A complex example with several graphs and annotations
// This macro is an example of graphs in log scales
// with annotations.
//
// The presented results
// are predictions of invariant cross-section of Direct Photons produced
// at RHIC energies, based on the universality of scaling function H(z).
//
// Authors: Michael Tokarev and Elena Potrebenikova (JINR Dubna)
//
// These Figures were published in JINR preprint E2-98-64, Dubna,
// 1998 and submitted to CPC.
//
// Note that the way greek symbols, super/subscripts are obtained
// illustrate the current limitations of Root in this area.
//
const Int_t NMAX = 20;
Int_t NLOOP;
Float_t Z[NMAX], HZ[NMAX], PT[NMAX], INVSIG[NMAX];
//______________________________________________________________________________
void zdemo()
{
Float_t energ;
Float_t dens;
Float_t tgrad;
Float_t ptmin;
Float_t ptmax;
Float_t delp;
char text[12];
char *symbol[];
// Create a new canvas.
c1 = new TCanvas("zdemo","Monte Carlo Study of Z scaling",10,40,800,600);
c1->Range(0,0,25,18);
c1->SetFillColor(40);
TPaveLabel *pl = new TPaveLabel(1,16.3,24,17.5,"Z-scaling of Direct Photon Productions in pp Collisions at RHIC Energies","br");
pl->SetFillColor(18);
pl->SetTextFont(32);
pl->SetTextColor(49);
pl->Draw();
TText *t = new TText();
t->SetTextFont(32);
t->SetTextColor(1);
t->SetTextSize(0.03);
t->SetTextAlign(12);
t->DrawText(3.1,15.5,"M.Tokarev, E.Potrebenikova ");
t->DrawText(14.,15.5,"JINR preprint E2-98-64, Dubna, 1998 ");
pad1 = new TPad("pad1","This is pad1",0.02,0.02,0.48,0.83,33);
pad2 = new TPad("pad2","This is pad2",0.52,0.02,0.98,0.83,33);
pad1->Draw();
pad2->Draw();
//
// Cross-section of direct photon production in pp collisions at 500 GeV vs Pt
//
energ = 63;
dens = 1.766;
tgrad = 90.;
ptmin = 4.;
ptmax = 24.;
delp = 2.;
hz_calc(energ, dens, tgrad, ptmin, ptmax, delp);
pad1->cd();
pad1->Range(-0.255174,-19.25,2.29657,-6.75);
pad1->SetLogx();
pad1->SetLogy();
// create a 2-d histogram to define the range
pad1->DrawFrame(1,1e-18,110,1e-8);
pad1->GetFrame()->SetFillColor(19);
TText *t = new TText();
t->SetTextFont(62);
t->SetTextColor(36);
t->SetTextSize(0.08);
t->SetTextAlign(12);
t->DrawText(1.24,-8.8,"p - p");
t->SetTextSize(0.05);
t->DrawText(1.21,-9.55,"Direct");
t->DrawText(1.35,-10.12,"= 90");
t->DrawText(0.24,-13.3,"Ed");
t->DrawText(0.57,-13.3,"/dq");
t->DrawText(0.24,-14.,"(barn/Gev )");
t->SetTextSize(0.025);
t->DrawText(1.6,-10.,"o");
t->SetTextSize(0.03);
t->DrawText(0.425,-13.16,"3");
t->DrawText(0.81,-13.16,"3");
t->DrawText(0.82,-13.86,"2");
t->SetTextSize(0.045);
t->SetTextColor(kBlue);
t->DrawText(0.45,-16.01,"s = 63(GeV)");
t->SetTextColor(kRed);
t->DrawText(0.45,-16.73,"s = 200(GeV)");
t->SetTextColor(6);
t->DrawText(0.45,-17.39,"s = 500(GeV)");
t->SetTextSize(0.05);
t->SetTextColor(1);
t->DrawText(1.3,-18.5,"q (Gev/c)");
t->SetTextSize(0.03);
t->DrawText(1.37,-18.65,"T");
// Greek Symbols for First pad
t = new TText();
t->SetTextFont(122);
t->SetTextSize(0.05);
t->SetTextColor(36);
t->SetTextAlign(12);
t->DrawText(1.61,-9.54,"g");
t->DrawText(1.27,-10.14,"q");
t->DrawText(0.45,-13.3,"s");
t->SetTextSize(0.07);
t->SetTextColor(kBlue);
t->DrawText(0.35,-16.01,"326");
t->SetTextColor(kRed);
t->DrawText(0.35,-16.73,"326");
t->SetTextColor(6);
t->DrawText(0.35,-17.39,"326");
gr1 = new TGraph(NLOOP,PT,INVSIG);
gr1->SetLineColor(38);
gr1->SetMarkerColor(kBlue);
gr1->SetMarkerStyle(21);
gr1->SetMarkerSize(1.1);
gr1->Draw("LP");
//
// Cross-section of direct photon production in pp collisions at 200 GeV vs Pt
//
energ = 200;
dens = 2.25;
tgrad = 90.;
ptmin = 4.;
ptmax = 64.;
delp = 6.;
hz_calc(energ, dens, tgrad, ptmin, ptmax, delp);
gr2 = new TGraph(NLOOP,PT,INVSIG);
gr2->SetLineColor(38);
gr2->SetMarkerColor(kRed);
gr2->SetMarkerStyle(29);
gr2->SetMarkerSize(1.5);
gr2->Draw("LP");
//
// Cross-section of direct photon production in pp collisions at 500 GeV vs Pt
//
energ = 500;
dens = 2.73;
tgrad = 90.;
ptmin = 4.;
ptmax = 104.;
delp = 10.;
hz_calc(energ, dens, tgrad, ptmin, ptmax, delp);
gr3 = new TGraph(NLOOP,PT,INVSIG);
gr3->SetLineColor(38);
gr3->SetMarkerColor(6);
gr3->SetMarkerStyle(8);
gr3->SetMarkerSize(1.1);
gr3->Draw("LP");
Float_t *dum = 0;
TGraph *graph = new TGraph(1,dum,dum);
graph->SetMarkerColor(kBlue);
graph->SetMarkerStyle(21);
graph->SetMarkerSize(1.1);
graph->SetPoint(0,1.7,1.e-16.);
graph->Draw("LP");
TGraph *graph = new TGraph(1,dum,dum);
graph->SetMarkerColor(kRed);
graph->SetMarkerStyle(29);
graph->SetMarkerSize(1.5);
graph->SetPoint(0,1.7,2.e-17.);
graph->Draw("LP");
TGraph *graph = new TGraph(1,dum,dum);
graph->SetMarkerColor(6);
graph->SetMarkerStyle(8);
graph->SetMarkerSize(1.1);
graph->SetPoint(0,1.7,4.e-18.);
graph->Draw("LP");
pad2->cd();
pad2->Range(-0.43642,-23.75,3.92778,-6.25);
pad2->SetLogx();
pad2->SetLogy();
pad2->DrawFrame(1,1e-22,3100,1e-8);
pad2->GetFrame()->SetFillColor(19);
gr = new TGraph(NLOOP,Z,HZ);
gr->SetTitle("HZ vs Z");
gr->SetFillColor(19);
gr->SetLineColor(9);
gr->SetMarkerColor(50);
gr->SetMarkerStyle(29);
gr->SetMarkerSize(1.5);
gr->Draw("LP");
TText *t = new TText();
t->SetTextFont(62);
t->SetTextColor(36);
t->SetTextSize(0.08);
t->SetTextAlign(12);
t->DrawText(1.63,-9.48,"p - p");
t->SetTextSize(0.05);
t->DrawText(1.6,-10.55,"Direct");
t->DrawText(1.87,-11.35,"= 90");
t->DrawText(2.52,-13.35,"H(z)");
t->DrawText(2.45,-14.05,"(barn)");
t->SetTextSize(0.025);
t->DrawText(2.3,-11.2,"o");
t->SetTextSize(0.045);
t->SetTextColor(46);
t->DrawText(0.65,-18.34,"s, GeV");
t->DrawText(0.65,-19.04,"63");
t->DrawText(0.6,-19.84,"200");
t->DrawText(0.6,-20.64,"500");
t->SetTextSize(0.05);
t->SetTextColor(1);
t->DrawText(3.2,-22.5,"z");
// Greek Symbols for Second pad
t = new TText();
t->SetTextFont(122);
t->SetTextSize(0.05);
t->SetTextColor(36);
t->SetTextAlign(12);
t->DrawText(2.32,-10.525,"g");
t->DrawText(1.725,-11.4,"q");
t->SetTextSize(0.07);
t->SetTextColor(46);
t->DrawText(0.5,-18.34,"326");
// c1->Print("zdemo.ps");
c1->Modified();
c1->Update();
}
void hz_calc(Float_t ENERG, Float_t DENS, Float_t TGRAD, Float_t PTMIN, Float_t PTMAX, Float_t DELP)
{
Int_t I;
Float_t CSEFT= 1.;
Float_t GM1 = 0.00001;
Float_t GM2 = 0.00001;
Float_t A1 = 1.;
Float_t A2 = 1.;
Float_t ALX = 2.;
Float_t BETA = 1.;
Float_t KF1 = 8.E-7;
Float_t KF2 = 5.215;
Float_t MN = 0.9383;
Float_t DEGRAD=0.01745329;
Float_t EB1, EB2, PB1, PB2, MB1, MB2, M1, M2;
Float_t DNDETA;
Float_t P1P2, P1P3, P2P3;
Float_t Y1, Y2, S, SMIN, SX1, SX2, SX1X2, DELM;
Float_t Y1X1, Y1X2, Y2X1, Y2X2, Y2X1X2, Y1X1X2;
Float_t KX1, KX2, ZX1, ZX2, KX1X2, ZX1X2;
Float_t H1, H2;
Float_t PTOT, THET, ETOT, X1, X2, ZZX1X2, ZX1ZX2;
// printf("ENR= %f DENS= %f PTMIN= %f PTMAX= %f DELP= %f n",ENERG,DENS,PTMIN,PTMAX, DELP);
DNDETA= DENS;
MB1 = MN*A1;
MB2 = MN*A2;
EB1 = ENERG/2.*A1;
EB2 = ENERG/2.*A2;
M1 = GM1;
M2 = GM2;
THET = TGRAD*DEGRAD;
NLOOP = (PTMAX-PTMIN)/DELP;
for (I=0; I<NLOOP;I++) {
PT[I]=PTMIN+I*DELP;
PTOT = PT[I]/sin(THET);
ETOT = sqrt(M1**2 + PTOT**2);
PB1 = sqrt(EB1**2 - MB1**2);
PB2 = sqrt(EB2**2 - MB2**2);
P2P3 = EB2*ETOT+PB2*PTOT*cos(THET);
P1P2 = EB2*EB1+PB2*PB1;
P1P3 = EB1*ETOT-PB1*PTOT*cos(THET);
X1 = P2P3/P1P2;
X2 = P1P3/P1P2;
Y1 = X1+sqrt(X1*X2*(1.-X1)/(1.-X2));
Y2 = X2+sqrt(X1*X2*(1.-X2)/(1.-X1));
S = (MB1**2)+2.*P1P2+(MB2**2);
SMIN = 4.*((MB1**2)*(X1**2) +2.*X1*X2*P1P2+(MB2**2)*(X2**2));
SX1 = 4.*( 2*(MB1**2)*X1+2*X2*P1P2);
SX2 = 4.*( 2*(MB2**2)*X2+2*X1*P1P2);
SX1X2= 4.*(2*P1P2);
DELM = ( (1.-Y1)*(1.-Y2) )**ALX;
Z[I] = sqrt(SMIN)/DELM/(DNDETA**BETA);
Y1X1 = 1. +X2*(1-2.*X1)/(2.*(Y1-X1)*(1.-X2));
Y1X2 = X1*(1-X1)/(2.*(Y1-X1)*(1.-X2)**2);
Y2X1 = X2*(1-X2)/(2.*(Y2-X2)*(1.-X1)**2);
Y2X2 = 1. +X1*(1-2.*X2)/(2.*(Y2-X2)*(1.-X1));
Y2X1X2= Y2X1*( (1.-2.*X2)/(X2*(1-X2)) -( Y2X2-1.)/(Y2-X2));
Y1X1X2= Y1X2*( (1.-2.*X1)/(X1*(1-X1)) -( Y1X1-1.)/(Y1-X1));
KX1=-DELM*(Y1X1*ALX/(1.-Y1) + Y2X1*ALX/(1.-Y2));
KX2=-DELM*(Y2X2*ALX/(1.-Y2) + Y1X2*ALX/(1.-Y1));
ZX1=Z[I]*(SX1/(2.*SMIN)-KX1/DELM);
ZX2=Z[I]*(SX2/(2.*SMIN)-KX2/DELM);
H1=ZX1*ZX2;
HZ[I]=KF1/(Z[I]**KF2);
INVSIG[I]=(HZ[I]*H1*16.)/S;
}
}
ROOT page - Class index - Top of the page
This page has been automatically generated. If you have any comments or suggestions about the page layout send a mail to ROOT support, or contact the developers with any questions or problems regarding ROOT.