JLC

1996年秋 日本物理学会素粒子実験シンポジウム

高エネルギー物理学研究所、田内利明

日本の次期計画

高エネルギー委員会・行動計画

高エネ研・菅原所長によるスケジュール

物理の 測定器とR JLC 加速器 JLC 開発研究の現状 まとめ

JLC計画の概念図

リニアコライダー計画推進のための行動方針

高エネルギー委員会,1996年5月15日

第150回高エネルギー委員会において行われた第2次リニアコライダー (以下LC)R&Dの結果報告および将来計画検討小委員会の中間答申を受け て,LC計画を今後より一層強力に推進するために以下の 行動指針を提案する。

1.第1期計画として全エネルギー250~500GeV、第2期 計画としてTeV領域を目指す。

2.アジア太平洋地域での建設を目指し、わが国はホスト国となる意向 を表明する。同時に全世界に開かれた国際協力計画とする。

3.2001年度のLC建設開始を目指し、その準備のために、1996 年度内にLCシステムの基本概念設計を終え、その後、具体的な設計に進む。

4. ATFを用いたR&Dを積極的に進め、LCに関する問題点を明確に する。メインライナックについては、Xバンドを中心にR&Dを行う が、Cバンドについてもリアリスティックなバックアップ 技術としてR&Dを強化し、適当な時期に最終的な選択を行うものとする。

5.高エネルギー物理学研究所内に、LC準備室を作り計画推進の中心とする。大学および研究所のメンバーよりなるLC推進委員会をおき LC準備室と緊密な連絡を図りつつ計画を推進する。

6.国際共同研究体制に具体的に取り組むべく、高エネルギー物理学研究 所のさらなる国際化を今から準備し、LC建設の母体となるべき加 速器国際センター(仮称)の新設もしくは現組織の発展的 な転換を目指す。

Schedule/Road Map for LC's

Year	LC/JLC	NLC	TESLA
]	H.Sugawara, KEK,9/4/95 T.Ba	arklow, Gran Sasso,6/3/9	5 B.H.Wiik, Gran Sasso, 5/29/95
1996		ZDR(SNOWMASS96)) First CDR
ICFA	at KEK to discuss LC etc	2	
1997	JLC Design Study/CDR		Detailed comparison with other collider designs
LC97	-International Review		
1998	recommendation from Science Council of Japan	CDR	Complete CDR including construction schedule and cost
1999	Detailed engineering design Office of preparation for International Accelerator Center (IAC), various committees including the cite selection.	n er	
2000			If approved
2001	IAC starts. Construction of LC starts.	Construction begins	
2006		Luminosity	Experiment
2007	Experiment starts.		

物理のターゲット

標準モデルを越える物理

超対称性理論

理論的動機:

新しい対称性より力学(指導原理) 4つの力の大統一理論 階層性問題の解決

From Marciano's talk at Snowmass96, June 1996,

SUSY - most radical, most appealing, most ambitious, and most likely; Almost totally accepted by theorists.

実験的示唆

LEP/SLC精密実験:

3つの結合定数の統一

テクニカラーモデルの困難

ヒッグス質量の上限 (500GeV @2σ) CDF/D0実験:

重いトップクォーク(175 \pm 8GeV)

ヒッグス質量の予言

トップの湯川相互作用による真空の不安定性より ヒッグスの質量下限(~90GeV@A=1 TeV)

超対称性理論によるヒッグスの質量上限 125 GeV(最小超対称性理論;MSSM) 150 GeV(一般の超対称性理論)

90GeV < M_h < 125 (150) GeV

The Value of the Electromagnetic Coupling at Large Momentum Transfer

 $\langle Q_{\gamma 1} | Q_{\gamma 2} \rangle^{1/2}$ is the typical (median) product of momentum transfers for antitagged two photon mupair.

SUSY理論に基づく大統一の可能性

LEPデータとテクニカラーモデル

♦ : the Standard Model expectation without electroweak radiative correction

Figure 9: $\Delta \chi^2 = \chi^2 - \chi^2_{min}$ vs $m_{\rm H}$ curves. Continuous line: using all data (last column of Table 23); dashed line: as before, but excluding the LEP+SLD measurements of $R_{\rm b}$ and $R_{\rm c}$. In both cases, the direct measurement of $m_{\rm t}$ at the TEVATRON is included.

物理のシナリオ 軽いヒッグス(h)の発見 超対称性世界への夜明け ヒッグスのbb、cc、gg、γγへの崩壊比測定 H, A, H⁺, H⁻の発見 超対称性理論を実験的に検証 超対称性粒子の発見・精密測定 \mathbf{J} $m_0, \mu, M_2, \tan\beta$ (SUGRA)の決定

σ(fb)

$\begin{array}{ccc} e^{\scriptscriptstyle +}e^{\scriptscriptstyle -} & \rightarrow h \; Z & \text{at Ecm=300GeV} \\ & h \rightarrow b \; \overline{b}, \; Z \rightarrow \mu^{\scriptscriptstyle +}\mu^{\scriptscriptstyle -} \end{array}$

$e^+e^- \rightarrow h Z$ at Ecm=300GeV $h \rightarrow b \overline{b}, Z \rightarrow \mu^+\mu^-$

100 cm

図 1.13: $H_{SM}^0 \rightarrow b\bar{b}$ に対応する $Z^0 \rightarrow l^+l^-$ の反跳質量分布。積分ルミノシティーは 30 fb⁻¹。 (a) は衝突エネルギーの制御をしない場合、 (b) はした場合。網かけしたヒストグラムは、 $m_{H_{SM}}=80$ 、 100、 120、および 140 GeV の時 $oe^+e^- \rightarrow H_{SM}^0 Z^0$ 。白抜きのヒストグラムはバックグラウンド反応 $e^+e^- \rightarrow Z^0 Z^0$ 。

 $P(e_{R})=100\% \Rightarrow background:W対生成激減$

 E_{μ} ($\mu_{R} \rightarrow \mu \tilde{\chi}^{0}_{1}$) の最小・最大値 \downarrow $\widetilde{\mu}_{R} \succeq \tilde{\chi}^{0}_{1}$ の質量:1%の精度で決定。

selectron対生成: neutralino交換過程も。 LÃO LÃO => Acoplanan lepton pairs

ES. Mo = 70 GeV, M= 400 GeV, Mz = 250 GeV, tans= 2 MZ = 141.9 GeV, Mgo = 117.8 GeV

1.5 SUSY

2 end points in E_M distribution

Determination of Min, Mão

> Mine . Mgo

 $\Delta M_{\tilde{u}n} = \pm 0.8 \text{ GeV}$ $\Delta M_{\tilde{g}0} = \pm 0.6 \text{ GeV}$

Chargino対生成

Charginos: $\tilde{\chi}_{1}^{+,-}, \tilde{\chi}_{2}^{+,-} \leftarrow \widetilde{W}^{+,-}, \widetilde{H}^{+,-}$ の混合 Neutralinos: $\tilde{\chi}_{1,2,3,4}^{0} \leftarrow \widetilde{B}, \widetilde{W}^{0}, \widetilde{H}_{1}^{0}, \widetilde{H}_{2}^{0}$ の混合

 $\mu >> M_2 : \widetilde{\chi_1}^{+,-}, \widetilde{\chi_1}^0 \approx gaugino(wino,bino)$ $\mu << M_2 : \widetilde{\chi_1}^{+,-}, \widetilde{\chi_1}^0 \approx higgsino$

 e_{R}^{-} beam: Bのみと結合 $\rightarrow H^{+,-}$ 成分 100%偏極 $\Rightarrow U(1)$ ゲージ相互作用 e_{L}^{-} beam: v交換にsensitive $\rightarrow W^{+,-}$ 成分 $\implies \mu, M_{2}$

min·max E(2 jets) ⇒ $\tilde{\chi}_1^{+,-}$ と $\tilde{\chi}_1^0$ の質量

湯川相互作用により

質量固有状態 🗲 対称性固有状態 ↓ スレプトン中、一番軽い可能性。 $\sigma(e^+e_R^- \rightarrow B \rightarrow \tilde{\tau}_1^+ \tilde{\tau}_1^-), \text{ min} \cdot \max E_{\rho}(\tilde{\tau}_1^- \rightarrow \tau^- \rightarrow \rho^- \nu)$) τ_R - τ_L 混合比(θ_τ) と τ_L と χ⁰1の質量の決定 e⁺ χ^{0}_{1} (W, H) γ/Ζ (Β) $\mathbf{\tau}_{\mathsf{L}} = \mathbf{\tau}_{\mathsf{L}} \cos \theta_{\tau} + \mathbf{\tau}_{\mathsf{R}} \sin \theta_{\tau})$ Y: -1/2 $\overset{e}{\tau_{1}} \rightarrow \tau \tilde{\chi}_{1}^{0} \mathcal{O}\tau$ 偏極度 $\Rightarrow \tan\beta$ の決定 € $\widetilde{\chi^0}_1$ の gaugino と higgsinoの成分比 ゲージ相互作用 湯川相互作用($Y_{\tau} \sim m_{\tau}/\cos\beta$) Chirarity: 保存 反転

Mass Determination

Can't measure E_{τ} because of a missing V, however, we can still measure

If we combine $m_{\tilde{\chi}_1^0}$ from \tilde{e}_R^{\pm} and $\tilde{\mu}_R^{\pm}$ studies $\Delta m_{\tilde{\tau}} / m_{\tilde{\tau}} \leq 1\%$ possible with 100 fb¹

Polarisation

Fit of z Distribution of 104 7 pair 125 **C**R b) TL a) T. 100 input: p_=-1 I MC data input: p,=1 result of the fit: I MC data result of the fit: dit. Number of Events in Bin Number of Events in Bin 22 5 3 50 -0.92±0.07 p.=0.95±0.07 80 60 40 25 1 20 ßG level of background for /L=100/b 0 0 0 0.2 0.4 0,5 0.3 0.2 0.4 0.5 0.8 $z(=E_{\pi}\cdot/E_{\mu})$ $z(=E_n\cdot/E_p)$

Figure 3: $z \equiv E_{\pi^+}/E_{\rho}$ distribution of the decay $\bar{\tau} \to \tau \to \rho \to \pi^+\gamma\gamma$ for $E_{\rho} > 20$ GeV. Input value of $P_{\tau} = 1(-1)$ for Fig.3a)(Fig.3b)) respectively. $N(e^+e^- \to \bar{\tau}\bar{\tau}) = 10,000, m_{\bar{\tau}_1} = 150$ GeV and $m_{\chi} = 100$ GeV. The background is generated consistent with $\int \mathcal{L} = 100 f b^{-1}$. Upper histograms are the best fit curve, while bars show MC events. Lower histograms show level of backgrounds.

K. Fujini . Cracow '96 Results from Lepton Sector Global Fit M. Nojiri et.al. \widetilde{e} . $\widetilde{\tau}$ (PRD)

Sample typical points in the parameter space and see how well we can determine $\tan\beta$ $P_{cr} = 95\%$

Ouickly lose sensitivity to tanβ as the LSP becomes Bino-rich!

On the other hand, fairly good measurement is possible if it becomes higgsino-like!

JLC detector

CDC R2D <u>An</u> = 1.1×10⁻⁴月 @ 0.1%; Axro=100,4m, Az=1mm 東京農1天,名大,工学院大,高工学研

Tentative JLC Parameters

based on the X-band Main Linac (June, 1996)

				RF	
frequency	11.4 GHz (λ	=2.6 cm)			
#Electrons/Bunch	7.2x10 ⁹ (6.45x10 ⁹ a	t IP)		
#Banches/Train	85				
Bunch separation	1.4 nsec				
G(loaded)	54.75 Me ^v	√/m			
Normalized emittance	3(H) / 0.	3(H) / 0.03(V) 10 ⁻⁶ rad m LINAC			
	3.3(H) / 0.	045(V) 10 ⁴	³ rad m	IP	
E	:cm= 500 GeV	1 leV	1.5 I e	V	
#Klystrons/linac	2138	4462	6785		
Length/linac	5.25	10.96	16.67	km	
AC-power(wall-plug)	99	200	200	MW	
	assuming	28% WP -	→RF effi	ciency	
Rep.rate	150	145	96	Hz	
$\beta_x^*(mm) / \beta_y^*(\mu m)$	10 / 100	14 / 100	25 / 1	20	
σ _x *(nm) / σ _y *(nm)	260/3	220 / 2.2	240/	1.9	
$\Delta E/E$ due to BS	4.1	8.0	8.0	%	
Pinch enhancement	1.71	1.65	1.58		
Luminosity x10 ³³	8.1	12.6	7.9	cm ⁻² s ⁻¹	

ATF

ひじょうに<mark>偏平な</mark>多バンチビームを作る。 直径1mm → 水平35µm、垂直7µmの偏平ビーム

ATF-LINAC

(S-band, 70m, 9 klystrons of 85MW,4.2µsec with SLED)

項目	達成値(1996.7.21)	設計値
ビームエネルギー	1.42 GeV	1.54GeV
加速勾配	28.7MV/m	30.4MV/m
ビーム強度:単バンチ	- 1.7 x 10 ¹⁰	2.0 x 10 ¹⁰
20バンチ(1.2Ge)	V) 7.65 x 10 ¹⁰	4 x 10 ¹¹
エネルギー幅:単バン	ノチ 0.4%	< 1%
[FWHM] 20パン	ッチ 0.3%	< 1%
エミッタンス:単バン	νチ 1.3x10 ⁻⁴ rad.m	< 3x10 ⁻⁴ rad.m
20バン	′チ 7x10⁻⁵ rad.m	< 3x10 ⁻⁴ rad.m

1995-1996年のハイライト

- ◆ 高い加速勾配の達成 (28.7 MV/m with beam)
- ◆ ECS (Energy Compensation System)の成功 f0±∆f(2・revolution frequency of DR)の新しい方法

ACCELERATOR TEST FACILITY FOR JLC

JLC-ATF, July '96 H. Hayano

First Beam in ATF-LINAC 1×10°e/kunch 1.3 Gev (25.5 Mev/m) 1995.11.30

Multi-bunch generation by Thermionic Gun

Ins single bunch beam

Accelerated Beam at 1.2 GeV energy (July '96)

4

$\pm \Delta f ECS$

Principle of Energy Compensation System

 $f = f_0 + \Delta f$ (2,856 + 4.32727 MHz)

 $f = f_{0^- \Delta} f$ (2,856 - 4.32727 MHz)

Bunch Head

Deceleration

Bunch Tail Acceleration

S.Takeda / EnergyCompSys / 940711

Result of Energy Compensation System (July '96)

ATF-DR

DR	SLC	ATF	JLC
Ebeam(GeV)	1.2	1.54	1.98
Current(mA)	136	600	500
Emittance(10^{-6} rad • m)	30/0.7	5/0.03	3.3/0.045
Damping time(m sec)	~5	9.2	~5
bunches x trains	1 x 2	20 x 5	90 x 5

- 2 wigglers (16.3 msec \rightarrow 9.2 msec at 20 Hz)
- 4 damped cavities (多バンチビーム)
- extraction line for beam diagnoses:

エミッタンス測定;

核研

SR(>40µm), Laser wire, 4µm¢ Carbon wire

京大・SLAC

○ e+偏極ビーム; Laser-Compton実験(都立大)

• and more (ATF++ to be proposed).

今年12月に完成:10mAの単バンチビーム

電磁石等のアライメント

水平:<90µm

垂直:<60µm

国際協力(SLAC、BINP、MPI、CERN、PAL、DESY。。。)

X-band(11.4GHz) LINAC

加速勾配:50MV/m(1TeV/20km) 全消費電力:200MW

 0.7×10^{10} /bunch, 85 bunches, 1.4nsec spacing, $\sigma_z = 90 \mu m$

クライストロン: 65MW, 800nsec(パルス幅) XB-72K(72mm(カソード面)

2号機:1993年、1セル,97MW,50nsecパルス幅達成

7号機:今年夏,5セル,55MW(500KV),100nsecパルス幅達成 8号機:今年12月に納入。

最適化→最大出力を上げる。500(800)nsecパルス幅へ 9号機:5→7セル(Travelling wave mode)、さらに出力UP. 1997年3月までに納入。47%効率。 実機に近いもの。

これとともに収束用磁石として、 (高温)超伝導、永久磁石(PPM)を開発していく。

SLACでは、NLCデザイン仕様のものが完成している。 XL4、1995年 •75MW(450KV,356A), 1.2μsecパルス幅,47%効率達成 •PPM 収束磁石のもの、 今年7月 55MW(488KV,204A), 1.2μsecパルス幅,55%効率達成

2号楼

7号牌 AR南

高周波パルス増幅

DLDS(Delay Line Distributed System):

原理: 2倍増幅 / 2パルス幅分割 (2/2) Delayでビームとのtiming調整

JLC:4倍増幅/3パルス幅分割(4/3) 8クライストロン/1ユニット 1520ユニット/500GeV

SLAC : SLED-II (20mのdelay line) C-band : Amplitude(phase)-controlled short(1m) delay line

ENL = 73MV/m, ELD = 53MV/m for 130MW input to 1. 3m-long structure

X-band RF system with 4/3-DLDS unit

加速管:DS(Detuned Structure) Simple disk loaded structure(円筒型旋盤加工のみ) 4本のDS加速管(150cell・1.3m)システムで transverse long range wake fieldを成長させない。 \leftarrow 『インコヒーレント』なwake fieldの和 \leftarrow 空洞(加速管)周波数 Δ f/f=10⁻⁴のガウス分布 有限個の周波数分布→不完全な『インコヒーレント』

→4本システム必要。

← 加速管の精密加工(O(λ=2.6cm)x10⁻⁴=O(μm))
0.7MHz/0.3μm

今年8月

SLAC-ASSET(Accelerator Structure SETup)で実験 結果とシミュレーションの詳細な比較(図参照) SLACのDDS(Detuned Damped Structure)も実験。

DS:4本システムでの実証が必要。 アライメントシステムの開発

Design of a detuned structure

fac(a.b,t)= 11.424 GHe

Kick [V/C/m^2] 1 1014 1 1014 0 0 16.5 14 14.5 15 15.5 16 freq [GHz]

Mode frequency distribution

X-band High Gradient Experimental Setup

Accelerator Structure SETup (ASSET) in the SLC

MEASUREMENT OF THE BUNCH-TO-BUNCH TRANSVERSE WAKEFIELD COUPLING IN THE TEST STRUCTURE

- Inject a positron bunch into the linac followed by an electron bunch the positrons serve as the drive bunch and electrons as the witness bunch.
- Vary the vertical drive bunch amplitude and measure the betatron amplitude of the
- witness bunch in the linac after the drive bunch is dumped the ratio of these amplitudes is proportional to the wakefield coupling.
- Repeat for different bunch-to-bunch time separations to measure the temporal
 - dependence of the long-range transverse wakefield.

C-band(5.21GHz) LINAC

X-band LINACのバックアップシステム

1992.8 LC92でc-band LCを提案。(JLC-1 Green book) 1996.1 R&D開始。

重心系エネルギー: クライストロン: 50MW(350KV) 加速勾配: LINAC長/ビーム:

0.5TeV 31.9MV/m 7.53 km

1.0TeV 100MW 46.8MV/m 10.55km

1ユニット: 8m(4 structures), 2 klystrons 高周波パルス増幅:コンピュータ制御・Delay Line(1m) 加速管:HDS(Heavily Damped Structure) いわゆるOpen choked structure (LC92でのtopics) 1994年 ATF-LINACでs-band加速テストOK

スケジュール (power source)

- 85MW resonant ringによるwindowテスト 1996 c-bandに必要なcomponentsも同時にテスト
- 50MWクライストロン(東芝E3746)納入 1997.3 350KV, 3µsecパルス幅,45%効率←0.5TeV用実機
- >60MW, >60%, 収束用PPM 1998
- 100MW, 70%←1TeV用実機 200x

COLOR

T. Shintake 96'

Choke Mode Cavity S-band, 14 Cells, Active length 0.55 m 52MV/m 连风

5-band

100MW

IMSEC

1994

世界のリニアコライダーとテストファシリティー (重心系エネルギー=0.5-1.0 TeV)

LC's	研究所 <mark>f</mark> ,	,特徴	テストファシリティー
	(GHz	:)	開始一完成年

- TESLA DESY
 1.3
 Super Con. TTF, 500MeV
 1993-97

 SBLC
 DESY
 3.0
 SBTA, 400MeV
 1992-96
- JLC-X KEK 11.4 ATF, 1.54GeV 1992-96 -C 5.7 S-linac, DR
- NLCSLAC11.4NLCTA,540-1028MeV1993-96SLACFFTB, σ_v=70nm1989-93

VLEPP BINP 14 Single bunch BINP,400MeV 1992-97

CLIC CERN 30 2 beam acc. CTF1 1989-95 CTF2, 500MeV 1996-98

Accerelator Physics Linear Collider Workshop

Year	Workshop	Location
1988	LC88	SLAC
1990	LC90	KEK
1991	LC91	Protvino
1992	LC92	Garmisch
1993	LC93	SLAC
1995	LC95	KEK

Studies of Particle Physics at Linear Collider

Year	Study/Workshop	Location
1987	SLAC Study Group	SLAC
	La Thuile CLIC Study	CERN
1988	SNOWMASS	USA(Snowmass)
1989	1-st JLC Workshop	KEK
1990	SNOWMASS	USA(Snowmass)
	2-nd JLC Workshop	KEK
1991	LCWS91(EE500 Workshop)	Saariselka, Finland
1992	Colliding Beam Workshops	U.S.A.
	3-rd JLC Workshop	KEK
1993	LCWS93	Waikoloa, Hawaii
	4-th JLC Workshop	KEK
1994	5-th JLC Workshop	KEK
	LC2000 Workshops	Europe
1995	LCWS95	Morioka-Appi,Japan
1996.	12 6-th JLC Workshop	Tokyo univ.

物理:まとめ

1. Top

$\Delta m_t = 0.2 \text{ GeV}$	10 fb ⁻¹	;精密測定
$\Delta\Gamma_{\rm t}/\Gamma_{\rm t}$ =0.05	100 fb ⁻¹	;世代数の制限
$\Delta \alpha_s = 0.002$	100 fb ⁻¹	;大統一理論
$\Delta\beta_{h}=0.25$	10 fb ⁻¹	;湯川相互作用

2. Wの異常結合

 $\Delta \kappa_{z,\gamma} \sim \lambda_{z,\gamma} \sim 1 \%$ 30 fb⁻¹ P_{e-} > 90%; SMを超える物理

3. Higgs

Higgs発見:m_h < E_{cm} -M_z 30 fb⁻¹

m_h > 150 GeV ⇒ SUSYキラー 精密測定(質量,分岐比):100 fb⁻¹;SM or SUSY

4. SUSY(GUT)

SUSY粒子の発見:m_{susy} < E_{cm}/2 10fb⁻¹ 精密測定(質量、断面積):100 fb⁻¹ m_{o,} M_{i,} A_, B_, μ決定⇒プランクスケールの世界

コライダー:まとめ

キーエレメントの開発研究 1997年度末に終了 ↓

CDRの作成 プロポーザル

2001年 建設開始

- 2005年 LHC実験、Ecm=14 TeV
- 同年 LC実験、Ecm=250GeV

2007年 JLC 実験: E_{cm}=0.5TeV