AWLC Report : Accelerator

K. Yokoya LC推進委員会 2014/6/13

2014/6/13 LC推進委 Yokoya

Program

- Day1: Plenary
 - ILC Status (M.Harrison)
 - CLIC Status (P.Burrows)
 - Higgs physics, Beyond SM
 - LCB report (Komamiya)
 - LCC Physics/Detector (H.Yamamoto)
 - CLIC detector
 - Technical Developments in Japan (A.Yamamoto)
 - Acc plenary (Hayano, Schulte, Terunuma)
- Day2-Day4 Parallel
 - 9:00-10:30 ADI meeting (N.Walker)
- Day3 pm Joint Plenary: ILC Parameters
 - J.Brau, N.Walker
- Day5: Plenary
 - Staus from Japan (Suzuki)
 - DoE
 - Next LC Workshop at Belgrade
 - Summary (L.Evans)

M.Harrison, Day1 Plenary

Goals & Questions

- How do the lab/campus facilities interact with the project equipment testing, engineering support, equipment staging and storage, offices, power & water infrastructure, etc...
 - Other than some generic estimates we have little precise information here.
 - We need to decide on the perceived role of the ILC laboratory and start with some form of functional analysis.
 - Principally, but not completely, a domestic issue
- Any significant site-specific impact to the TDR design
 - Nothing apparent to date that affects the basic concept. We need to set the IP location and of course much detailed design work remains to be done.
- Cost vulnerability can we identify any potential significant cost risk hidden in the post-TDR environment ?
 - No.
- The Interaction Region is still more fluid than we would like, but the potentially largest issue appears to be the ILC laboratory

LCC-ILC Accelerator Organization

4

LCC-ILC Director: M. Harrison, Deputies: N. Walker and H. Hayano Yamamoto				*KEK LC Project Office Head: A.	
Sub-Group	<u>Global Leader</u> Deputy/Contact p.	<u>KEK-Leader*</u> Deputy	Sub-Group	<u>Global Leader</u> Deputy/Contact P.	<u>KEK-Leader*</u> Deputy
Acc. Design Integr.	<u>N. Walker (DESY)</u> K. Yokoya(KEK)	<u>K. Yokoya</u>	SRF	H. Hayano (KEK) C. Ginsburg (Fermi), E. Montesinos (CERN)	<u>H. Hayano</u> Y. Yamamoto
Sources (e-, e+)	<mark>W. Gai (ANL)</mark> M. Kuriki (Hiroshima U.)	<u>J. Urakawa</u> T. Omori	RF Power & Cntl	<u>S. Michizono (KEK)</u> TBD (AMs , EU)	<u>Michizono</u> T. Matsumoto
Damping Ring	D. Rubin (Cornell) N. Terunuma(KEK)	<u>N.</u> Terunuma	Cryogenics (incl. HP gas issues)	<u>H. Nakai: KEK</u> T. Peterson (Fermi), D. Delikaris (CERN)	<u>H. Nakai</u> Cryog. Center
RTML	<u>S. Kuroda (KEK)</u> A. Latina (CERN)	<u>S. Kuroda</u>	CFS	<u>A. Enomoto (KEK)</u> V. Kuchler (Fermi), J. Osborne (CERN),	<u>A. Enomoto</u> M. Miyahara
Main Linac (incl. B. Compr. & B. Dynamics)	<u>N. Solyak (Fermi)</u> K. Kubo (KEK)	<u>K. Kubo</u>	Radiation Safety	T. Sanami (KEK) TBD (AMs, EU)	<u>T. Sanami</u> T. Sanuki
BDS	G. White (SLAC), R. Tomas (Cern) T. Okugi(KEK)	<u>T. Okugi</u>	Electrical Support (Power Supply etc.)	TBD	<u>TBD</u>
MDI	<u>K. Buesser (DESY)</u> T. Tauchi (KEK)	<u>T. Tauchi</u>	Mechanical S. (Vac. & others)	TBD	<u>TBD</u>
/6/13 LC推進	委 Yokoya		Domestic Program, Hub Lab. Facilities	TBD	<u>H. Hayano</u> T. Saeki

CLIC Organisation

CERN LC project leader: Stapnes

CLIC accelerator:

Collaboration Spokesperson:Phil BurrowsCLIC/CTF3 technical coordinator:Roberto CorsiniCollaboration Board Chair:Lenny Rivkin

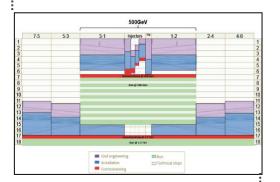
CLIC detector + physics:

Collaboration Spokesperson: Collaboration Board Chair: Lucie Linssen Frank Simon

P.Burrows, Day1 CLIC status

Steinar

CLIC roadmap

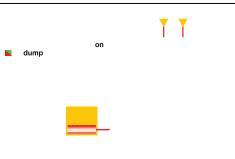

2013-18 Development Phase Develop a Project Plan for a staged implementation in agreement with LHC findings; further technical developments with industry, performance studies for accelerator parts and systems, as well as for detectors.

4-5 year Preparation Phase

Finalise implementation parameters, Drive Beam Facility and other system verifications, site authorisation and preparation for industrial procurement. Prepare detailed Technical Proposals for the detector-systems.

Construction Phase

Stage 1 construction of CLIC, in parallel with detector construction. Preparation for implementation of further stages.


Commissioning

Becoming ready for data-taking as the LHC programme reaches completion.

2018-19 Decisions

On the basis of LHC data and Project Plans (for CLIC and other potential projects), take decisions about next project(s) at the Energy Frontier.

2024-25 Construction Start Ready for full construction and main tunnel excavation.

ちなみに 昨年は

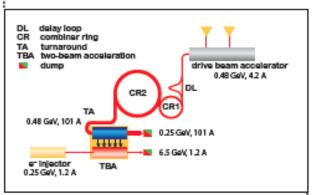
CLIC project time-line

(input to European Strategy)

ECFAWS@DESY 2013Jun Stapnes

2012-16 Development Phase

Develop a Project Plan for a staged implementation in agreement with LHC findings; further technical developments with industry, performance studies for accelerator parts and systems, as well as for detectors.

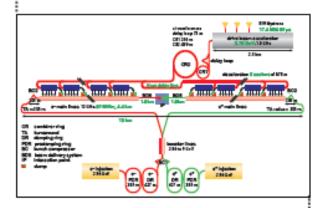

2016-17 Decisions

On the basis of LHC data and Project Plans (for CLIC and other potential projects), take decisions about next project(s) at 2014/6/13 北府維護豪愛文序の新tier.

2017-22 Preparation Phase

Finalise implementation parameters, Drive Beam Facility and other system verifications, site authorisation and preparation for industrial procurement.

Prepare detailed Technical Proposals for the detector-systems.


2022-23 Construction Start

Ready for full construction and main tunnel excavation.

2023-2030 Construction Phase

Stage 1 construction of a 500 GeV CLIC, in parallel with detector construction.

Preparation for implementation of further stages.

2030 Commissioning

From 2030, becoming ready for data-taking as the LHC programme reaches completion.

ADI (Accelerator Design & Integration)

• Next few years

N.Walker, Day2 Acc Plenary

- Primary support for Japanese-driven site dependent design
- Develop an AD&I plan compatible with CFS plans
- Develop an additional work plan of other AD&I key aspects which are not strictly CFS drivers , but still important
- Estimate the resources required for the plan
- CFS-Driven ADI
 - Priority 1: Tunnel length
 - Choice of average accelerator gradient
 - Maximum energy (physics scope)
 - Cryomodule length
 - Path length constraint
 - BDS length
 - Priority 2: Underground volume
 - Priority 3: Conventional facilities
- ADI regular fuze meetings
 - Core team (l.h.s. of Mike Harrison's table) + people for topics
 - Common design issues among various groups, not for R&D
 - Keep up momentum, team building

Configuration Management for the Pre-Construction Phase

N.Walker, Day2 Acc Plenary

Change Management for the ILC

Benno List, Nick Walker (DESY) DESY 05.05.14

DRAFT v 5

EDMS ID D*01057375

Table of Contents

Introduction Why Change Management? Proposed Change Management process for the LCC phase Overview 1. Initiation: Change Request (CR) creation 2. Evaluation (expert review) 3. Decision 4. Implementation Implementation details Organisational aspects Dealing with process documents – ILC-EDMS Summary Appendix I Over of LCC Change Management Process, roles and responsibilities

- Lightweight but still formal
- Configuration Management Board (CMB)
- Similar to GDE approach
- Four steps

1

2

5

6

6

6 7

8 10

- Initiation (change request)
- Evaluation (review)
- Decision
- Implementation TDD update

Coming soon !

ILC Change Management

Jun.5. ADI meeting, Walker

1. Proposing a design change

- Change Request (CR)
- Change Request Creater (CRC)
- Written document
- Submitted to Change Management Board (CMB)

2. Expert review

- Reviewed by CMB with additional experts as needed
- CMB defines the scope of the review
- Communication with all stakeholders
- Capture relevant documents

3. Decision

- Results with recommendation from (2) presented to ILC Director
- Written summary document
- ILC Director (in consultation with the CMB) makes final decision, or
- Decision is escalated to LCC directorate.

4. Updating TDD to reflect the change

- CMB identifies team (and team leader) to implement change.
- Generate scope of work
- Develope implementation
 plan
- Release of updated TDD

Mandatory documents

EDMS update!

Change Management Board (CMB)

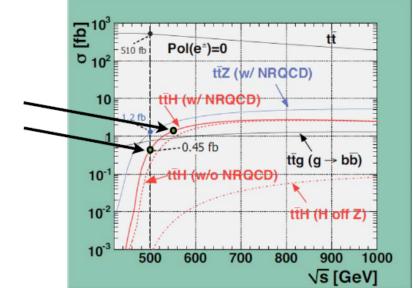
ILC Technical Board

- Mike Harrison (BNL, CMB chair)
- Nick Walker (DESY)
- Olivier Napoly (CEA)
- Nikolay Solyak (FNAL)
- Marc Ross (SLAC)
- Nobuhiro Terunuma (KEK)
- Yasuchika Yamamoto (KEK)
- Akira Yamamoto (KEK)
- 1 CFS rep
- 2 Physics and detector reps
- Change Administrator (Benno List)
- + additional experts as deemed fit

- Initial assessment
- Scale of review (determine change review panel)
- Decision
- Implementation planning

Jun.5. ADI meeting, Walker

ILC Parameters

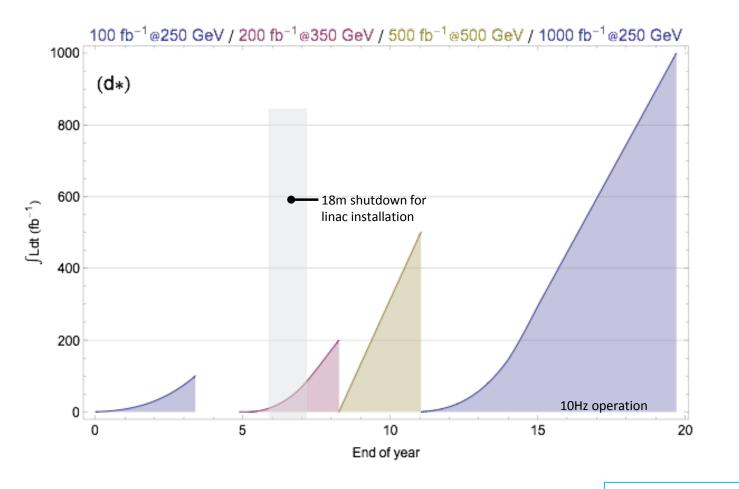

- Parameter Group formed
 - prepare information on ILC machine parameters and staging scenarios as well as potential upgrade paths in a form readily usable by the LCC
 - The first task for the working group is to prepare multiple scenarios for staging up to about 500 GeV
 - Report draft to be presented at LCWS14
- Physics Considerations
 - Phases of energy operation from 250 GeV to maximum baseline energy (eg. 350 GeV, etc.)
 - including required and available int. lumi.
 - Maximum reach baseline energy (we note physics motivation for 550 GeV based on tth)
 - Operation at energies below 250 GeV
 - Safety margin in energy reach and luminosity
 - Polarization

Day3 Plenary ILC Parameters

Membership PHYSICS AND DETECTORS: T. Barklow, J. Brau (co-convener), K. Fujii, J. List ACCELERATOR:Jie Gao, N. Walker (coconvener), K. Yokoya

Maximal Baseline Energy

- 500 GeV is an arbitrary maximum baseline energy.
- However, it is just within reach of an important physics channel, namely *tth*, where the top Yukawa coupling can be measured.
- The cross section rises sharply at ~500 GeV, suggesting an upper baseline energy of **550 GeV or so**, where the cross section for this important channel is significantly larger than at 500 GeV.



Staging Scenarios

 Designed to explore impact of different sequences of upgrades on evolution of Higgs precision

a.	250 inv.fb @ 250,		500 inv.fb @ 500				
b.	250 inv.fb @ 250,		500 inv.fb @ 550				
C.	250 inv.fb @ 250,	1	000 inv.fb @ 500				
(for comparison with scenario b)							
d.	100 inv.fb @ 250,	200 inv.fb @ 350,	500 inv.fb @ 500				
e.	100 inv.fb @ 250,	200 inv.fb @ 350,	500 inv.fb @ 550				
f.	25 inv.fb @ 250,	350 inv.fb @ 350,	500 inv.fb @ 500				
g.	500 inv.fb @ 250,		500 inv.fb @ 500				
a.*		350 inv.fb @ 350,	500 inv.fb @ 500				
h.	50 inv.fb @ 250,	200 inv.fb @ 350,	500 inv.fb @ 500,				
	1 inv.ab @ 250						
i.	50 inv.fb @ 250,	200 inv.fb @ 350,	500 inv.fb @ 550,				
	1 inv.ab @ 250						

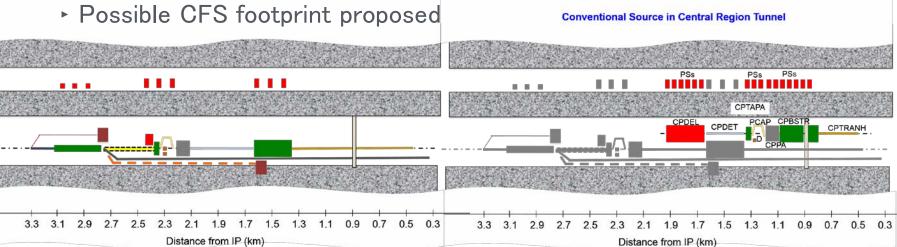
Energy staging (example scenario)

End of construction at year -1 (1st operation year for commissioning)

Lyn Evans, Closing

Topics From Accelerator Areas

Sources


- Polarized electron source
 - No major problem

Undulator positron source

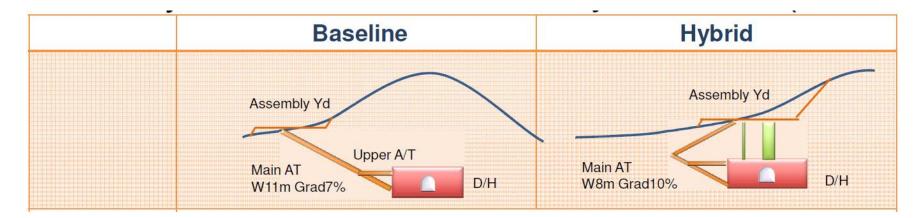
- Target and flux concentrator R&D yet to be done
- Differential pumping, longer time scale flux concentrator, yet design only
- Hoping R&D budget according to P5

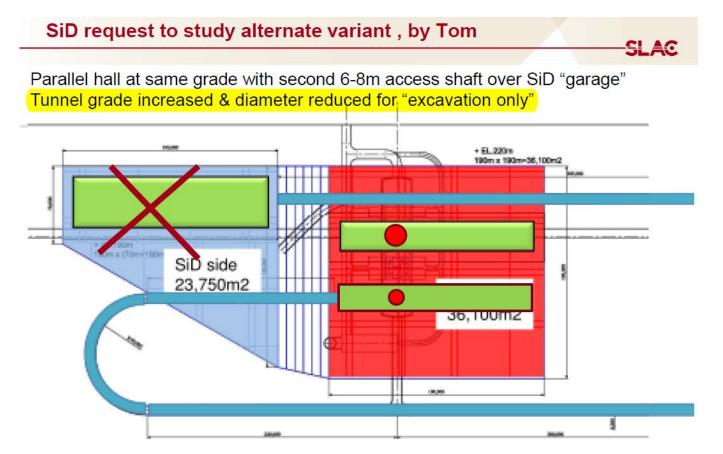
Electron-driven positron source

- Simulation shows sufficient yield
- Target prototype R&D on-going

BDS & MDI

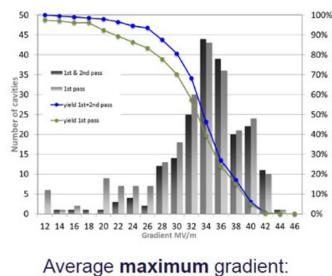
Commissioning

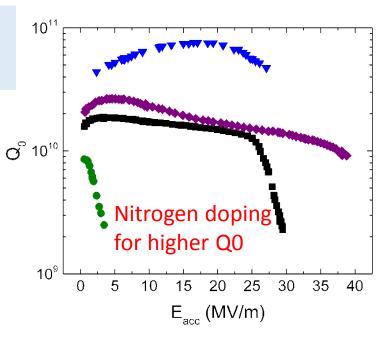

- Expected initial beam size
- Luminosity measurement by piar monitor
- Commissioning scenario
- Conclusion
 - Can be done with one of the detectors sitting at $\ensuremath{\mathsf{IP}}$
- ATF2
 - ▶ ~55nm reached
 - Progress in quick tuning

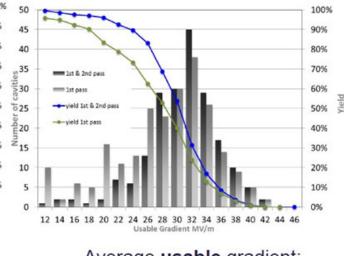

• Optics

- Possible longer L*, same L* for 2 detectors?
- "Traditional" optics vs. Local Chromaticity Compensation
- Beam loss in extraction line

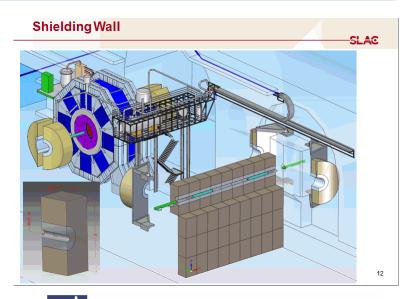
• CFS for experimental hall

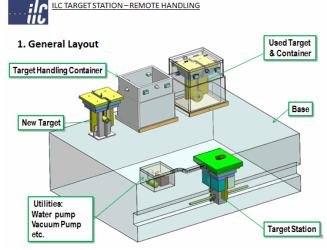

- Hybrid (access tunnel + vertical shaft) design in April meeting at Tokyo Univ.
- Concern expressed from SiD team




SCRF

- Higher Q0 study at FNAL
- Cavity yield at XFEL
 - ▶ 85% out of 207 cavities
 - Average of usable gradient (29.3 +- 5.1) MV/m
- LCLSII plan
 - Production start FY16




Average usable gradient: (29.3 ± 5.1) MV/m

CFS

Main linac shielding

- Maximum credible accident"
- Thickness of concrete wall
- Japanese regulation
- Cryogenics
- Commissioning
- Detector Hall
- Positron
 - Target storage
 - Conventional source
 - Auxiliary source

The next step

- SCJ has requested a study of the scientific and economic impact of ILC.
- MEXT has set up a committee of "wise men".
- LCC will provide information through KEK DG
- Scientific case
- Materials cost estimate.
- Manpower

Lyn Evans, Closing

• Anything else they request