; imax = i; jmax = j; } norm1 += TMath::Abs(mv1); norm2 += TMath::Abs(mv2); ndiff += TMath::Abs(diff); } imax += matrix1.fRowLwb, jmax += matrix1.fColLwb; printf("nMaximal discrepancy t\t%g", difmax); printf("n occured at the pointt\t(%d,%d)", imax, jmax); const Double_t mv1 = matrix1(imax,jmax); const Double_t mv2 = matrix2(imax,jmax); printf("n Matrix 1 element is t\t%g", mv1); printf("n Matrix 2 element is t\t%g", mv2); printf("n Absolute error v2[i]-v1[i]t\t%g", mv2-mv1); printf("n Relative errort\tt\t%gn", (mv2-mv1)/TMath::Max(TMath::Abs(mv2+mv1)/2,(Double_t)1e-7)); printf("n||Matrix 1|| t\tt%g", norm1); printf("n||Matrix 2|| t\tt%g", norm2); printf("n||Matrix1-Matrix2||t\tt\t%g", ndiff); printf("n||Matrix1-Matrix2||/sqrt(||Matrix1|| ||Matrix2||)t%gn\n", ndiff/TMath::Max(TMath::Sqrt(norm1*norm2), 1e-7)); } //______________________________________________________________________________ void VerifyElementValue(const TMatrixD &m, Double_t val) { // Validate that all elements of matrix have value val (within 1.e-5). Int_t imax = 0, jmax = 0; Double_t max_dev = 0; Int_t i, j; for (i = m.GetRowLwb(); i <= m.GetRowUpb(); i++) for (j = m.GetColLwb(); j <= m.GetColUpb(); j++) { Double_t dev = TMath::Abs(m(i,j)-val); if (dev > max_dev) imax = i, jmax = j, max_dev = dev; } if (max_dev == 0) return; else if(max_dev < 1e-5) printf("Element (%d,%d) with value %g differs the most from whatn" "was expected, %g, though the deviation %g is smalln", imax,jmax,m(imax,jmax),val,max_dev); else Error("VerifyElementValue", "a significant difference from the expected value %gn" "encountered for element (%d,%d) with value %g", val,imax,jmax,m(imax,jmax)); } //______________________________________________________________________________ void VerifyMatrixIdentity(const TMatrixD &m1, const TMatrixD &m2) { // Verify that elements of the two matrices are equal (within 1.e-5). Int_t imax = 0, jmax = 0; Double_t max_dev = 0; Int_t i, j; if (!AreCompatible(m1, m2)) { Error("VerifyMatrixIdentity", "matrices are not compatible"); return; } for (i = m1.GetRowLwb(); i <= m1.GetRowUpb(); i++) for (j = m1.GetColLwb(); j <= m1.GetColUpb(); j++) { Double_t dev = TMath::Abs(m1(i,j)-m2(i,j)); if (dev > max_dev) imax = i, jmax = j, max_dev = dev; } if (max_dev == 0) return; if (max_dev < 1e-5) printf("Two (%d,%d) elements of matrices with values %g and %gn" "differ the most, though the deviation %g is smalln", imax,jmax,m1(imax,jmax),m2(imax,jmax),max_dev); else Error("VerifyMatrixIdentity", "a significant difference between the matrices encounteredn" "at (%d,%d) element, with values %g and %g", imax,jmax,m1(imax,jmax),m2(imax,jmax)); }