AWLC14 ILC Parameter WG Report

from "ILC Parameters" Session

May 14, 2014

ILC Parameters

Conveners: Jim Brau (U. Oregon), Nicholas Walker (DESY)

Location: One West WH1W

16:00 Introduction 15'

Speaker: Jim Brau (U. Oregon)

Material: Slides 📆

16:15 Recent physics studies 30'

Speaker: Keisuke Fujii (IPNS, KEK)

Material: Slides

- 16:45
 Machine staging issues 25'

 Speaker:
 Nicholas Walker (DESY)

 Material:
 Paper

 Slides
 7
- 17:10 **Discussion** 40'

2014/06/13 Keisuke Fujii

ILC Parameter Joint Working Group

- Membership appointed by Hitoshi Yamamoto and Mike Harrison
 - PHYSICS AND DETECTORS: T. Barklow, J. Brau (co-convener), K. Fujii, J. List
 - ACCELERATOR: Jie Gao, N. Walker (co-convener), K. Yokoya
- Charge (next slide)

ILC Parameter Joint Working Group – Charge

March 19, 2014

- The ILC parameter working group reports to the LCC <u>Directorate.</u> It consists of members from both the ILC accelerator and the physics & detector groups where each team selects a co-convener for this working group.
- This working group prepares information on ILC machine parameters and staging scenarios as well as potential upgrade paths in a form readily usable by the LCC. In doing so, the WG will take into account technical machine constraints and physics and detector needs regarding the fundamental ILC machine parameters such as energy, luminosity, crossing angles, etc.
 - The first task for the working group is to prepare multiple scenarios for staging up to about 500 GeV. The report should contain the pros and cons of each scenario as well as luminosities needed at each energy to produce corresponding physics results.

Physics Considerations

Phases of energy operation from 250 GeV to maximum baseline energy (eg. 350 GeV, etc.)

including required and available int. lumi.

Maximum reach baseline energy (we note physics motivation for 550 GeV based on tth)

- Operation at energies below 250 GeV
- Safety margin in energy reach and luminosity
- Polarization

Higgs-related Physics at Ecm ≤ 500 GeV

Three well know thresholds

ZH @ 250 GeV (~Mz+MH+20GeV) :

- Higgs mass, width, J^{PC}
- Gauge quantum numbers
- Absolute measurement of HZZ coupling (recoil mass) → Higgs couplings (other than top)
- BR(h->VV,qq,II,invisible) : V=W/Z(direct), g, γ (loop)

ttbar @ 340-350GeV (~2mt) : ZH meas. Is also possible

- Threshold scan --> theoretically clean *mt* measurement: $\Delta m_t(\overline{MS}) \simeq 100 \,\text{MeV}$
 - --> test stability of the SM vacuum
 - --> indirect meas. of top Yukawa coupling
- A_{FB}, Top momentum measurements

 $\gamma \gamma \rightarrow HH @ 350GeV \text{ possibility}$

Form factor measurements

vvH @ 350 - 500GeV :

HWW coupling -> total width --> absolute normalization of Higgs couplings

ZHH @ 500GeV (~Mz+2MH+170GeV) :

Prod. cross section attains its maximum at around 500GeV -> Higgs self-coupling

ttbarH @ 500GeV (~2mt+Mн+30GeV) :

- Prod. cross section becomes maximum at around 800GeV.
- QCD threshold correction enhances the cross section -> top Yukawa measurable at 500GeV concurrently with the self-coupling

We can access all the relevant Higgs couplings at ~500GeV for the mass-coupling plot!

e⁺ Z H e[−] Z

How do Higgs coupling precisions depend on staging scenario?

Starting Point

= Input Observables

Summary table of Higgs measurements @ ILC

w/ new extrapolated results @ 350 GeV

ECM	@ 250) GeV	@ 350 GeV		@ 500 GeV		@ 1 TeV
luminosity · fb	25	50	330		500		1000
polarization (e-,e+)	(-0.8,	+0.3)	(-0.8,	+0.3)	(-0.8,	(-0.8, +0.2)	
process	ZH	ννΗ	ZH	Hyw	ZH	ννΗ	ννΗ
cross section	2.6%	-	X%		-	-	-
	σ·Br	σ·Br	σ·Br	σ·Br	σ·Br	σ·Br	σ·Br
H>bb	1.2%	10.5%	1.3%	1.3%	1.8%	0.66%	0.32%
H>cc	8.3%		9.9%	13%	13%	6.2%	3.1%
H>gg	7%		7.3%	8.6%	11%	4.1%	2.3%
H>WW*	6.4%		6.8%	5.0%	9.2%	2.4%	1.6%
Η>ττ	4.2%		4.6%	19%	5.4%	9%	3.1%
H>ZZ*	19%		22%	17%	25%	8.2%	4.1%
Η>γγ	29-38%		29-38%	39%	29-38%	19%	7.4%
Η>μμ	-						
H>Inv. (95% C.L.)	< 0.9	95%	< 1.5%		< 3		
ttH, H>bb			-		28	6%	

mostly from White Paper; being updated by new studies with mH = 125 GeV (see backup)

Baseline

From the Observables to Couplings

From observables to couplings

What observables limit the coupling precisions?

The 4 most important ones Y_1 : recoil mass Y_2 : WW-fusion $h \rightarrow bb$ Y_3 : higgsstrahlung $h \rightarrow bb$ Y_4 : WW-fusion $h \rightarrow WW^*$

 $\Delta g_{HZZ} \sim \frac{1}{2} \Delta Y_1$

$$Y_{1} = \sigma_{ZH} \propto g_{HZZ}^{2}$$

$$Y_{2} = \sigma_{\nu\bar{\nu}H} \cdot \operatorname{Br}(H \to b\bar{b}) \propto \frac{g_{HWW}^{2}g_{Hbb}^{2}}{\Gamma_{H}}$$

$$Y_{3} = \sigma_{ZH} \cdot \operatorname{Br}(H \to b\bar{b}) \propto \frac{g_{HZZ}^{2}g_{Hbb}^{2}}{\Gamma_{H}}$$

$$Y_{4} = \sigma_{\nu\bar{\nu}H} \cdot \operatorname{Br}(H \to WW^{*}) \propto \frac{g_{HWW}^{4}}{\Gamma_{H}}$$

Both ZH and vvH productions matter!

 $\Delta \Gamma_H \sim 2\Delta Y_1 \oplus 2\Delta Y_2 \oplus 2\Delta Y_3 \oplus \Delta Y_4$

 $\Delta g_{Hbb} \sim \frac{1}{2} \Delta Y_1 \oplus \Delta Y_2 \oplus \frac{1}{2} \Delta Y_3 \oplus \frac{1}{2} \Delta Y_4$

 $\Delta g_{HWW} \sim \frac{1}{2} \Delta Y_1 \oplus \frac{1}{2} \Delta Y_2 \oplus \frac{1}{2} \Delta Y_3$

For more details, see J.Tian @ Tokusui Workshop 2013

Top Yukawa coupling

Y. Sudo

Slight increase of Emax is very beneficial!

Sample Results

to show what kind of results we expect from the on-going analysis

Very preliminary, depending on extrapolations (the most crucial is the $\sigma_{_{ZH}}$ at 350 GeV)

Staging: 250 + 500 GeV

fraction dependence

14

 then vary running time @ 250 GeV (in total 10y) to see how precisions depend on run time @ 250 GeV

Precisions / Nominal Values

2

1.5

Staging: 250 + 350 + 500 GeV

Once 500 GeV data become available, the role of 350 GeV data diminish.

Assuming full luminosity from t=0

-Γ₀

6

6

<mark>,</mark> 9_{Hgg}

4

4

Running time at 350 GeV / 10⁷s

Sample Staging Scenarios

Luminosity Profiles

250 GeV and then 500 GeV

Luminosity Profiles

Sample Running Scenarios from Nick Walker

Implications for Physics

Precisions for Benchmark Scenarios

	line	Cel	Q	500	Get Get	V art rus	1 pore	V nGe	-nGe cel	350 GEV
coupling ∆g/g	base	b	more C	d *351	*350_550G e	e shu 50Ge f	@250G 8	h 25 again	i again	a*
HZZ	1.3%	1.3%	1.3%	1.5%	1.5%	1.6%	0.92%	0.61%	0.61%	1.7%
HWW	1.4%	1.4%	1.4%	1.6%	1.6%	1.7%	1%	0.72%	0.71%	1.8%
Hbb	1.8%	1.7%	1.6%	1.9%	1.9%	1.9%	1.5%	1.1%	1.1%	2.1%
Hcc	2.9%	2.8%	2.4%	3%	2.9%	3%	2.5%	1.9%	1.9%	3.1%
Hgg	2.4%	2.3%	2%	2.5%	2.4%	2.5%	2.1%	1.6%	1.6%	2.6%
Ηττ	2.5%	2.4%	2.1%	2.6%	2.6%	2.6%	2%	1.5%	1.4%	2.7%
Ηγγ	7.6%	7.2%	5.7%	7.3%	7%	7.1%	6.9%	5.6%	5.4%	7.2%
Htt	14%	6.2%	10%	14%	6.2%	14%	14%	14%	6.1%	14%
Г	5.9%	5.9%	5.7%	6.7%	6.7%	6.9%	4.5%	3.2%	3.1%	7.4%
inv. (95% up limit)	0.91%	0.91%	0.88%	1.1%	1.1%	1.2%	0.6%	0.45%	0.45%	1.33%
Ny1	6.1	5.8	8.9	6.1	5.8	6.6	9.4	12	12	6.3
Ny2	12	12	14	12	12	13	14	18	18	11

i) X=36% worse for σ (ZH) at 350 GeV (from Jacqueline's analysis)

ii) extrapolation for 350 GeV shown in backup slides

iii) much simpler extrapolation for 550 GeV (just scale σ (ZH) and σ (vvH))

iv) Ny1: total running time assuming peak luminosity (snowmass year)

v) Ny2: based on Nick's ramp up assumption

and

Cel

Precisions for Benchmark Scenarios

	line	Cel	Q	500	Get Get	V ortrue	J nore	V OGe	DGe Cel	350 Gev
coupling ∆g/g	base. a	b	rnore C	d *35	*350 550G e	e she 50Ge f	@250G 8	h 25 again	i again	a*
HZZ	1.3%	1.3%	1.3%	1.5%	1.5%	1.6%	0.92%	0.61%	0.61%	1.7%
HWW	1.4%	1.4%	1.4%	1.6%	1.6%	1.7%	1%	0.72%	0.71%	1.8%
Hbb	1.8%	1.7%	1.6%	1.9%	1.9%	1.9%	1.5%	1.1%	1.1%	2.1%
Hcc	2.9%	2.8%	2.4%	3%	2.9%	3%	2.5%	1.9%	1.9%	3.1%
Hgg	2.4%	2.3%	2%	2.5%	2.4%	2.5%	2.1%	1.6%	1.6%	2.6%
Ηττ	2.5%	2.4%	2.1%	2.6%	2.6%	2.6%	2%	1.5%	1.4%	2.7%
Ηγγ	7.6%	7.2%	5.7%	7.3%	7%	7.1%	6.9%	5.6%	5.4%	7.2%
Htt	14%	6.2%	10%	14%	6.2%	14%	14%	14%	6.1%	14%
Г	5.9%	5.9%	5.7%	6.7%	6.7%	6.9%	4.5%	3.2%	3.1%	7.4%
inv. (95% up limit)	0.91%	0.91%	0.88%	1.1%	1.1%	1.2%	0.6%	0.45%	0.45%	1.33%
Ny1	6.1	5.8	8.9	6.1	5.8	6.6	9.4	12	12	6.3
Ny2	12	12	14	12	12	13	14	18	18	11

i) X=36% worse for σ (ZH) at 350 GeV (from Jacqueline's analysis)

ii) extrapolation for 350 GeV shown in backup slides

iii) much simpler extrapolation for 550 GeV (just scale σ (ZH) and σ (vvH))

iv) Ny1: total running time assuming peak luminosity (snowmass year)

v) Ny2: based on Nick's ramp up assumption

and

Co.V

Evolution of Precisions over Time

Caution All results are very preliminary!

(all precisions are scaled to their values at the end of scenarios "a", which are shown in table)

Evolution

50 inv.fb @ 250, 200 inv.fb @ 350, 500 inv.fb @ 500, 1 inv.ab @ 250

Top Yukawa

Evolution

50 inv.fb @ 250, 200 inv.fb @ 350, 500 inv.fb @ 500, 1 inv.ab @ 250

General Observations (no conclusions yet)

- Staged running of ILC is a choice to optimize coupling measurements through the processes: ZH, vvH, ttH, ZHH, and vvHH.
- Earlier running at 350 GeV can provide nicer measurements at earlier lifetime of ILC. Overall importance of 350 GeV running highly depends on results of recoil mass analysis @ 350 GeV (analysis on-going). The benefit from the WW-fusion process at 350 GeV will quickly diminish when data at 500 GeV become available.
- Increasing energy a little bit from 500 GeV makes a big difference for top-Yukawa coupling measurement.
- Different couplings have different dependence on running scenarios. Usually HVV and Γ_H are mainly limited by recoil mass channel, while others are limited by just statistics.
- Hence, adding more data at 250GeV with full luminosity after accumulating enough data at the highest energy will benefit us significantly in general.

Backup

Evolution: **GHZZ**

Evolution: **G**HWW

Evolution: **GHbb**

Evolution: **Г**_H

analysis status

ECM	@ 250 GeV		@ 350 GeV		@ 500 GeV		@ 1 TeV	
luminosity · fb	250		330		500		1000	
polarization (e-,e+)	(-0.8, +0.3)		(-0.8, +0.3)		(-0.8, +0.3)		(-0.8, +0.2)	
process	ZH	ννΗ	ZH	ννΗ	ZH	ννΗ	ννΗ	
cross section	EH		G		-	-	-	
	σ·Br	σ·Br	σ·Br	σ·Br	σ·Br	σ·Br	σ·Br	
H>bb	EH	F	EH	EEF	EEH	F	F	
H>cc	EH		EH	EEH	EEH	EH	F	
H>gg	EH		EH	EEH	EEH	EH	F	
H>WW*	EH		EEH	EEF	EEH	F	F	
Η>ττ	EH		EEH	EEH	EH	EH	EEH	
H>ZZ*	F		EEG	EEG	G	G	G	
Η>γγ	G		G	EEF	G	F	F	
Η>μμ								
H>Inv. (95% C.L.)	I	F	EEF		E			
ttH, H>bb						EH/EF		

- F: done by full simulation w/ mH=125GeV
- EH: extrapolated from full simulation w/ mH=120GeV
- EEH: extrapolated from full simulation at other ecm w/ mH = 120 GeV
- EEF: extrapolated from full simulation at other ecm w / mH = 125 GeV
- G: guesstimate from old fast simulation
- black: ongoing or completed
- red: still missing