////////////////////////////////////////////////////////////////////////////
// TFeldmanCousins
//
// class to calculate the CL upper limit using
// the Feldman-Cousins method as described in PRD V57 #7, p3873-3889
//
// The default confidence interval calvculated using this method is 90%
// This is set either by having a default the constructor, or using the
// appropriate fraction when instantiating an object of this class (e.g. 0.9)
//
// The simple extension to a gaussian resolution function bounded at zero
// has not been addressed as yet -> `time is of the essence' as they write
// on the wall of the maze in that classic game ...
//
// VARIABLES THAT CAN BE ALTERED
// -----------------------------
// => depending on your desired precision: The intial values of fMuMin,
// fMuMax, fMuStep and fNMax are those used in the PRD:
// fMuMin = 0.0
// fMuMax = 50.0
// fMuStep= 0.005
// but there is total flexibility in changing this should you desire.
//
//
// see example of use in $ROOTSYS/tutorials/FeldmanCousins.C
//
// Author: Adrian Bevan, Liverpool University
//
// Copyright Liverpool University 2001 bevan@slac.stanford.edu
///////////////////////////////////////////////////////////////////////////
#include "Riostream.h"
#include "TFeldmanCousins.h"
ClassImp(TFeldmanCousins)
//______________________________________________________________________________
TFeldmanCousins::TFeldmanCousins(Double_t newFC, TString options)
{
fCL = newFC;
fUpperLimit = 0.0;
fLowerLimit = 0.0;
fNobserved = 0.0;
fNbackground = 0.0;
options.ToLower();
if (options.Contains("q")) fQUICK = 1;
else fQUICK = 0;
fNMax = 50;
fMuStep = 0.005;
SetMuMin();
SetMuMax();
SetMuStep();
}
//______________________________________________________________________________
TFeldmanCousins::~TFeldmanCousins()
{
}
//______________________________________________________________________________
Double_t TFeldmanCousins::CalculateLowerLimit(Double_t Nobserved, Double_t Nbackground)
{
////////////////////////////////////////////////////////////////////////////////////////////
// given Nobserved and Nbackground, try different values of mu that give lower limits that//
// are consistent with Nobserved. The closed interval (plus any stragglers) corresponds //
// to the F&C interval //
////////////////////////////////////////////////////////////////////////////////////////////
CalculateUpperLimit(Nobserved, Nbackground);
return fLowerLimit;
}
//______________________________________________________________________________
Double_t TFeldmanCousins::CalculateUpperLimit(Double_t Nobserved, Double_t Nbackground)
{
////////////////////////////////////////////////////////////////////////////////////////////
// given Nobserved and Nbackground, try different values of mu that give upper limits that//
// are consistent with Nobserved. The closed interval (plus any stragglers) corresponds //
// to the F&C interval //
////////////////////////////////////////////////////////////////////////////////////////////
fNobserved = Nobserved;
fNbackground = Nbackground;
Double_t mu = 0.0;
// for each mu construct the ranked table of probabilities and test the
// observed number of events with the upper limit
Double_t min = -999.0;
Double_t max = 0;
Int_t iLower = 0;
Int_t i;
for(i = 0; i <= fNMuStep; i++) {
mu = fMuMin + (Double_t)i*fMuStep;
Int_t goodChoice = FindLimitsFromTable( mu );
if( goodChoice ) {
min = mu;
iLower = i;
break;
}
}
//==================================================================
// For quicker evaluation, assume that you get the same results when
// you expect the uppper limit to be > Nobserved-Nbackground.
// This is certainly true for all of the published tables in the PRD
// and is a reasonable assumption in any case.
//==================================================================
Double_t quickJump = 0.0;
if (fQUICK) quickJump = Nobserved-Nbackground-fMuMin;
if (quickJump < 0.0) quickJump = 0.0;
for(i = iLower+1; i <= fNMuStep; i++) {
mu = fMuMin + (Double_t)i*fMuStep + quickJump;
Int_t goodChoice = FindLimitsFromTable( mu );
if( !goodChoice ) {
max = mu;
break;
}
}
fUpperLimit = max;
fLowerLimit = min;
return max;
}
//______________________________________________________________________________
Int_t TFeldmanCousins::FindLimitsFromTable( Double_t mu )
{
///////////////////////////////////////////////////////////////////
// calculate the probability table for a given mu for n = 0, NMAX//
// and return 1 if the number of observed events is consistent //
// with the CL bad //
///////////////////////////////////////////////////////////////////
Double_t *P = new Double_t[fNMax]; //the array of probabilities in the interval MUMIN-MUMAX
Double_t *R = new Double_t[fNMax]; //the ratio of likliehoods = P(Mu|Nobserved)/P(MuBest|Nobserved)
Int_t *rank = new Int_t[fNMax]; //the ranked array corresponding to R (largest first)
Double_t *MuBest = new Double_t[fNMax];
Double_t *ProbMuBest = new Double_t[fNMax];
//calculate P(i | mu) and P(i | mu)/P(i | mubest)
Int_t i;
for(i = 0; i < fNMax; i++) {
MuBest[i] = (Double_t)(i - fNbackground);
if(MuBest[i]<0.0) MuBest[i] = 0.0;
ProbMuBest[i] = Prob(i, MuBest[i], fNbackground);
P[i] = Prob(i, mu, fNbackground);
if(ProbMuBest[i] == 0.0) R[i] = 0.0;
else R[i] = P[i]/ProbMuBest[i];
}
//rank the likelihood ratio
TMath::BubbleHigh(fNMax, R, rank);
//search through the probability table and get the i for the CL
Double_t sum = 0.0;
Int_t iMax = rank[0];
Int_t iMin = rank[0];
for(i = 0; i < fNMax; i++) {
sum += P[rank[i]];
if(iMax < rank[i]) iMax = rank[i];
if(iMin > rank[i]) iMin = rank[i];
if(sum >= fCL) break;
}
delete P;
delete R;
delete rank;
delete MuBest;
delete ProbMuBest;
if((fNobserved <= iMax) && (fNobserved >= iMin)) return 1;
else return 0;
}
//______________________________________________________________________________
Double_t TFeldmanCousins::Prob(Int_t N, Double_t mu, Double_t B)
{
////////////////////////////////////////////////
// calculate the poissonian probability for //
// a mean of mu+B events with a variance of N //
////////////////////////////////////////////////
//calculate the factorial
Double_t factorial = 1.0;
if (N == 2) factorial = 2.0;
else if (N > 2) {
for (Int_t ifact = N; ifact>=2; ifact--) {
factorial = (Double_t)ifact * factorial;
}
}
Double_t sum = mu+B;
Double_t power;
if (N==1) power = sum;
else if (N==2) power = sum*sum;
else if (N==3) power = sum*sum*sum;
else if (N==4) power = sum*sum*sum*sum;
else power = pow(sum, N);
return ( power * exp(-sum) / factorial );
}
//______________________________________________________________________________
void TFeldmanCousins::SetMuMax(Double_t newMax)
{
fMuMax = newMax;
fNMax = (Int_t)newMax;
SetMuStep(fMuStep);
}
//______________________________________________________________________________
void TFeldmanCousins::SetMuStep(Double_t newMuStep)
{
if(newMuStep == 0.0)
{
cout << "TFeldmanCousins::SetMuStep ERROR New step size is zero - unable to change value"<< endl;
return;
}
else
{
fMuStep = newMuStep;
fNMuStep = (Int_t)((fMuMax - fMuMin)/fMuStep);
}
}
ROOT page - Class index - Top of the page
This page has been automatically generated. If you have any comments or suggestions about the page layout send a mail to ROOT support, or contact the developers with any questions or problems regarding ROOT.