『JLC実験をめざす測定器・加速器開発』

ビームと測定器

素粒子実験シンポジウム、2000年3月31日 JLC-FFIR グループ,田内利明 http://acfahep.kek.jp/member/subg/ir.html for the members

- 0. JLC layout and beam parameter
- 1. Bem delivery system
- 2. IP layout
- 3. Support system for QC1 and tungsten mask
- 4. Background
- 4.1 muons
- 4.2 synchrotron radiations
- 4.3 e⁺e⁻ pairs
- 4.4 neutron background
- 5. Pair monitor for beam size measurement
- 6. Luminosity monitor and Active mask
- 7. Dump line
- 8. Future Plan

Schematics of JLC accelerator complex

500GeV (CM) Hi-Lum Parameters of JLC

Α Х Y 10^{34} /cm² s Luminosity 0.88 1.57 2.61 Nominal Lum.3) 10^{34} /cm² s 0.63 1.75 1.08 10¹⁰ **Bunch** Population 0.75 0.55 0.70 95 No. of bunches/pulse 190 190 2.8 1.4 1.4 Bunch separation ns Linac length/beam⁷⁾ 5.21 5.97 5.54 km AC power(2 linacs) 117 126 136 MW Beam power/beam 4.28 6.28 7.99 MW Loaded gradient ⁴⁾ 57.6 54.2 50.2 MV/m Bunch length σ_z 90 80 80 μm 10⁻⁶ m 3 $\gamma \epsilon_x$ (DR exit) 3 3 10⁻⁶ m 0.03 $\gamma \epsilon_v$ (DR exit) 0.02 0.02 10⁻⁶ m $\gamma \epsilon_x$ (IP) 4 4 4 $\gamma \epsilon_v$ (IP) 10⁻⁶ m 0.06 0.04 0.04 Cavity align. tol.⁶⁾ 15 18 14 μm β_x^* 10 6 6 mm β_y^* 0.1 0.1 0.1 mm IP beam size σ_x 286 222 222 nm 3.15 2.86 2.86 nm σ 2.77 Diagonal angle σ_x/σ_z 3.18 2.77 mrad Disruption pa ram D_x 0.094 0.102 0.130 10.04 7.64 7.89 D_v Pinch enh. $H_D^{(5)}$ 1.38 1.45 1.49 0.136 0.146 0.188 Ϋ́ave δ_{BS} % 4.42 4.39 6.67 1.07 1.01 1.28 nγ

K.-Yokoya,-March-1999

JLC: Beam Delivery System

H.Yamaoka, 2nd ACFA-LC, Seoul, Nov., 1999 Support Tube (80cmo x 12m) Analysis by ANSYS

H.Yamaoka, 2nd ACFA-LC, Seoul, Nov., 1999 Spectrum Analysis by ANSYS

Result; Relative displacemet between ± 2 m

H.Yamaoka, 1/27,2000

Structure of JLC detector at B=3Tesla

Summary

	÷.	Model-1A	Model1-B	Model-2A	Model-2B
Deformation(mm)		1.6		0.09	
Stress(MPa)	10	23	-	5	-
Natural frequency(Hz) (Vertical)	1st mode	17	15	71	15
	2nd Mode	81	38	179	54
	3rd mode	173	105	202	93
Harmonic response(n	im) @QC1	8.0	8.0	0.2	6.0
Spectrum analysis(nm @QC1	1st mode	6.5	2.0	4.3	2.7
	2nd Mode	-1.7	1.1	0.2	0.2
	3rd mode	-0.4	0.1	1.9	0.002

Deformation is too large!!

Further studies

- How much is the relative position between QC1?
- How support the masks at iron structure?
 - → Deformation due to the magnetic force.
- Support configuration
 CFRP → High young's modulus (150GPa → 900GPa)

- $Masks \rightarrow Other materials$
- \rightarrow We may not need to support at iron structure.

Backgrounds

(1) Muons

 10^{7} muons/trains at the collimators Assuming 0.1% flat beam-tail, 10^{-3} (tail) x 10^{10} (beam)x10²(bunch)=10⁹electrons/train would hit the collimators.

Tolerance: One muon in 16x16x16m³ at IP

(2) Synchrotron radiations in FF-system. collimation is important: $6 \sigma_x \times 40 \sigma_y$

(3) e^+e^-pairs created in collisions number of pairs 25,000 / bunch average energy 4 GeV ($E_e > 3MeV$) total energy 100 TeV / bunch signals for pair monitor for $E_e = 300 \sim 500 MeV$

(4) neutrons (1 neutron/100MeV) pairs at QC1 and masks ~30 TeV / bunch 3x10⁵ neutrons / bunch beamstrahlung photons 340 kW (4%x2) 2x10¹⁶ neutrons / sec disrupted beam in dump line

Muon Attenuator

80 cm ϕ support tube

1/100 bunch and E_{\gamma}>100MeV, E_e>10MeV for display purpose

JIM simulation for E_{γ} >10keV, E_{e} >200keV

Photon Background

Vertex detector hit density in stronger B fields

 $\cos\theta < 0.9$

Background tolerance (1) CDC 10 % occupancy / train

r _{min} B	2 tesla	3 tesla
2.5 cm hit#/train	 1.2 k (2.4 k)	0.12 k (0.37 k)
1.8 cm		O _{0.72 k}
1.5 cm hit#/train	۲.2 k	2.6 k

(2) VTX 1hit / mm² / train

r _{min} B	2 tesla	3 tesla
2.5 cm hit#/mm²/train	○	0.4 (1.0)
1.8 cm		<u> </u>
1.5 cm hit#/mm²/train	4.3	>> 3.6

Values in () are those of JLC-Y (high luminosity).

4,3 and $2cm\phi$ beam pipes for $r_{min}=2.5,1.8$ and 1.5 cm, respectively.

A.Miyamoto, LC99, Oct., 1999

A.Miyamoto, LC99, Oct., 1999 Summary of Neutron Background in VTX

Neutron yield at IP(/cm²/year)

e⁺e⁻: Old (GEANT) $3x10^7$ New(Fluka98) w 2T solenoid $5 x10^7$

New(Fluka98) w. CC and QC 7×10^7

beamstrahlung:	Old(GEANT)	1×10^{7}
from beam dump(340kW)	$\mathbf{N}_{avv}(\mathbf{\Gamma}_{1v}_{1v}_{av}, \mathbf{O}_{2v})$	2.5×10^7
(300m from IP)	New(Fluka98)	2.3×10

Statistical error of new estimate is roughly a few x 10['] (guess)

New estimatebased on Fluka98 is well below the requirement, $< 1.5 \times 10^{10} \text{ n/cm}^2$ for the CCD vertex detector

Neutron background from other sources in dump line are under study.

Pair Monitor

as a beam profile monitor

Active Pixel Sensor

double layer of silicon disks

pixel size	100 x 100 μm ²
thickness	300 µm
inner radius	2 cm
outer radius	8.5 cm
location (z)	176 and 177 cm from IP

Measurement:

position and energy deposit

Pair Monitor

Pixel Beam Profile Monitor for Linear Collider

A. Miyamoto, Y. Sugimoto, T. Tauchi, K. Yokoya High Energy Accelerator Research Organization (KEK)

G. Alimonti, T. Browder, C. Kenney, S. Olsen, S. Parker, M. Rosen, K. Travelsi, G. Varner, H. Yamamoto *The University of Hawaii*

1 Introduction

At linear colliders, it is expected that a large number of e^-e^+ pairs are created by the QED process $\gamma\gamma \to e^+e^-$ where γ may be off-shell or near-on-shell[1]. Depending on the number of off-shell photons involved, they are classified as Landau-Lifshitz (both off-shell), Bethe-Heitler (one of them is off-shell), and Breit-Wheeler (both near-on-shell). These pairs are predominantly created along the beamline, and acquires p_t kick by the electromagnetic field of the on-coming bunch. As long as the pair is relativistic and the direction is the same as the co-moving bunch, the net force due to the co-moving bunch $\pm e(\vec{E} + \vec{\beta} \times \vec{B})$ cancels out ($\vec{\beta}$ is the velocity of the pair particle in unit of c). One then only needs to consider the effect of the on-coming beam (Figure 1).

Typical parameters of the bunch is $\sigma_x/\sigma_y/\sigma_z = 260 \text{nm}/3 \text{nm}/80 \mu\text{m}$, and the number of particles per bunch N is $\sim 10^{10}$. If we assume a rectangular beam of $2\sigma_x \times 2\sigma_y \times 2\sigma_z$ with uniform charge density and $\sigma_y \ll \sigma_x$, this creates

$$E(\text{dyne/esu}) = B(\text{gauss}) = \frac{\pi e N}{2\sigma_x \sigma_z} \sim 3.6 \times 10^7$$
(1)

just above or below the on-coming bunch in the laboratory frame. For the typical value of p = 300 MeV/c, the curvature due to both E and B fields is about $170\mu\text{m}$ which can be compared to the bunch length of $80\mu\text{m}$. If the charge of the particle and the on-coming bunch are opposite sign, the created particle would undergo a number of oscillations around the beam plane and the net p_t acquired will be small. On the other hand, if the particle and the

Pixel Beam Profile Monitor

H. Yamamoto et al., University of Hawaii

The sensor arrangement; the top side faces the IP.

readout chip pixel sensor

One 'segment' ; the bottom side faces the IP.

Schematic diagram of the 3D pixel concept

3D Pixel 1. Fast charge collection

< 1 nsec :bunch separation

2. Radiation hard >>50kRad/year,10⁷n/cm²/year

- 3. Flexible geometry
- 4. Active edge

Luminosity Monitor and Active Mask

(1) Luminosity monitor

geometrical acceptance:

163 < z < 178 cm and $0.05 < \theta < 0.15$ rad. made of tungsten only in this study segmentation:

r	32 divisions	$\Delta r \sim 5 mm$
¢	16 divisions	∆ ∮ ~ 3.2 - 9.7 cm
Ζ	128 divisions	∆z ~ 1.17mm

(2) Active mask (front part of conical mask)

geometrical acceptance:

30 < z < 37.5 cm and $0.15 < \theta < 0.20 \text{ rad.}$ made of tungsten(W) and silicon pad(Si,200µm^t) $5mm^tW/Si/(1cm^tW/Si)^7$ 8 layers segmentation:

- r 8-10 divisions $\Delta r = 2mm$
- ϕ 32 divisions $\Delta \phi \sim 0.9$ 1.2 cm

Vertical dispersion at 2nd IP in dump line

Future Plan

1. IP layout will be optimized for the high luminosity upgrade.

JLC-Y : 1.4nsec bunch spacing, 190 bunches/train stronger beamstrahlung effects

2. "Pre-linac" collimation scheme must be established.

It means collimation before the main linac.

It may simplify the collimation system and the muon protection.

3. Superconducting QC1 is seriously considered.

The design shall be based on experiences of LHC-QC magnets, adding new features of correction magnets near the beam line for nano-meter beams. Prototype of QC1 must be necessary.

4. More detailed study on the support system will be pursued with respect to ground motions.

Prototype system must be constructed to verify our estimations.

5. Background studies will continue based on detailed simulations with up-to-date geometries, especially for the neutron background.

6. The realistic design of the pair monitor shall be promoted by a collaboration between University of Hawaii and KEK. It will be finalized in this autumn.

7. R&D of active mask and luminosity monitor will be initiated by National Taiwan University group.

8. The "actual" dump line must be designed in order to control beam losses for the neutron backgrounds.

Experimental methods must be established for measurements of beam energy spread and polarization.

9. All efforts should be concentrated for the first draft of the CDR in this autumn.

BDIR2000 Home Page

Home Page

Programme

Travel Information

Accommodation

Daresbury Laboratory

Register Online

Contacts

Beam Delivery and Interaction Region Workshop 2000

Welcome to the BDIR2000 Web Site.

Goals of the Workshop

- to bring together those people who are either currently active in Beam Delivery System research and development or those who are interested in getting involved;
- to identify the technical challenges of such systems;
- identify those aspects that
 - are considered to have technical solutions;
 - o have partial technical solutions and still need some work or better ideas;
 - have currently either only a conceptual solution, or no solution at all;
- identify areas of mutual common ground where collaboration would be beneficial;
- form a plan for further (collaborative) work beyond the workshop.

Organisation

The workshop will be held at Daresbury Laboratory, near Warrington in the UK, from Monday 3rd July 2000 to Wednesday 5th July 2000.

The workshop fee is £100.00. This will cover:

- Transport between hotels and Daresbury Laboratory
- Reception buffet on Sunday night
- Workshop Dinner on Tuesday night
- Lunch on Monday, Tuesday, Wednesday
- Copies of the Proceedings

The deadline for registration and for payment of the workshop fee is **31 May 2000**. See the <u>registration page</u> for payment details.