LHC Run2 ATLAS (とCMS) 報告

花垣和則(KEK/大阪大学)

(*)設計値よりもアグレッシブなものあり

Run2 これまで

Peak luminosity 5.0×10³³cm⁻²s⁻¹
 Integrated luminosity 4.2fb⁻¹ (3.9fb⁻¹recorded)

- ◆ Un-identified Falling Objects (UFO)
 ▶ 「何か」が落ちてきて、ビームが散乱
 ▶ ビームロス → ビームロスモニターが作動
- ✤ 電子雲:25ns間隔で顕著
 - Beam scrubbing

Higgs

↔ H→ γ γ, H→ZZで新たな結果
 ▶ 13TeVの恩恵は重い未知粒子探索ほどではない

Higgs

生成断面積まとめ

SUSY探索

- ◆ Strong productionでは 8TeVの探索感度を超える
- ✤ Weak productionの結果 はまだ
 - 統計が必要

Resonance Search

◆ エネルギーフロンティア実験の王道

LHC the energy frontier machine

Run: 280673 Event: 1273922482 2015-09-29 15:32:53 CEST

Di-Jet Event

Highest Mass Central Dijet $pT_1 = pT_2 = 3.2 \text{ TeV}$ $m_{JJ} = 6.9 \text{ TeV}$ MET = 46 GeV

Dilepton, Dijet

Diphoton

◆ 幅0の仮定: global significance 2.0 σ
 ◆ 有限の幅を仮定: global significance 2.3 σ
 (フィットの結果,幅は約45GeV)

Diphoton @ CMS

Search for diphoton resonances

- Two categories: barrel-barrel (EBEB), barrel-endcap (EBEE)
- $p_T(\gamma) > 75$ GeV, $I_{ch} < 5$ GeV (in 0.3 cone around photon direction)
- Efficiency, scale and resolution calibrated on Z → ee and high-mass DY events
- Search for RS graviton with three assumptions on coupling: $\tilde{\kappa} = 0.01$ (narrow), 0.1, 0.2 (wide)
- Blind analysis, no changes have been made to the analysis since unblinding data in the signal region

Diphoton @CMS

EXO-15-004

Combined limits and p-values

3σ 10 0 10³ 5×10² 2×10³ 3×10³ 5×10² 10³ 2×10³ 3×10³ 10³ 2×10³ 3×10³ 5×10² m_G (GeV) m_G (GeV) m_G (GeV)

10⁻³

Including LEE (0.5 - 4.5 TeV; narrow width), global p-value < 1.2σ

公式コメント

CERNで行なわれているATLASおよびCMS実験グループは、すでに知られ ** ている物理過程から期待されるのとはわずかに違う事象を観測しているが. それに対して非常に慎重な姿勢を取っている。なんらかの重い粒子が2つの 光子に崩壊したと仮定して、2つの光子を含む事象を調査すると、どちらの 実験グループも、750から760GeVの質量領域にほんの少しの事象数の過剰 がある。LHCのラン1で収集したデータに対して同じ解析を行ったところ. 統計の範囲内で、標準模型による期待値からの有意な乖離はなかった。これ までに収集したわずかなデータからは、それらの事象の他の性質に関して は、すでに知られている物理過程と一致している。それでも、どちらの実験 グループも同じような統計のふらつきを観測しているため、注目が集まって いる。しかしながら、それぞれの実験グループが、この類の分布を山ほど研 究していることから、最もありうる説明は、偶然の一致であり、両実験グル ープはこの結果を必要以上に深読みすることをしないように慎重になってい る。この件をさらにハッキリさせるにはより多くのデータが必要で、2016 年には実験グループがさらにたくさんのデータを収集することを期待してい

る。

◆ Run2 (√s=13TeV) は順調な立ち上がり ▶ LHC, ATLASともに改善

双極子電磁石

◆ In-situでのクエンチトレーニング (1回クエンチすると回復するのに~8時間)

◆ 2回クエンチはわずか, 3回は1台だけ

SUSY探索@Run1

squarks 3rd

A Sta	TLAS SUSY Se atus: July 2015	earches	* - 95	5% (CL L	ower Limits ATL	AS Preliminar $\sqrt{s} = 7, 8 \text{ Te}$
	Model	e, μ, τ, γ	Jets	$E_{\rm T}^{\rm miss}$	∫ <i>L dt</i> [fb	⁻¹] Mass limit $\sqrt{s} = 7 \text{ TeV}$ $\sqrt{s} = 8 \text{ TeV}$	Reference
Inclusive Searches	$\begin{array}{l} \text{MSUGRA/CMSSM} \\ \bar{q}\bar{q}, \bar{q} \rightarrow q \tilde{\ell}_{1}^{0} \\ \bar{q}\bar{q}, \bar{q} \rightarrow q \tilde{\ell}_{1}^{0} \\ (\text{compressed}) \\ \bar{q}\bar{q}, \bar{q} \rightarrow q \tilde{\ell}_{1} \\ \bar{q}\bar{s}, \bar{q} \rightarrow q \tilde{\ell}_{1} \\ \bar{g}\bar{s}, \bar{s} \rightarrow q \tilde{q} \\ \bar{g}\bar{s}, \bar{s} \rightarrow q \\ \bar{s} \rightarrow q$	$\begin{array}{c} 0.3 \ e, \mu/1{\text -}2 \ \tau \ 2 \ 0 \\ mono-jet \\ 2 \ e, \mu \ (off-Z) \\ 0 \\ 0{\text -}1 \ e, \mu \\ 2 \ e, \mu \\ 1{\text -}2 \ r, 0{\text -}1 \ \ell \\ 2 \ \gamma \\ \gamma \\ 2 \ e, \mu \ (Z) \\ 0 \end{array}$	2-10 jets/3 <i>k</i> 2-6 jets 1-3 jets 2 jets 2-6 jets 2-6 jets 0-3 jets 0-2 jets - 1 <i>b</i> 2 jets 2 jets 2 jets 2 jets	y Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20 20 20 20.3 20.3 2	\$\vec{q}\$ 1.8 TeV m(\$\vec{q}\$)=m(\$\vec{k}\$) \$\vec{q}\$ 850 GeV m(\$\vec{k}\$)=0 GeV, m(1" gen. \$\vec{k}\$)=m(2" gen. \$\vec{k}\$) \$\vec{q}\$ 100-440 GeV m(\$\vec{k}\$)=0 GeV, m(1" gen. \$\vec{k}\$)=m(2" gen. \$\vec{k}\$) \$\vec{q}\$ 100-440 GeV m(\$\vec{k}\$)=0 GeV, m(\$\vec{k}\$)=0 GeV \$\vec{k}\$ 1.33 TeV m(\$\vec{k}\$)=0 GeV \$\vec{k}\$ 1.32 TeV m(\$\vec{k}\$)=0 GeV \$\vec{k}\$ 1.32 TeV m(\$\vec{k}\$)=0 GeV \$\vec{k}\$ 1.32 TeV m(\$\vec{k}\$)=0.5(m(\$\vec{k}\$)=\vec{k}\$)=0.5	1507.05525 1405.7875 1507.05525 1503.03290 1405.7875 1507.05525 1407.0603 1507.05493 1507.05493 1507.05493 1503.03290 1502.01518
g med.	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow b \tilde{b} \tilde{\chi}_{1}^{0}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow t \tilde{\chi}_{1}^{0}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow t \tilde{\chi}_{1}^{0}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow b \tilde{\chi}_{1}^{+}$	0 0 0-1 <i>e</i> , <i>µ</i> 0-1 <i>e</i> , <i>µ</i>	3 b 7-10 jets 3 b 3 b	Yes Yes Yes Yes	20.1 20.3 20.1 20.1	Ř 1.25 TeV m(t ² ₁)<400 GeV Ř 1.1 TeV m(t ² ₁)<350 GeV	1407.0600 1308.1841 1407.0600 1407.0600
direct production	$ \begin{array}{l} \tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{x}_1^0 \\ \tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{x}_1^1 \\ \tilde{r}_1 \tilde{r}_1, \tilde{r}_1 \rightarrow b \tilde{x}_1^1 \\ \tilde{r}_1 \tilde{r}_1, \tilde{r}_1 \rightarrow b \tilde{x}_1^0 \\ \tilde{r}_1 \tilde{r}_1 (natural GMSB) \\ \tilde{r}_1 \tilde{r}_1 \tilde{r}_1 \tilde{r}_2 \tilde{r}_1 \tilde{r}_2 \\ \tilde{r}_1 \tilde{r}_1 = \tilde{r}_1 + Z \end{array} $	0 2 e, µ (SS) 1-2 e, µ 0-2 e, µ 0 0 m 2 e, µ (Z) 3 e, µ (Z)	2 b 0-3 b 1-2 b -2 jets/1-2 b ono-jet/c-ta 1 b 1 b	Yes Yes Yes Yes Yes Yes Yes	20.1 20.3 1.7/20.3 20.3 20.3 20.3 20.3 20.3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1308.2631 1404.2500 1209.2102, 1407.0583 1506.08616 1407.0608 1403.5222 1403.5222
direct	$ \begin{array}{c} \tilde{t}_{L,R} \tilde{t}_{L,R}, \tilde{t} \rightarrow \ell \tilde{x}_{1}^{0} \\ \tilde{x}_{1}^{+} \tilde{x}_{1}^{-}, \tilde{x}_{1}^{+} \rightarrow \ell \tilde{v}(\ell \tilde{v}) \\ \tilde{x}_{1}^{+} \tilde{x}_{1}^{-}, \tilde{x}_{1}^{+} \rightarrow \tilde{v}(\tau \tilde{v}) \\ \tilde{x}_{1}^{+} \tilde{x}_{2}^{0} \rightarrow \ell L v \tilde{d}_{L} (\ell \tilde{v}) , \tilde{v} \tilde{d}_{L} (\ell \tilde{v}) \\ \tilde{x}_{1}^{+} \tilde{x}_{2}^{0} \rightarrow W \tilde{x}_{1}^{0} \tilde{x}_{1}^{0} \\ \tilde{x}_{1}^{+} \tilde{x}_{2}^{0} \rightarrow W \tilde{x}_{1}^{0} \tilde{h} \tilde{h}_{1} , h \rightarrow b \tilde{b} / W / \tau \\ \tilde{x}_{2}^{+} \tilde{x}_{2}^{+} \tilde{x}_{2}^{0} \rightarrow \tilde{u} \tilde{k} \\ \tilde{g} GM (wino NLSP) weak prod \\ \end{array} $	2 e,μ 2 e,μ 2 τ 3 e,μ 2-3 e,μ τ/γγ e,μ,γ 4 e,μ . 1 e,μ + γ	0 0 0-2 jets 0-2 b 0	Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1403.5294 1403.5294 1407.0350 1402.7029 1403.5294, 1402.7029 1501.07110 1405.5086 1507.05493
particles	$\begin{array}{l} \label{eq:linear_states} \begin{split} & \text{Direct}~ \tilde{\chi}_1^+\tilde{\chi}_1^- \text{ prod., long-lived}~\tilde{\lambda}\\ & \text{Direct}~ \tilde{\chi}_1^+\tilde{\chi}_1^- \text{ prod., long-lived}~\tilde{\lambda}\\ & \text{Stable, stopped}~\tilde{g}~\text{R-hadron}\\ & \text{Stable}~\tilde{g}~\text{R-hadron}\\ & \text{GMSB, stable}~\tilde{\tau},~\tilde{\chi}_1^0 \rightarrow \tilde{\tau}(\tilde{e},\tilde{\mu}) + \\ & \text{GMSB,}~\tilde{\chi}_1^0 \rightarrow \gamma \tilde{G},~\text{long-lived}~\tilde{\chi}_1^0\\ & \tilde{g}\tilde{g},~\tilde{\chi}_1^0 \rightarrow eev[euv] \mu \mu v\\ & \text{GGM}~\tilde{g}\tilde{g},~\tilde{\chi}_1^0 \rightarrow Z \tilde{G} \end{split}$	$ \begin{array}{c} \stackrel{\pm}{\underset{1}{1}} & \text{Disapp. trk} \\ \stackrel{\pm}{\underset{1}{1}} & \text{dE/dx trk} \\ & 0 \\ & \text{trk} \\ (e,\mu) & 1{\text{-}}2\mu \\ & 2\gamma \\ & \text{displ. } ee/e\mu/\mu\mu \\ & \text{displ. vtx + jets} \end{array} $	1 jet - 1-5 jets - - - - - - - - - - - - - - - - - - -	Yes Yes - Yes - Yes	20.3 18.4 27.9 19.1 19.1 20.3 20.3 20.3	k* 270 GeV m(k_1^2)-m(k_1^2)-160 MeV, $\tau(k_1^2)=0.2$ ns k* 482 GeV m(k_1^2)-m(k_1^2)-160 MeV, $\tau(k_1^2)=0.2$ ns k* 832 GeV m(k_1^2)-m(k_1^2)-160 MeV, $\tau(k_1^2)=0.2$ ns k* 832 GeV m(k_1^2)-m(k_1^2)-160 MeV, $\tau(k_1^2)=0.2$ ns k* 537 GeV m(k_1^2)-m(k_1^2)-160 MeV, $\tau(k_1^2)=0.2$ ns k* 537 GeV 10 <tangk-50< td=""> k* 435 GeV 2<$\tau(\tau_1^2)^2$ ans, SPS8 model k* 1.0 TeV 7<<$\tau(\tau_1^2)^2 < 40$ mm, $m(k)=1.3$ TeV k* 1.0 TeV 6<</tangk-50<>	1310.3675 1506.05332 1310.6584 1411.6795 1411.6795 1409.5542 1504.05162 1504.05162
714	$ \begin{array}{l} LFV pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e \mu / e \tau / \mu \tau \\ Bilinear \ RPV \ CMSSM \\ \tilde{X}_{\tau}^{*} X_{\tau}^{*} X_{\tau}^{*} \rightarrow W_{\tau}^{*1} \mathcal{M}_{\tau}^{*0} \rightarrow e \tilde{v}_{\mu}, e \mu \tilde{v} \\ \tilde{X}_{\tau}^{*} X_{\tau}^{*1} \rightarrow W_{\tau}^{*1} \mathcal{M}_{\tau}^{*0} \rightarrow \tau \tau \tilde{v}_{e}, e \tau \tilde{v} \\ \tilde{g}_{\pi}, \tilde{g}_{\pi} \rightarrow d q \\ \tilde{g}_{\pi}, \tilde{g}_{\pi} \rightarrow d q \\ \tilde{g}_{\pi}, \tilde{g}_{\pi} \rightarrow \tilde{q} \\ \tilde{g}_{\pi}, \tilde{g}_{\pi} \rightarrow \tilde{q} \\ \tilde{f}_{\tau}, \tilde{f}_{\tau} \rightarrow b s \\ \tilde{f}_{\tau}, \tilde{f}_{\tau} \rightarrow b \ell \\ \tilde{f}_{\tau}, \tilde{f}_{\tau} \rightarrow b \ell \end{array} $	$\begin{array}{c} e\mu, e\tau, \mu\tau\\ 2 \ e, \mu \ (\text{SS})\\ \phi_e & 4 \ e, \mu\\ \tau & 3 \ e, \mu + \tau\\ 0\\ 2 \ e, \mu \ (\text{SS})\\ 0\\ 2 \ e, \mu \end{array}$	- 0-3 b - - 6-7 jets 6-7 jets 0-3 b 2 jets + 2 b 2 b	Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	Pr. 1.7 TeV $\lambda_{j11}^{*}=0.11, \lambda_{132/133/233}=0.07$ $\bar{q}, \bar{g}, \bar{s}$ 1.35 TeV m($\bar{q}, \bar{m}, \bar{g}, r_{13}, r_{23}=0.07$ $\bar{q}, \bar{g}, \bar{s}$ 1.35 TeV m($\bar{q}, \bar{m}, \bar{g}, r_{13}, r_{21}$ \bar{k}_1^{**} 750 GeV m(\bar{k}_1^{**}) $-0.2 xm(\bar{k}_1^{**}), \lambda_{123}=0$ \bar{k}_1^{**} 450 GeV m(\bar{k}_1^{**}) $-0.2 xm(\bar{k}_1^{**}), \lambda_{133}=0$ \bar{k} 870 GeV BR(\bar{n}_1)=BR(\bar{n}_2 =0% \bar{k} 850 GeV m(\bar{k}_1^{**}) $-0.2 xm(\bar{k}_1^{**}), \lambda_{133}=0$ \bar{k} 850 GeV BR(\bar{n}_1 =BR(\bar{n}_2 =0% \bar{k}_1 100-308 GeV BR(\bar{n}_1 =0.2%	1503.04430 1404.2500 1405.5086 1502.05686 1502.05686 1502.05686 1404.250 ATLAS-CONF-2015-02 ATLAS-CONF-2015-01
har	Scalar charm, $\tilde{c} \rightarrow c \tilde{\chi}_{1}^{0}$	0	2.0	Yes	20.3	č 490 GeV m(ž ⁰).<200 GeV	1501.01325

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1 σ theoretical signal cross section uncertainty.