// @(#)root/minuit:$Name:  $:$Id: TFitter.cxx,v 1.8 2003/05/15 14:26:01 brun Exp $
// Author: Rene Brun   31/08/99
/*************************************************************************
 * Copyright (C) 1995-2000, Rene Brun and Fons Rademakers.               *
 * All rights reserved.                                                  *
 *                                                                       *
 * For the licensing terms see $ROOTSYS/LICENSE.                         *
 * For the list of contributors see $ROOTSYS/README/CREDITS.             *
 *************************************************************************/

#include "TMinuit.h"
#include "TFitter.h"
#include "TH1.h"
#include "TF1.h"
#include "TGraph.h"

extern void H1FitChisquare(Int_t &npar, Double_t *gin, Double_t &f, Double_t *u, Int_t flag);
extern void H1FitLikelihood(Int_t &npar, Double_t *gin, Double_t &f, Double_t *u, Int_t flag);
extern void GraphFitChisquare(Int_t &npar, Double_t *gin, Double_t &f, Double_t *u, Int_t flag);

ClassImp(TFitter)

//______________________________________________________________________________
 TFitter::TFitter(Int_t maxpar)
{
//*-*-*-*-*-*-*-*-*-*-*default constructor*-*-*-*-*-*-*-*-*-*-*-*-*
//*-*                  ===================

   fMinuit = new TMinuit(maxpar);
   fNlog = 0;
   fSumLog = 0;
   SetName("MinuitFitter");
}

//______________________________________________________________________________
 TFitter::~TFitter()
{
//*-*-*-*-*-*-*-*-*-*-*default destructor*-*-*-*-*-*-*-*-*-*-*-*-*-*
//*-*                  ==================

   if (fSumLog) delete [] fSumLog;
}

//______________________________________________________________________________
 Double_t TFitter::Chisquare(Int_t npar, Double_t *params)
{
   // return a chisquare equivalent
   
   Double_t amin = 0;
   H1FitChisquare(npar,params,amin,params,1);
   return amin;
}

//______________________________________________________________________________
 void TFitter::Clear(Option_t *)
{
   // reset the fitter environment

   fMinuit->mncler();

}

//______________________________________________________________________________
 Int_t TFitter::ExecuteCommand(const char *command, Double_t *args, Int_t nargs)
{
   // Execute a fitter command;
   //   command : command string
   //   args    : list of nargs command arguments

   Int_t ierr = 0;
   fMinuit->mnexcm(command,args,nargs,ierr);
   return ierr;
}

//______________________________________________________________________________
 void TFitter::FixParameter(Int_t ipar)
{
   // Fix parameter ipar.

   fMinuit->FixParameter(ipar);
}

//______________________________________________________________________________
 Int_t TFitter::GetErrors(Int_t ipar,Double_t &eplus, Double_t &eminus, Double_t &eparab, Double_t &globcc)
{
   // return current errors for a parameter
   //   ipar     : parameter number
   //   eplus    : upper error
   //   eminus   : lower error
   //   eparab   : parabolic error
   //   globcc   : global correlation coefficient


   Int_t ierr = 0;
   fMinuit->mnerrs(ipar, eplus,eminus,eparab,globcc);
   return ierr;
}
   
//______________________________________________________________________________
 Int_t TFitter::GetParameter(Int_t ipar,char *parname,Double_t &value,Double_t &verr,Double_t &vlow, Double_t &vhigh)
{
   // return current values for a parameter
   //   ipar     : parameter number
   //   parname  : parameter name
   //   value    : initial parameter value
   //   verr     : initial error for this parameter
   //   vlow     : lower value for the parameter
   //   vhigh    : upper value for the parameter

   Int_t ierr = 0;
   TString pname;
   fMinuit->mnpout(ipar, pname,value,verr,vlow,vhigh,ierr);
   strcpy(parname,pname.Data());
   return ierr;
}

//______________________________________________________________________________
 Int_t TFitter::GetStats(Double_t &amin, Double_t &edm, Double_t &errdef, Int_t &nvpar, Int_t &nparx)
{
   // return global fit parameters
   //   amin     : chisquare
   //   edm      : estimated distance to minimum
   //   errdef
   //   nvpar    : number of variable parameters
   //   nparx    : total number of parameters

   Int_t ierr = 0;
   fMinuit->mnstat(amin,edm,errdef,nvpar,nparx,ierr);
   return ierr;
}

//______________________________________________________________________________
 Double_t TFitter::GetSumLog(Int_t n)
{
   // return Sum(log(i) i=0,n
   // used by log likelihood fits

   if (n < 0) return 0;
   if (n > fNlog) {
      if (fSumLog) delete [] fSumLog;
      fNlog = 2*n+1000;
      fSumLog = new Double_t[fNlog+1];
      Double_t fobs = 0;
      for (Int_t j=0;j<=fNlog;j++) {
         if (j > 1) fobs += TMath::Log(j);
         fSumLog[j] = fobs;
      }
   }
   if (fSumLog) return fSumLog[n];
   return 0;
}

//______________________________________________________________________________
 void  TFitter::PrintResults(Int_t level, Double_t amin) const
{
   // Print fit results

   fMinuit->mnprin(level,amin);
}

//______________________________________________________________________________
 void TFitter::ReleaseParameter(Int_t ipar)
{
   // Release parameter ipar.

   fMinuit->Release(ipar);
}

//______________________________________________________________________________
 void TFitter::SetFCN(void *fcn)
{
   // Specify the address of the fitting algorithm (from the interpreter)

   TVirtualFitter::SetFCN(fcn);
   fMinuit->SetFCN(fcn);
   
}

//______________________________________________________________________________
 void TFitter::SetFCN(void (*fcn)(Int_t &, Double_t *, Double_t &f, Double_t *, Int_t))
{
   // Specify the address of the fitting algorithm

   TVirtualFitter::SetFCN(fcn);
   fMinuit->SetFCN(fcn);
}

//______________________________________________________________________________
 void TFitter::SetFitMethod(const char *name)
{
   // ret fit method (chisquare or loglikelihood)
   
   if (!strcmp(name,"H1FitChisquare"))    SetFCN(H1FitChisquare);
   if (!strcmp(name,"H1FitLikelihood"))   SetFCN(H1FitLikelihood);
   if (!strcmp(name,"GraphFitChisquare")) SetFCN(GraphFitChisquare);
}
      
//______________________________________________________________________________
 Int_t TFitter::SetParameter(Int_t ipar,const char *parname,Double_t value,Double_t verr,Double_t vlow, Double_t vhigh)
{
   // set initial values for a parameter
   //   ipar     : parameter number
   //   parname  : parameter name
   //   value    : initial parameter value
   //   verr     : initial error for this parameter
   //   vlow     : lower value for the parameter
   //   vhigh    : upper value for the parameter

   Int_t ierr = 0;
   fMinuit->mnparm(ipar,parname,value,verr,vlow,vhigh,ierr);
   return ierr;
}


//______________________________________________________________________________
void H1FitChisquare(Int_t &npar, Double_t *gin, Double_t &f, Double_t *u, Int_t flag)
{
//           Minimization function for H1s using a Chisquare method
//           ======================================================

   Double_t cu,eu,fu,fsum;
   Double_t dersum[100], grad[100];
   Double_t x[3];
   Int_t bin,binx,biny,binz,k;
   Axis_t binlow, binup, binsize;

   Int_t npfits = 0;


   TVirtualFitter *hFitter = TVirtualFitter::GetFitter();
   TH1 *hfit = (TH1*)hFitter->GetObjectFit();
   TF1 *f1   = (TF1*)hFitter->GetUserFunc();
   Foption_t Foption = hFitter->GetFitOption();
   
   f1->InitArgs(x,u);
   npar = f1->GetNpar();
   if (flag == 2) for (k=0;k<npar;k++) dersum[k] = gin[k] = 0;
   f = 0;
   Int_t hxfirst = hFitter->GetXfirst(); 
   Int_t hxlast  = hFitter->GetXlast(); 
   Int_t hyfirst = hFitter->GetYfirst(); 
   Int_t hylast  = hFitter->GetYlast(); 
   Int_t hzfirst = hFitter->GetZfirst(); 
   Int_t hzlast  = hFitter->GetZlast(); 
   TAxis *xaxis  = hfit->GetXaxis();
   TAxis *yaxis  = hfit->GetYaxis();
   TAxis *zaxis  = hfit->GetZaxis();
   
   for (binz=hzfirst;binz<=hzlast;binz++) {
      x[2]  = zaxis->GetBinCenter(binz);
      for (biny=hyfirst;biny<=hylast;biny++) {
         x[1]  = yaxis->GetBinCenter(biny);
         for (binx=hxfirst;binx<=hxlast;binx++) {
            x[0]  = xaxis->GetBinCenter(binx);
            if (!f1->IsInside(x)) continue;
            bin = hfit->GetBin(binx,biny,binz);
            cu  = hfit->GetBinContent(bin);
            TF1::RejectPoint(kFALSE);
            if (Foption.Integral) {
               binlow  = xaxis->GetBinLowEdge(binx);
               binsize = xaxis->GetBinWidth(binx);
               binup   = binlow + binsize;
               fu      = f1->Integral(binlow,binup,u)/binsize;
            } else {
               fu = f1->EvalPar(x,u);
            }
            if (TF1::RejectedPoint()) continue;
            if (Foption.W1) {
               eu = 1;
            } else {
               eu  = hfit->GetBinError(bin);
               if (eu <= 0) continue;
            }
            if (flag == 2) {
               for (k=0;k<npar;k++) dersum[k] += 1; //should be the derivative
            }
            npfits++;
            if (flag == 2) {
               for (k=0;k<npar;k++) grad[k] += dersum[k]*(fu-cu)/eu; dersum[k] = 0;
            }
            fsum = (cu-fu)/eu;
            f += fsum*fsum;
         }
      }
   }
   f1->SetNumberFitPoints(npfits);
}

//______________________________________________________________________________
void H1FitLikelihood(Int_t &npar, Double_t *gin, Double_t &f, Double_t *u, Int_t flag)
{
//   -*-*-*-*Minimization function for H1s using a Likelihood method*-*-*-*-*-*
//           =======================================================
//     Basically, it forms the likelihood by determining the Poisson
//     probability that given a number of entries in a particular bin,
//     the fit would predict it's value.  This is then done for each bin,
//     and the sum of the logs is taken as the likelihood.

   Double_t cu,fu,fobs,fsub;
   Double_t dersum[100];
   Double_t x[3];
   Int_t bin,binx,biny,binz,k,icu;
   Axis_t binlow, binup, binsize;

   Int_t npfits = 0;


   TVirtualFitter *hFitter = TVirtualFitter::GetFitter();
   TH1 *hfit = (TH1*)hFitter->GetObjectFit();
   TF1 *f1   = (TF1*)hFitter->GetUserFunc();
   Foption_t Foption = hFitter->GetFitOption();

   f1->InitArgs(x,u);
   npar = f1->GetNpar();
   if (flag == 2) for (k=0;k<npar;k++) dersum[k] = gin[k] = 0;
   f = 0;
   Int_t hxfirst = hFitter->GetXfirst(); 
   Int_t hxlast  = hFitter->GetXlast(); 
   Int_t hyfirst = hFitter->GetYfirst(); 
   Int_t hylast  = hFitter->GetYlast(); 
   Int_t hzfirst = hFitter->GetZfirst(); 
   Int_t hzlast  = hFitter->GetZlast(); 
   TAxis *xaxis  = hfit->GetXaxis();
   TAxis *yaxis  = hfit->GetYaxis();
   TAxis *zaxis  = hfit->GetZaxis();
   
   for (binz=hzfirst;binz<=hzlast;binz++) {
      x[2]  = zaxis->GetBinCenter(binz);
      for (biny=hyfirst;biny<=hylast;biny++) {
         x[1]  = yaxis->GetBinCenter(biny);
         for (binx=hxfirst;binx<=hxlast;binx++) {
            x[0]  = xaxis->GetBinCenter(binx);
            if (!f1->IsInside(x)) continue;
            TF1::RejectPoint(kFALSE);
            bin = hfit->GetBin(binx,biny,binz);
            cu  = hfit->GetBinContent(bin);
            if (Foption.Integral) {
               binlow  = xaxis->GetBinLowEdge(binx);
               binsize = xaxis->GetBinWidth(binx);
               binup   = binlow + binsize;
               fu      = f1->Integral(binlow,binup,u)/binsize;
            } else {
               fu = f1->EvalPar(x,u);
            }
            if (TF1::RejectedPoint()) continue;
            npfits++;
            if (flag == 2) {
               for (k=0;k<npar;k++) {
                  dersum[k] += 1; //should be the derivative
                  //grad[k] += dersum[k]*(fu-cu)/eu; dersum[k] = 0;
               }
            }
            if (fu < 1.e-9) fu = 1.e-9;
            if (Foption.Like == 1) {
               icu  = Int_t(cu);
               fsub = -fu +icu*TMath::Log(fu);
               fobs = hFitter->GetSumLog(icu);
            } else {
               fsub = -fu +cu*TMath::Log(fu);
               fobs = TMath::Gamma(cu+1);
            }
            fsub -= fobs;
            f -= fsub;
         }
      }
   }
   f *= 2;
   f1->SetNumberFitPoints(npfits);
}

//______________________________________________________________________________
void GraphFitChisquare(Int_t &npar, Double_t * /*gin*/, Double_t &f,
                       Double_t *u, Int_t /*flag*/)
{
//*-*-*-*-*-*Minimization function for Graphs using a Chisquare method*-*-*-*-*
//*-*        =========================================================
//
// In case of a TGraphErrors object, ex, the error along x,  is projected
// along the y-direction by calculating the function at the points x-ex and
// x+ex.
//
// The chisquare is computed as the sum of the quantity below at each point:
//
//                     (y - f(x))**2
//         -----------------------------------
//         ey**2 + ((f(x+ex) - f(x-ex))/2)**2
//
// where x and y are the point coordinates

   Double_t cu,eu,ex,ey,eux,fu,fsum,fm,fp;
   Double_t x[1], xx[1];
   Double_t xm,xp;
   Int_t bin, npfits=0;

   TVirtualFitter *grFitter = TVirtualFitter::GetFitter();
   TGraph *gr     = (TGraph*)grFitter->GetObjectFit();
   TF1 *f1   = (TF1*)grFitter->GetUserFunc();
   Foption_t Foption = grFitter->GetFitOption();
   
   Int_t n        = gr->GetN();
   Double_t *gx   = gr->GetX();
   Double_t *gy   = gr->GetY();
   Double_t fxmin = f1->GetXmin();
   Double_t fxmax = f1->GetXmax();
   npar           = f1->GetNpar();

   f1->InitArgs(x,u);
   f      = 0;
   for (bin=0;bin<n;bin++) {
      x[0] = gx[bin];
      if (!f1->IsInside(x)) continue;
      cu   = gy[bin];
      TF1::RejectPoint(kFALSE);
      fu   = f1->EvalPar(x,u);
      if (TF1::RejectedPoint()) continue;
      fsum = (cu-fu);
      npfits++;
      if (Foption.W1) {
         f += fsum*fsum;
         continue;
      }
      ex  = gr->GetErrorX(bin);
      ey  = gr->GetErrorY(bin);
      if (ex < 0) ex = 0;
      if (ey < 0) ey = 0;
      if (ex > 0) {
        xm = x[0] - ex; if (xm < fxmin) xm = fxmin;
        xp = x[0] + ex; if (xp > fxmax) xp = fxmax;
        xx[0] = xm; fm = f1->EvalPar(xx,u);
        xx[0] = xp; fp = f1->EvalPar(xx,u);
        eux = 0.5*(fp-fm);
      } else
        eux = 0.;
      eu = ey*ey+eux*eux;
      if (eu <= 0) eu = 1;
      f += fsum*fsum/eu;
   }
   f1->SetNumberFitPoints(npfits);
}



ROOT page - Class index - Top of the page

This page has been automatically generated. If you have any comments or suggestions about the page layout send a mail to ROOT support, or contact the developers with any questions or problems regarding ROOT.