// @(#)root/geom:$Name: $:$Id: TGeoPara.cxx,v 1.14 2003/03/14 11:49:02 brun Exp $
// Author: Andrei Gheata 31/01/02
// TGeoPara::Contains() implemented by Mihaela Gheata
/*************************************************************************
* Copyright (C) 1995-2000, Rene Brun and Fons Rademakers. *
* All rights reserved. *
* *
* For the licensing terms see $ROOTSYS/LICENSE. *
* For the list of contributors see $ROOTSYS/README/CREDITS. *
*************************************************************************/
#include "TROOT.h"
#include "TGeoManager.h"
#include "TGeoVolume.h"
#include "TGeoPara.h"
/*************************************************************************
* TGeoPara - parallelipeped class. It has 6 parameters :
* dx, dy, dz - half lengths in X, Y, Z
* alpha - angle w.r.t the Y axis from center of low Y edge to
* center of high Y edge [deg]
* theta, phi - polar and azimuthal angles of the segment between
* low and high Z surfaces [deg]
*
*************************************************************************/
//
/*
*/
//
ClassImp(TGeoPara)
//-----------------------------------------------------------------------------
TGeoPara::TGeoPara()
{
// Default constructor
SetBit(TGeoShape::kGeoPara);
fX = fY = fZ = 0;
fAlpha = 0;
fTheta = 0;
fPhi = 0;
fTxy = 0;
fTxz = 0;
fTyz = 0;
}
//-----------------------------------------------------------------------------
TGeoPara::TGeoPara(Double_t dx, Double_t dy, Double_t dz, Double_t alpha,
Double_t theta, Double_t phi)
:TGeoBBox(0, 0, 0)
{
// Default constructor specifying minimum and maximum radius
SetBit(TGeoShape::kGeoPara);
fX = dx;
fY = dy;
fZ = dz;
fAlpha = alpha;
fTheta = theta;
fPhi = phi;
fTxy = TMath::Tan(alpha*kDegRad);
Double_t tth = TMath::Tan(theta*kDegRad);
Double_t ph = phi*kDegRad;
fTxz = tth*TMath::Cos(ph);
fTyz = tth*TMath::Sin(ph);
if ((fX<0) || (fY<0) || (fZ<0)) {
// printf("para : %f %f %fn", fX, fY, fZ);
SetBit(kGeoRunTimeShape);
}
else ComputeBBox();
}
//-----------------------------------------------------------------------------
TGeoPara::TGeoPara(const char *name, Double_t dx, Double_t dy, Double_t dz, Double_t alpha,
Double_t theta, Double_t phi)
:TGeoBBox(name, 0, 0, 0)
{
// Default constructor specifying minimum and maximum radius
SetBit(TGeoShape::kGeoPara);
fX = dx;
fY = dy;
fZ = dz;
fAlpha = alpha;
fTheta = theta;
fPhi = phi;
fTxy = TMath::Tan(alpha*kDegRad);
Double_t tth = TMath::Tan(theta*kDegRad);
Double_t ph = phi*kDegRad;
fTxz = tth*TMath::Cos(ph);
fTyz = tth*TMath::Sin(ph);
if ((fX<0) || (fY<0) || (fZ<0)) {
// printf("para : %f %f %fn", fX, fY, fZ);
SetBit(kGeoRunTimeShape);
}
else ComputeBBox();
}
//-----------------------------------------------------------------------------
TGeoPara::TGeoPara(Double_t *param)
:TGeoBBox(0, 0, 0)
{
// Default constructor
// param[0] = dx
// param[1] = dy
// param[2] = dz
// param[3] = alpha
// param[4] = theta
// param[5] = phi
SetBit(TGeoShape::kGeoPara);
SetDimensions(param);
if ((fX<0) || (fY<0) || (fZ<0)) SetBit(kGeoRunTimeShape);
else ComputeBBox();
}
//-----------------------------------------------------------------------------
TGeoPara::~TGeoPara()
{
// destructor
}
//-----------------------------------------------------------------------------
void TGeoPara::ComputeBBox()
{
// compute bounding box
Double_t dx = fX+fY*TMath::Abs(fTxy)+fZ*TMath::Abs(fTxz);
Double_t dy = fY+fZ*TMath::Abs(fTyz);
Double_t dz = fZ;
TGeoBBox::SetBoxDimensions(dx, dy, dz);
memset(fOrigin, 0, 3*sizeof(Double_t));
}
//-----------------------------------------------------------------------------
Bool_t TGeoPara::Contains(Double_t *point) const
{
// test if point is inside this sphere
// test Z range
if (TMath::Abs(point[2]) > fZ) return kFALSE;
// check X and Y
Double_t yt=point[1]-fTyz*point[2];
if (TMath::Abs(yt) > fY) return kFALSE;
Double_t xt=point[0]-fTxz*point[2]-fTxy*yt;
if (TMath::Abs(xt) > fX) return kFALSE;
return kTRUE;
}
//-----------------------------------------------------------------------------
Double_t TGeoPara::DistToOut(Double_t *point, Double_t *dir, Int_t iact, Double_t step, Double_t *safe) const
{
// compute distance from inside point to surface of the para
if (iact<3 && safe) {
// compute safety
*safe = Safety(point, kTRUE);
if (iact==0) return kBig;
if (iact==1 && step<*safe) return kBig;
}
Double_t saf[6];
Double_t snxt = kBig;
// distance from point to higher Z face
saf[4] = fZ-point[2];
// distance from point to lower Z face
saf[5] = -fZ-point[2];
// distance from point to center axis on Y
Double_t yt = point[1]-fTyz*point[2];
// distance from point to higher Y face
saf[2] = fY-yt;
// distance from point to lower Y face
saf[3] = -fY-yt;
// distance from point to center axis on X
Double_t xt = point[0]-fTxz*point[2]-fTxy*yt;
// distance from point to higher X face
saf[0] = fX-xt;
// distance from point to lower X face
saf[1] = -fX-xt;
Double_t sn1, sn2, sn3;
sn1 = sn2 = sn3 = kBig;
if (dir[2]!=0) sn3=saf[4]/dir[2];
if (sn3<0) sn3=saf[5]/dir[2];
Double_t dy = dir[1]-fTyz*dir[2];
if (dy!=0) sn2=saf[2]/dy;
if (sn2<0) sn2=saf[3]/dy;
Double_t dx = dir[0]-fTxz*dir[2]-fTxy*dy;
if (dx!=0) sn1=saf[0]/dx;
if (sn1<0) sn1=saf[1]/dx;
snxt = TMath::Min(sn1, TMath::Min(sn2, sn3));
return snxt;
}
//-----------------------------------------------------------------------------
Double_t TGeoPara::DistToIn(Double_t *point, Double_t *dir, Int_t iact, Double_t step, Double_t *safe) const
{
// compute distance from inside point to surface of the para
// Warning("DistToIn", "PARA TOIN");
// Double_t snxt=kBig;
Double_t dn31=-fZ-point[2];
Double_t dn32=fZ-point[2];
Double_t yt=point[1]-fTyz*point[2];
Double_t dn21=-fY-yt;
Double_t dn22=fY-yt;
Double_t cty=1.0/TMath::Sqrt(1.0+fTyz*fTyz);
Double_t xt=point[0]-fTxy*yt-fTxz*point[2];
Double_t dn11=-fX-xt;
Double_t dn12=fX-xt;
Double_t ctx=1.0/TMath::Sqrt(1.0+fTxy*fTxy+fTxz*fTxz);
Double_t sn3=dn31;
if (sn3<0) sn3=-dn32;
Double_t sn2=dn21*cty;
if (sn2<0) sn2=-dn22*cty;
Double_t sn1=dn11*ctx;
if (sn1<0) sn1=-dn12*ctx;
if (iact<3 && safe) {
// compute safety
*safe = TMath::Max(sn1, sn2);
if (sn3>(*safe)) *safe=sn3;
if (iact==0) return kBig;
if (iact==1 && step<*safe) return kBig;
}
// compute distance to PARA
Double_t swap;
// Bool_t upx=kFALSE, upy=kFALSE, upz=kFALSE;
// check if dir is paralel to Z planes
if (dir[2]==0) {
if ((dn32*dn31)>0) return kBig;
dn31 = 0;
dn32 = kBig;
} else {
dn31=dn31/dir[2];
dn32=dn32/dir[2];
if (dir[2]<0) {
swap=dn31;
dn31=dn32;
dn32=swap;
}
}
if (dn32<0) return kBig;
Double_t dy=dir[1]-fTyz*dir[2];
if (dy==0) {
if ((dn21*dn22)>0) return kBig;
dn21=0;
dn22=kBig;
} else {
dn21=dn21/dy;
dn22=dn22/dy;
if (dy<0) {
swap=dn21;
dn21=dn22;
dn22=swap;
}
}
if (dn22<0) return kBig;
Double_t dx=dir[0]-fTxy*dy-fTxz*dir[2];
if (dx==0) {
if ((dn11*dn12)>0) return kBig;
dn11=0;
dn12=kBig;
} else {
dn11=dn11/dx;
dn12=dn12/dx;
if (dx<0) {
swap=dn11;
dn11=dn12;
dn12=swap;
}
}
if (dn12<0) return kBig;
Double_t smin=TMath::Max(dn11,dn21);
if (dn31>smin) smin=dn31;
Double_t smax=TMath::Min(dn12,dn22);
if (dn32<smax) smax=dn32;
if (smax<=smin) return kBig;
if (smin<=0) return kBig;
return smin;
}
//-----------------------------------------------------------------------------
Double_t TGeoPara::DistToSurf(Double_t * /*point*/, Double_t * /*dir*/) const
{
// computes the distance to next surface of the sphere along a ray
// starting from given point to the given direction.
return 0;
}
//-----------------------------------------------------------------------------
TGeoVolume *TGeoPara::Divide(TGeoVolume *voldiv, const char *divname, Int_t iaxis, Int_t ndiv,
Double_t start, Double_t step)
{
//--- Divide this paralelipiped shape belonging to volume "voldiv" into ndiv equal volumes
// called divname, from start position with the given step. Returns pointer
// to created division cell volume. In case a wrong division axis is supplied,
// returns pointer to volume to be divided.
TGeoShape *shape; //--- shape to be created
TGeoVolume *vol; //--- division volume to be created
TGeoVolumeMulti *vmulti; //--- generic divided volume
TGeoPatternFinder *finder; //--- finder to be attached
TString opt = ""; //--- option to be attached
Double_t end=start+ndiv*step;
switch (iaxis) {
case 1: //--- divide on X
shape = new TGeoPara(step/2, fY, fZ,fAlpha,fTheta, fPhi);
finder = new TGeoPatternParaX(voldiv, ndiv, start, end);
opt = "X";
break;
case 2: //--- divide on Y
shape = new TGeoPara(fX, step/2, fZ, fAlpha, fTheta, fPhi);
finder = new TGeoPatternParaY(voldiv, ndiv, start, end);
opt = "Y";
break;
case 3: //--- divide on Z
shape = new TGeoPara(fX, fY, step/2, fAlpha, fTheta, fPhi);
finder = new TGeoPatternParaZ(voldiv, ndiv, start, end);
opt = "Z";
break;
default:
Error("Divide", "Wrong axis type for division");
return 0;
}
vol = new TGeoVolume(divname, shape, voldiv->GetMedium());
vmulti = gGeoManager->MakeVolumeMulti(divname, voldiv->GetMedium());
vmulti->AddVolume(vol);
voldiv->SetFinder(finder);
finder->SetBasicVolume(vol);
finder->SetDivIndex(voldiv->GetNdaughters());
for (Int_t ic=0; ic<ndiv; ic++) {
voldiv->AddNodeOffset(vol, ic, start+step/2.+ic*step, opt.Data());
((TGeoNodeOffset*)voldiv->GetNodes()->At(voldiv->GetNdaughters()-1))->SetFinder(finder);
}
return vmulti;
}
//-----------------------------------------------------------------------------
Double_t TGeoPara::GetAxisRange(Int_t iaxis, Double_t &xlo, Double_t &xhi) const
{
// Get range of shape for a given axis.
xlo = 0;
xhi = 0;
Double_t dx = 0;
switch (iaxis) {
case 1:
xlo = -fX;
xhi = fX;
dx = xhi-xlo;
return dx;
case 2:
xlo = -fY;
xhi = fY;
dx = xhi-xlo;
return dx;
case 3:
xlo = -fZ;
xhi = fZ;
dx = xhi-xlo;
return dx;
}
return dx;
}
//-----------------------------------------------------------------------------
void TGeoPara::GetBoundingCylinder(Double_t *param) const
{
//--- Fill vector param[4] with the bounding cylinder parameters. The order
// is the following : Rmin, Rmax, Phi1, Phi2
TGeoBBox::GetBoundingCylinder(param);
}
//-----------------------------------------------------------------------------
Int_t TGeoPara::GetFittingBox(const TGeoBBox *parambox, TGeoMatrix *mat, Double_t &dx, Double_t &dy, Double_t &dz) const
{
// Fills real parameters of a positioned box inside this. Returns 0 if successfull.
dx=dy=dz=0;
if (mat->IsRotation()) {
Error("GetFittingBox", "cannot handle parametrized rotated volumes");
return 1; // ### rotation not accepted ###
}
//--> translate the origin of the parametrized box to the frame of this box.
Double_t origin[3];
mat->LocalToMaster(parambox->GetOrigin(), origin);
if (!Contains(origin)) {
Error("GetFittingBox", "wrong matrix - parametrized box is outside this");
return 1; // ### wrong matrix ###
}
//--> now we have to get the valid range for all parametrized axis
Double_t dd[3];
dd[0] = parambox->GetDX();
dd[1] = parambox->GetDY();
dd[2] = parambox->GetDZ();
//-> check if Z range is fixed
if (dd[2]<0) {
dd[2] = TMath::Min(origin[2]+fZ, fZ-origin[2]);
if (dd[2]<0) {
Error("GetFittingBox", "wrong matrix");
return 1;
}
}
if (dd[0]>=0 && dd[1]>=0) {
dx = dd[0];
dy = dd[1];
dz = dd[2];
return 0;
}
//-> check now range at Z = origin[2] +/- dd[2]
Double_t upper[8];
Double_t lower[8];
Double_t z=origin[2]-dd[2];
lower[0]=z*fTxz-fTxy*fY-fX;
lower[1]=-fY+z*fTyz;
lower[2]=z*fTxz+fTxy*fY-fX;
lower[3]=fY+z*fTyz;
lower[4]=z*fTxz+fTxy*fY+fX;
lower[5]=fY+z*fTyz;
lower[6]=z*fTxz-fTxy*fY+fX;
lower[7]=-fY+z*fTyz;
z=origin[2]+dd[2];
upper[0]=z*fTxz-fTxy*fY-fX;
upper[1]=-fY+z*fTyz;
upper[2]=z*fTxz+fTxy*fY-fX;
upper[3]=fY+z*fTyz;
upper[4]=z*fTxz+fTxy*fY+fX;
upper[5]=fY+z*fTyz;
upper[6]=z*fTxz-fTxy*fY+fX;
upper[7]=-fY+z*fTyz;
Double_t ddmin=TGeoShape::kBig;
for (Int_t iaxis=0; iaxis<2; iaxis++) {
if (dd[iaxis]>=0) continue;
ddmin=TGeoShape::kBig;
for (Int_t ivert=0; ivert<4; ivert++) {
ddmin = TMath::Min(ddmin, TMath::Abs(origin[iaxis]-lower[2*ivert+iaxis]));
ddmin = TMath::Min(ddmin, TMath::Abs(origin[iaxis]-upper[2*ivert+iaxis]));
}
dd[iaxis] = ddmin;
}
dx = dd[0];
dy = dd[1];
dz = dd[2];
return 0;
}
//-----------------------------------------------------------------------------
TGeoShape *TGeoPara::GetMakeRuntimeShape(TGeoShape *mother, TGeoMatrix * /*mat*/) const
{
// in case shape has some negative parameters, these has to be computed
// in order to fit the mother
if (!TestBit(kGeoRunTimeShape)) return 0;
if (!mother->TestBit(kGeoPara)) {
Error("GetMakeRuntimeShape", "invalid mother");
return 0;
}
Double_t dx, dy, dz;
if (fX<0) dx=((TGeoPara*)mother)->GetX();
else dx=fX;
if (fY<0) dy=((TGeoPara*)mother)->GetY();
else dy=fY;
if (fZ<0) dz=((TGeoPara*)mother)->GetZ();
else dz=fZ;
return (new TGeoPara(dx, dy, dz, fAlpha, fTheta, fPhi));
}
//-----------------------------------------------------------------------------
void TGeoPara::InspectShape() const
{
// print shape parameters
printf("*** TGeoPara parameters ***n");
printf(" dX = %11.5fn", fX);
printf(" dY = %11.5fn", fY);
printf(" dZ = %11.5fn", fZ);
printf(" alpha = %11.5fn", fAlpha);
printf(" theta = %11.5fn", fTheta);
printf(" phi = %11.5fn", fPhi);
TGeoBBox::InspectShape();
}
//-----------------------------------------------------------------------------
void TGeoPara::NextCrossing(TGeoParamCurve * /*c*/, Double_t * /*point*/) const
{
// computes next intersection point of curve c with this shape
}
//-----------------------------------------------------------------------------
Double_t TGeoPara::Safety(Double_t *point, Bool_t in) const
{
// computes the closest distance from given point to this shape, according
// to option. The matching point on the shape is stored in spoint.
Double_t saf[3];
// distance from point to higher Z face
saf[0] = fZ-TMath::Abs(point[2]); // Z
Double_t yt = point[1]-fTyz*point[2];
saf[1] = fY-TMath::Abs(yt); // Y
// cos of angle YZ
Double_t cty = 1.0/TMath::Sqrt(1.0+fTyz*fTyz);
Double_t xt = point[0]-fTxz*point[2]-fTxy*yt;
saf[2] = fX-TMath::Abs(xt); // X
// cos of angle XZ
Double_t ctx = 1.0/TMath::Sqrt(1.0+fTxy*fTxy+fTxz*fTxz);
saf[2] *= ctx;
saf[1] *= cty;
if (in) return saf[TMath::LocMin(3,saf)];
for (Int_t i=0; i<3; i++) saf[i]=-saf[i];
return saf[TMath::LocMax(3,saf)];
}
//-----------------------------------------------------------------------------
void TGeoPara::SetDimensions(Double_t *param)
{
fX = param[0];
fY = param[1];
fZ = param[2];
fAlpha = param[3];
fTheta = param[4];
fPhi = param[5];
fTxy = TMath::Tan(param[3]*kDegRad);
Double_t tth = TMath::Tan(param[4]*kDegRad);
Double_t ph = param[5]*kDegRad;
fTxz = tth*TMath::Cos(ph);
fTyz = tth*TMath::Sin(ph);
}
//-----------------------------------------------------------------------------
void TGeoPara::SetPoints(Double_t *buff) const
{
// create sphere mesh points
if (!buff) return;
Double_t TXY = fTxy;
Double_t TXZ = fTxz;
Double_t TYZ = fTyz;
*buff++ = -fZ*TXZ-TXY*fY-fX; *buff++ = -fY-fZ*TYZ; *buff++ = -fZ;
*buff++ = -fZ*TXZ+TXY*fY-fX; *buff++ = +fY-fZ*TYZ; *buff++ = -fZ;
*buff++ = -fZ*TXZ+TXY*fY+fX; *buff++ = +fY-fZ*TYZ; *buff++ = -fZ;
*buff++ = -fZ*TXZ-TXY*fY+fX; *buff++ = -fY-fZ*TYZ; *buff++ = -fZ;
*buff++ = +fZ*TXZ-TXY*fY-fX; *buff++ = -fY+fZ*TYZ; *buff++ = +fZ;
*buff++ = +fZ*TXZ+TXY*fY-fX; *buff++ = +fY+fZ*TYZ; *buff++ = +fZ;
*buff++ = +fZ*TXZ+TXY*fY+fX; *buff++ = +fY+fZ*TYZ; *buff++ = +fZ;
*buff++ = +fZ*TXZ-TXY*fY+fX; *buff++ = -fY+fZ*TYZ; *buff++ = +fZ;
}
//-----------------------------------------------------------------------------
void TGeoPara::SetPoints(Float_t *buff) const
{
// create sphere mesh points
if (!buff) return;
Double_t TXY = fTxy;
Double_t TXZ = fTxz;
Double_t TYZ = fTyz;
*buff++ = -fZ*TXZ-TXY*fY-fX; *buff++ = -fY-fZ*TYZ; *buff++ = -fZ;
*buff++ = -fZ*TXZ+TXY*fY-fX; *buff++ = +fY-fZ*TYZ; *buff++ = -fZ;
*buff++ = -fZ*TXZ+TXY*fY+fX; *buff++ = +fY-fZ*TYZ; *buff++ = -fZ;
*buff++ = -fZ*TXZ-TXY*fY+fX; *buff++ = -fY-fZ*TYZ; *buff++ = -fZ;
*buff++ = +fZ*TXZ-TXY*fY-fX; *buff++ = -fY+fZ*TYZ; *buff++ = +fZ;
*buff++ = +fZ*TXZ+TXY*fY-fX; *buff++ = +fY+fZ*TYZ; *buff++ = +fZ;
*buff++ = +fZ*TXZ+TXY*fY+fX; *buff++ = +fY+fZ*TYZ; *buff++ = +fZ;
*buff++ = +fZ*TXZ-TXY*fY+fX; *buff++ = -fY+fZ*TYZ; *buff++ = +fZ;
}
//-----------------------------------------------------------------------------
void TGeoPara::Sizeof3D() const
{
// fill size of this 3-D object
TGeoBBox::Sizeof3D();
}
ROOT page - Class index - Top of the page
This page has been automatically generated. If you have any comments or suggestions about the page layout send a mail to ROOT support, or contact the developers with any questions or problems regarding ROOT.