Snowmass 2001 July 16, 2001

Calorimeter for JLC Experiment

Hiroyuki Matsunaga University of Tsukuba

JLC-CAL group is a collaboration of Kobe, Konan, Shinshu, Tsukuba, and KEK

1) Required Performance

Design Criteria in a de-coupled CAL parameter space

2-jet mass resolution better than z, w

- Hardware Compensation for excellent hadron energy Resolution and Linearity
- Fine Granularity for precise topological reconstruction

No software compensation No extremely-fine granularity

Technology Choice

Tile/Fiber Sampling Calorimeter

- Crackless Hermeticity
- Low Cost
- Design Flexibility
- Well-established technology

Reconstructed W mass for e+e- -> W+W- at S=400GeV

Result of quick-simulation. SHmax is not used for analysis.

Thus contribution of track-cluster association error is as

large as ~1.9GeV. Better result expected with SHmax analysis.

2) Basic parameters of revised baseline JLC calorimeter

magnetic-field option	2T-case	3T-case	
Inner Radius	250cm	160cm	
Outer Radius	400cm	340cm	$\frac{1}{\lambda}$
Angular Coverage	$ \cos < 0.985$	cos < 0.966 (Full)	
	cos < 0.994	cos < 0.991 (Partial)	
SHmax scheme	scheme Scintillator-Strip Array option=Si-pad		$\mathcal{H} / \mathcal{X} / \mathcal{N}$
	(1cm-wide) (1cm x 1cm)	$\int \langle X \rangle \langle X \rangle$
EMC	$\sigma_{\rm E}/{\rm E} = 15\%/{\sqrt{\rm E}} + 1\%$		
transverse	6cm x 6cm	4cm x 4cm	H M A / V
	(24mrad)	(24mrad)	
longitudinal	3 sections (6+12+20 layers) PS success H1 H2 H3 H4		
HCAL	$\sigma_{\rm E}/{\rm E}=40\%/\sqrt{\rm E}+2\%$		
transverse	18cm x 18cm	12cm x 12cm	
	(72mrad)	(72mrad)	
longitudinal	4 sections (25+30+35+40 layers)		
Thickness			
PreSH	4Xo (4mm x 6 layers)		Configuration of Baseline Barrel Calorimeter
EMC	23Xo (4mm x 22 layers)		
HCAL	6.5 λο (8mm x 130 layers)		

3) Proof of Performance

[A] Energy Resolution & Linearity

- Related to Material Choice and Global Design
- Must be verified by **Beam Test**

[B] Granularity

- Related to Component Design
- Must be verified by Full Simulation
- Easy to tune at any stage in the case of Tile/Fiber scheme

Strategy;

- 1st Establish energy resolution & linearity with tile/fiber test module **DONE**
- 2nd Optimize granularity by full simulation with tile/fiber structure implemented In Progress

[A] Beam tests done at KEK (1-4GeV) and at FNAL (10-200GeV) to prove ;

- a) Energy Resolution / Gaussian Response / Hardware Compensation
- b) Linearity / Dynamic Range
- c) Tower Boundary Uniformity
- d) e/ separation capability

a) Energy Resolution

(resolution.eps) Adobe Illustrator(R) 8.0 (2/3/01) (5:08 PM)

EPSF

π ; $\sigma_E/E = 46.7 \pm 0.6\%/\sqrt{E} + 0.9 \pm 0.9\%$

worse than design due to 'fiber-routing' acryl plate

Effect of acryl plate (measured by beam tests)

• No effect on compensation

if placed downstream of scintillator

- No effect on EM energy resolution regardless its location
- Deteriorate hadron energy resolution regardless its location

Measured energy resolution of tile/fiber hadron calorimeter test module

b) Linearity

Nice Linearity thanks to Harware Compensation. (better than 1% from 2 GeV to 150 GeV)

c) Tower Boundary Response

- No significant anomaly was observed at the tower boundary for pions.
- Slight anomaly was observed for electrons.

EM module must be designed with more uniform response.

d) e/ separation and PreSH/SHmax

Combined performance of

- PreSH
- SHmax (Scint-Strip)
- HCAL

ps/pre_spr.eps HIGZ Version 1.23/09 00/02/05 16.48

measured with test beam.

- pion rejection ~1/1400
- with e ~ 98%

Quite Satisfactory

 position resolution 2~3mm due to noise/cross talk Needs improvements

[B] Granularity Optimization

Optimization with a full simulator based on GEANT3

- Tuning of calorimeter response in progress
- Hadron-clustering algorithm under development
- Cluster-track association algorithm under development

• Implementation of hadron shower generator with realistic fluctuation Still working hard to make 'Un-Correlated' distribution function	EPSF (C:¥¥Documents and Settings¥¥user¥¥¥203f¥203X¥203N Canvas (7.0.2) %%CreationDate: (01/03/27 @ ¥214¥337¥ (01/03/27 @ ¥214¥337¥2210 11:16) %%DocumentProcSe	EPSF (C:¥¥Documents and Settings¥¥user¥¥¥203f¥203X¥203N¥ Canvas (7.0.2) %%CreationDate: (01/03/27 @ ¥214¥337¥. (01/03/27 @ ¥214¥337¥2210 11:25) %%DocumentProcSe
Yet a lot to do before reconstruction of physics processes for optimization.		

Un-correlated fluctuation for EM Correlated fluctuation for hadrons

4) Other R&D Items

- a) Scintillator-strip EMCAL
 - much finer-granularity
 - reasonable cost by casting/extrusion of strips
 - non-uniformity over a strip ~ 4.8%
 similar to traditional square tiles (~ 4.6%)
 - requires super multi-channel photo-detectors
 - crossed-strip layout need study
 ghost-rejection capability by full simulation
 - energy decomposition algorithm be studied for multi-hit in a cell.

Photon yield uniformity over a 1cm-wide strip

b) Photon Detectors

• EMC/HCAL

multi-channel HPD/HAPD : promising (however cost-down needed)

• Scintillator-Strip EMC/SHmax need

super-multichannel photo-detector.

- 61ch-HPD ; tests in progress
- EBCCD ; tests in progress. Higer gain needed.

Principle of EBCCD

Gain vs photo-cathode voltage for proximity-focused EBCCD

C) Strong Lead Alloy

Hardware Compensation ... Lead as passive/structural material

==> Lead alloy with high rigidity and tensile strength needed.

Temporary target = strength of copper

Copper	tensile strength (yield) 64MPa	EPSF (Pb1052-1.xls) (Microsoft Excel: AdobePS 8.5.2) (17:33 2001¥224N 7¥214¥216 5¥223¥372 ¥226¥330¥227j¥223¥372)
Pure Lead	7MPa	
Lead Alloy	50MPa (preliminary)	
• Other samples being tested.		
• Voung modulus under colibration		

• Young modulus under calibration.

5) Summary

Baseline design of JLC calorimeter

- high performance expected ; hermeticity, resolution, linearity
- with **well-established technology** ; tile/fiber scheme
- with **reasonable cost** ; casting enables further cost reduction
- **design flexibility** ; completely decoupled resolution & granularity by hardware compensation scheme

However verification with full simulation is severely behind schedule.