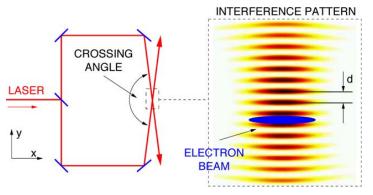
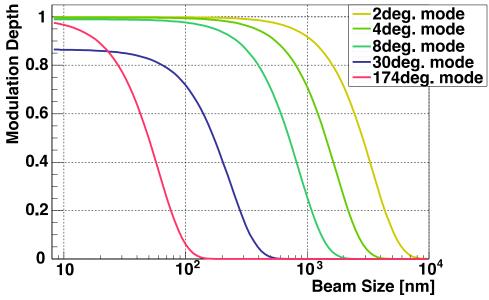
# ATF2 (ATF Final Focus Test) 10~12月の報告

LC 推進委員会 2012.12.27 久保浄

### ATF2 (Final Focus test) 10~12月


10月の推進委員会での報告より


- •12月までの目標
  - 70 nm 以下のビームサイズを確認する
  - さらに小さいビームサイズを目指す。
    - <40nm にならない場合、原因の究明</li>

#### 結果

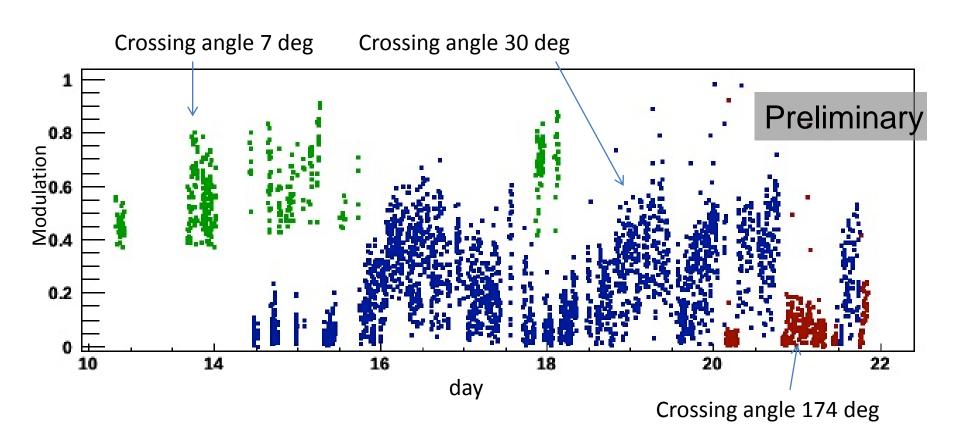
- •新竹モニターで、ビームサイズ約70nm に相当する強さの modulationを確認した。
  - バンチ当たりの電子数 ~10<sup>9</sup> 程度(小電荷)
  - 誤差の大きさは解析中
- ビームサイズが、ビーム強度に強く依存することが判明。

### IPBSM 交差角と測定可能ビームサイズ





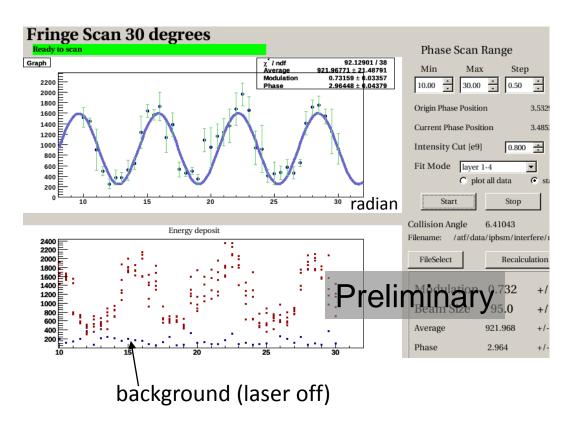
#### Modulation


$$\equiv \frac{\text{peak} - \text{bottom}}{\text{peak} + \text{bottom}}$$

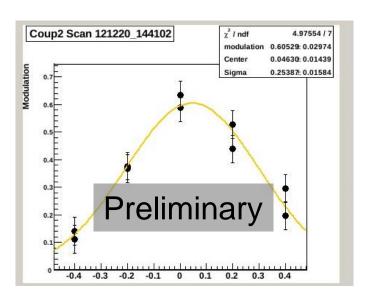
|                 | 174°   | 30°    | 8°     | 2°     |
|-----------------|--------|--------|--------|--------|
| Fringe<br>pitch | 266 nm | 1.03µm | 3.81µm | 15.2μm |
| Minimum         | 25 nm  | 100 nm | 360 nm | -      |
| Maximum         | 100 nm | 360 nm | -      | 6 μm   |

# 最後の24時間の経過

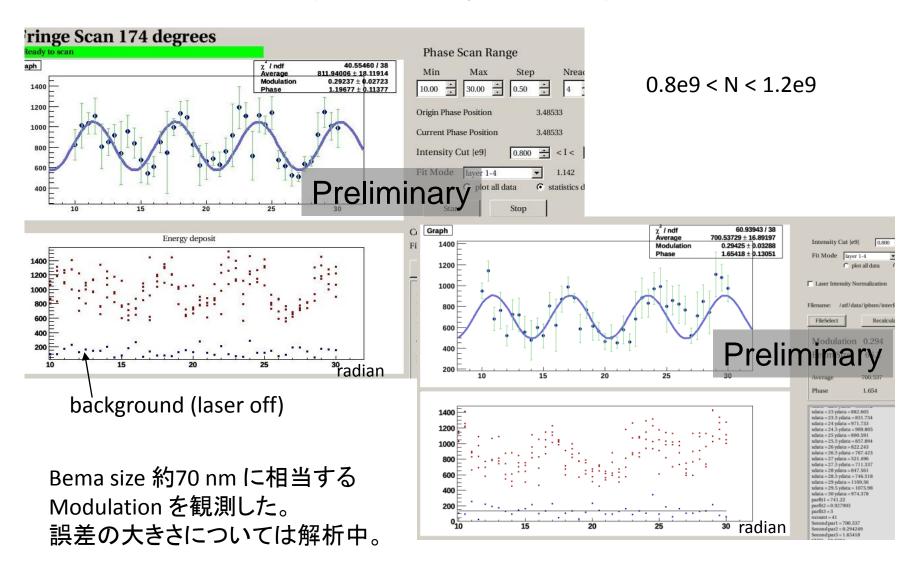
- 交差角30度での調整後、最適と思われる状態で交差角を174度に変更。
- 明らかなmodulationを観測。(modulation 0.2~0.3程度)
- 7時間程度、引き続き明らかなmodulationを観測。
- その間、ビームを調整でより大きい modulation を目指すが、有効な調整はできなかった。
- 調整中にmodulation が見えなくなり、交差角30度に戻して再びビーム調整の後、174度に変更。
- 運転終了まで2時間以上、引き続き明らかな干渉縞を観測。


# Fringe scan history, Dec. 12-21

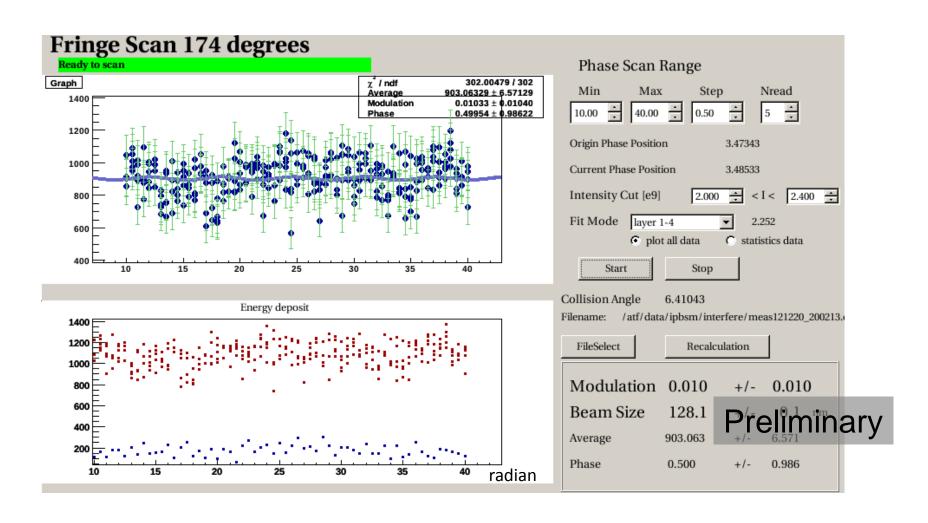



(ビーム調整ノブのscanなど、全てのfringe scanを含む)

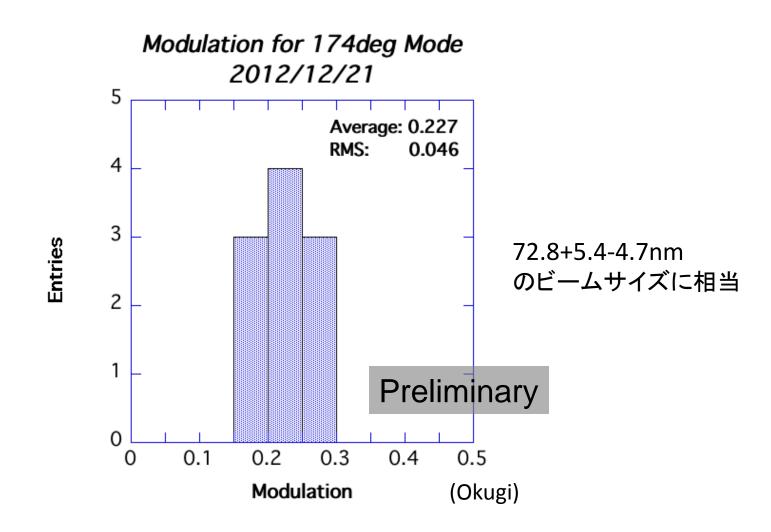
### 交差角30度の測定例


#### Fringe scan




#### ビーム調整ノブのスキャンの例




### 交差角174度の測定例

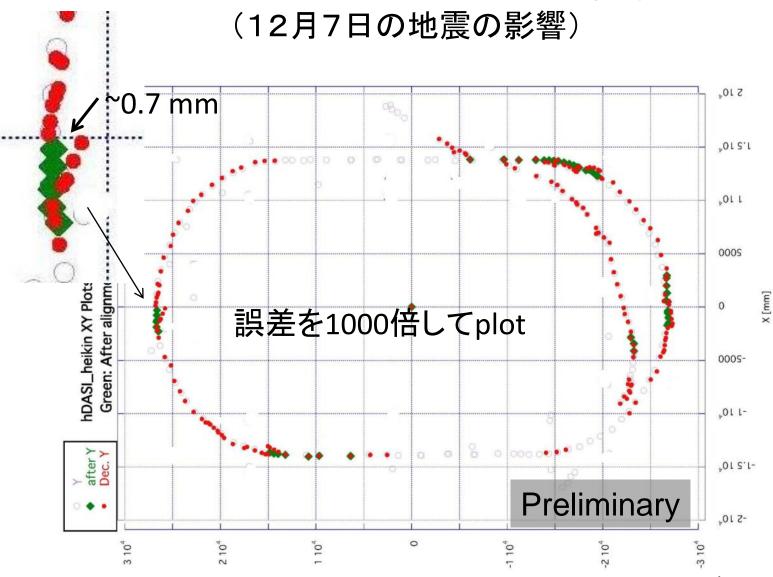


### 交差角174度、modulationが確認できない例



### 交差角174度での連続測定の結果




### 交差角174度でmodulation観測

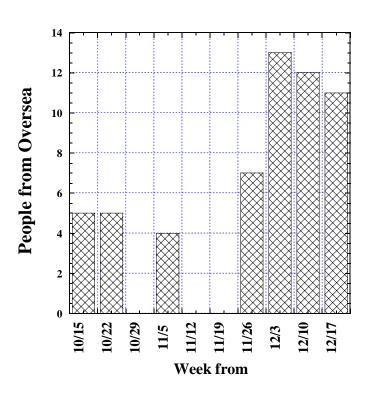
新竹モニターの交差角174度で明らかな干渉縞(modulation)を観測。

- Modulation 0.2~0.3程度であり、ビームサイズ約 70 nm に相当する。誤 差の評価などがまだできていない。
- 非常に低いバンチ電荷(粒子数1~2e9程度)でのみ測定できた。
  - バンチ当たりの粒子数を増やすと、ビームサイズが急速に増大する。
  - より低い電荷での測定は、現状の測定システムでは困難
- ビームサイズモニターとしての性能、安定性を確認することができた。
  - ただし、小交差角でも理論上の最大modulationにならない。
  - レーザー自体の安定性などには問題が残っている。
- ビームサイズがバンチ電荷に強く依存することは問題であり、原因を理解することが必要。できればこれを低減する対策をとる。
  - ILC の設計に影響を与えるのかどうか、検討の必要がある。

- 10月15-19日、22-27日
  - 夏期シャットダウンからの復帰、新たに立ち上げたシステム(繰り返し
    1.5Hz → 3Hz 等)のチェックなど
  - IPビームサイズモニター交差角7度で高い modulation (~0.9)を確認
  - 電磁石電源の故障で1日運転停止
- 11月5-9日、12-16日
  - IPビームサイズモニター交差角30度で modulation を確認
  - Linac Modulator の故障で1週間運転キャンセル
- 11月26日-30日、12月3-7、10-21日
  - IPビームサイズモニター交差角174度で modulation を確認
  - 12月7日の地震の影響で、ダンピングリングのアラインメントの修正 を実施

## ダンピングリングアラインメント確認、修正




(S. Araki)

### 実験参加者(海外)

#### ATF2 Visitors Schedule for Oct.-Dec. 2012

Put your name and schedule. (You are welcome to improve the format by editting this page.)

| Name                  |       | Oct. 22 |     |     |           | Nov.19 |       | Dec. 3 | Dec. 10 | Dec. 17 |
|-----------------------|-------|---------|-----|-----|-----------|--------|-------|--------|---------|---------|
| Test Example          | no    | 23~26   | по  | 7~  | ~15       | по     | 29~   | yes    | ~12     | ?       |
| SLAC                  |       |         |     |     |           |        |       |        |         |         |
| G. White              | 15-19 | 23-26   | по  | по  | по        | по     | 26-30 | 3-7    | 10-14   | 17-21   |
| M. Woodley            | no    | по      | yes | yes | yes       | по     | yes   | yes    | yes     | yes     |
| J. Nelson             | no    | по      | по  | no  | no        | no     | 30~   | yes    | yes     | ~21     |
| E. Marin              | no    | по      | по  | no  | no        | no     | 26~   | yes    | ~14     | no      |
| CERN                  |       |         |     |     |           |        |       |        |         |         |
| J. Pfingstner         | no    | no      | по  | no  | no        | по     | yes   | yes    | yes     | yes     |
| Yves Renier           |       |         |     |     |           |        | по    | yes    | yes     | yes     |
| Hector Garcia Morales | no    | no      | no  | no  | no        | по     | по    | yes    | yes     | yes     |
| IFIC                  |       |         |     |     |           |        |       |        |         |         |
| J. Resta-Lopez        | по    | по      | по  | по  | no        | по     | yes   | yes    | по      | по      |
| J. Alabau             | no    | no      | по  | no  | no        | по     | yes   | yes    | по      | по      |
| Oxford U. (FONT)      |       |         |     |     |           |        |       |        |         |         |
| Young Im Kim          | yes   | yes     | no  | yes | yes       | yes    | yes   | yes    | yes     | yes     |
| Davis                 | yes   | yes     |     | по  | yes       |        | по    | no     | yes     | yes     |
| Blaskovic             | yes   | yes     |     | по  | cancelled |        | по    | yes    | yes     | по      |
| Burrows               | yes   |         |     |     |           |        |       |        |         |         |
| Christian             |       | yes     |     |     |           |        |       |        |         |         |
| KNU                   |       |         |     |     |           |        |       |        |         |         |
| Siwon Jang            | по    | по      | 31~ | yes | yes       | по     | по    | по     | ?       | ?       |
| RHUL                  |       |         |     |     |           |        |       |        |         |         |
| S. T. Boogert (RHUL)  | по    | по      | по  | по  | по        | по     | по    | по     | yes     | yes     |
| J. Snuverink (RHUL)   | по    | по      | по  | yes | no        | по     | no    | yes    | yes     | yes     |
| Oxford JAI (EXTLW)    |       |         |     |     |           |        |       |        |         |         |
| L. Corner             | по    | по      | по  | по  | no        | по     | по    | yes    | yes     | yes     |



### シフト体制

# 8時間のシフトにStudy leader, sub leaders をassign。 (assign されない人も多数参加)

#### 12月最後の2週間(週末を含む)の例

|          | 1:00 – 9:00 | 9:00 – 17:00 | 17:00 – 25:00 |
|----------|-------------|--------------|---------------|
| 12/10 Mo |             |              | Kubo          |
| 12/11 Tu | Kuroda + A  | White + B    | Okugi + C     |
| 12/12 Wd | Woodley + D | Tauchi + E   | Kuroda + A    |
| 12/13 Th | Kubo + B    | Okugi + C    | Tauchi + D    |
| 12/14 Fr | White + E   | Terunuma + A | Woodley + B   |
| 12/15 Sa | Kuroda + C  | Terunuma + D | White + E     |
| 12/16 Su | Kubo + A    | Tauchi + B   | Woodley + C   |
| 12/17Mo  | Okugi + D   | White + E    | Terunuma + A  |
| 12/18 Tu | Kuroda + B  | Tauchi+ C    | Okugi + D     |
| 12/19 Wd | Woodley + E | Kubo + A     | White+ B      |
| 12/20 Th | Okugi + C   | Kuroda + D   | Kubo + E      |
| 12/21 Fr | White+ A    | Tauchi + B   |               |

Name: Study/Tuning leader ( Italic: shift leader (for safety))

A-D: Study/Tuning sub-leaders

The assignments are not strict and you may join any shifts.

A: J. Nelson, E. Marin, L. Corner

B: Y. Renier, H. Garcia Morales

C: S. Boogerd, J. Snuverink,m

D: Y-I Kim, N. Blaskovic, Davis

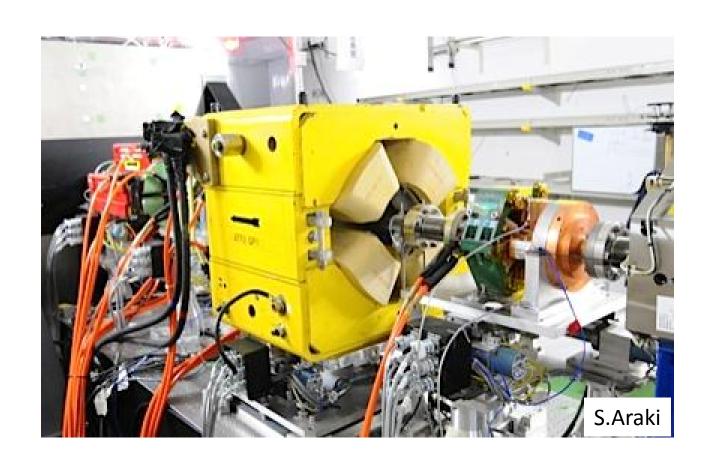
E: J. Pfingstner, Akagi, Tanaka

### 実験中の打ち合わせの様子



S. Araki

#### Multi-pole field 低減のための作業、及びビームによる調査


Multi-pole field 低減のための作業(最後の4週間運転の前に実施)

- Q-magnet 交換(QF1: 最終収束点の直前2番目の収束磁石)
  - 今までのものはMulti-pole field が大きいため。
  - SLAC (PEPII) の大口径のものに交換
- 最終収束点の直前2個のQ磁石に付いていたCavity BPM (feed-throughがKovar製、磁場を乱す可能性あり)を取り外し。

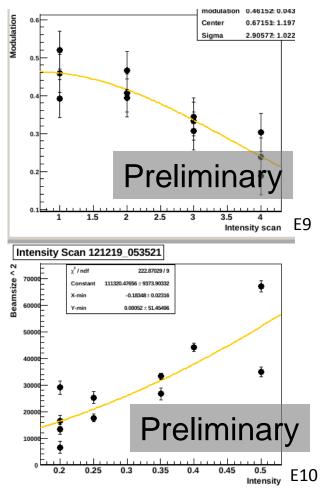
#### ビーム実験による調査

- Skew 6極磁石を4台設置。これらの磁場強度の変更により焦点でのビームサイズが減少すれば、他に何らかのmulti-pole filed が存在する証拠となる。
  - 測定を試みたが、時間の不足もあり、はっきりした結論は得られなかった。

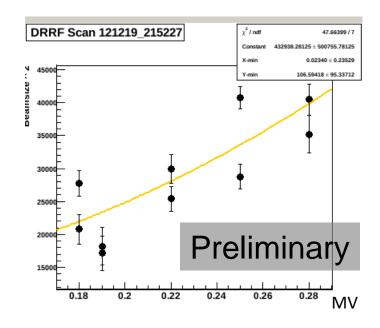
- Final H-focusing Quad の multi-pole error が大きいので交換
  - SLACからPEPIIのもの。大口径、multi-pole error 小
- Final doublet Q磁石についている Cavity BPM 取り外し
  - feed-through が Kovar 製で磁場を乱す可能性あり



### ビームサイズがバンチ強度に強く依存


#### 考えられる原因:

- Wakefield が最も疑われる(特にベータ関数の非常に大きい場所)
  - Cavity –BPM
  - ビームパイプの段差
  - 細い部分でのビームパイプ壁抵抗
- Intra-beam scattering + Non-linear magnetic field が影響しているという可能性も否定できない
  - Intra-beam scattering により energy spread, 水平エミッタンスが増大
  - → Non-linear field により垂直ビームサイズが増大


はっきりした結論には、まだ調査が必要。

#### Intensity dependence

交差角30度での modulation (beam size) をバンチ intensity を変えて測定



交差角30度での beam size を ダンピングリングRF電圧(バンチ長) を変えて測定



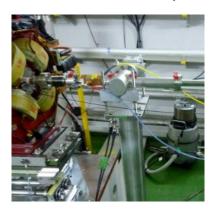
バンチの全電荷量だけでなく、 電荷線密度にも依存している

### Wakefield の調査、低減の試み

- Wakefield源として疑われる構造を可能な限り取り除く
- 可動台上にCavity BPM (reference cavity)を設置 (Wakefield generation, compensation)
  - Cavity の位置とビームサイズの相関を測定
  - Cavity の位置とビーム軌道の相関を測定
- Wakefield (再)計算
- 測定結果からは、計算よりもCavity による wakefield が強いように見えるが、詳しくは現在解析中。

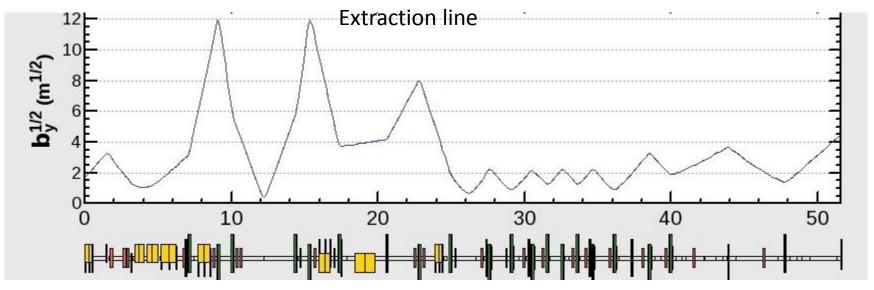
### ベータ関数の大きい場所で Wakefield源となりうる構造を可能な限り取り除く

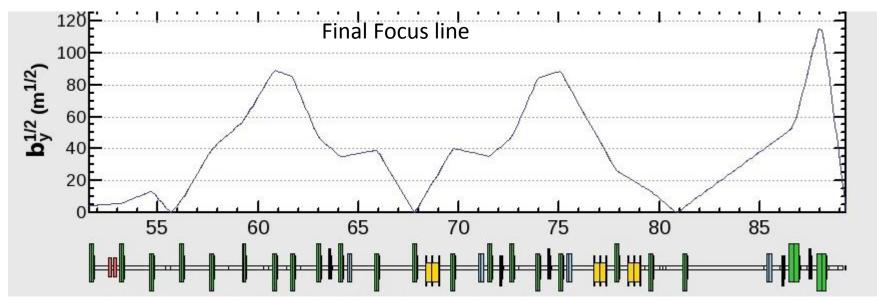
真空ポートを対称性の高いものに交換

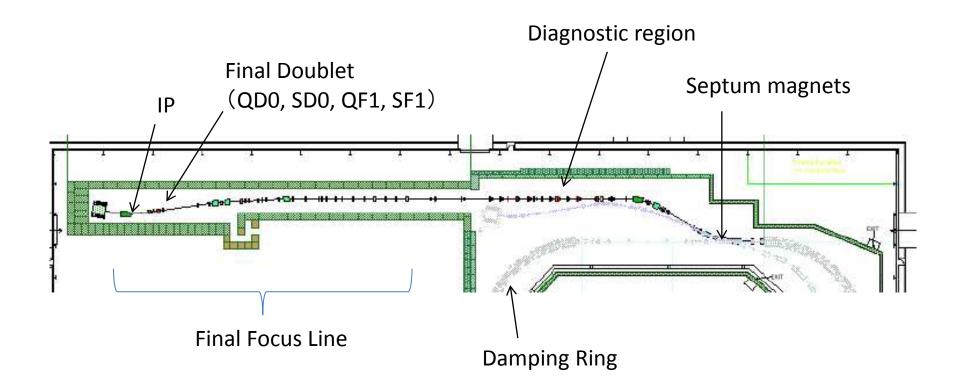





使用していないCavity-BPM の reference cavity 3台を取り外し



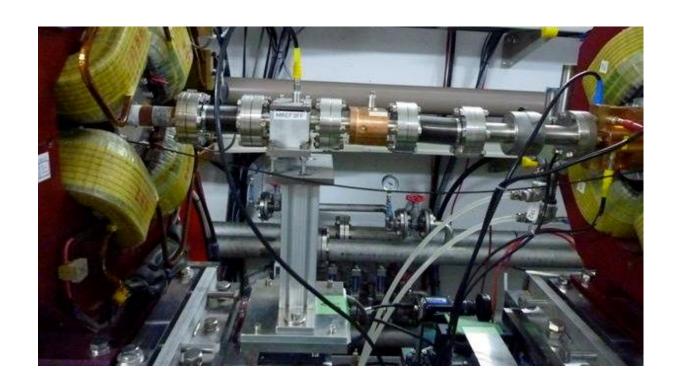


High beta region にあった、ゲートバルブ、 Reference cavity を lower beta の位置に移動





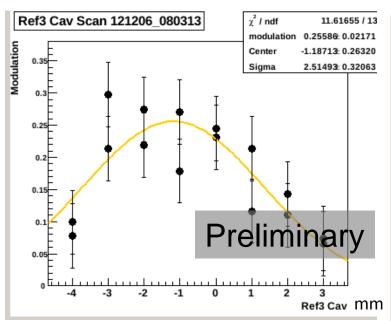

#### 垂直ベータ関数

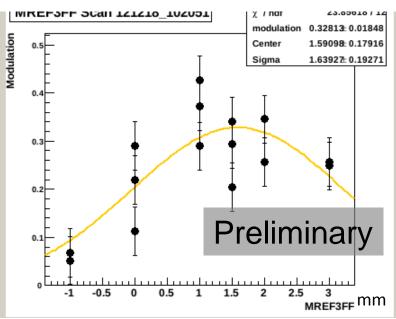






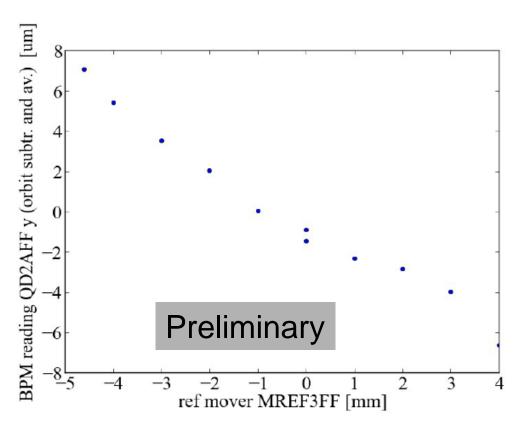

### 可動台上にCavity BPM (reference cavity)を設置


Cavity BPM の wakefield の影響の調査のため。


他の場所でのWakefield の影響を打ち消すことも期待。



### 可動台上にCavity BPM (reference cavity)を設置し、 Wakefield の影響を調査 - 1


ビームサイズ測定の例: 交差角30度での modulation をcavity の位置を変えて測定





### 可動台上にCavity BPM (reference cavity)を設置し、 Wakefield の影響を調査 -2

測定の例: 下流のBPMの読みをcavity の位置を変えて測定 N~6e9



計算: ~0.5 micron/mm

測定: >1 micron/mm

Cavity 以外の部分の効果? さらに詳しい解析が進行中。

#### Wakefield について、今後の課題

- 強い intensity dependence に関する調査
  - 本当に Wakefield なのか
  - どの部分が問題なのか
- Wakefield の低減の検討
  - ビームパイプの要所にテーパーあるいはシールドを組み込む
  - Cavity BPM の再アラインメント(磁場中心により正確に合わせる)
  - 幾つかのCavity BPM取り外し
  - Etc.

• ILC BDS での wakefield の影響との比較検討

#### ATF2 での Wakefield の影響の ILC との大雑把な比較

- ビームエネルギー ~1/200 → wakefield の影響 200倍
- エミッタンス~100倍 (divergence 10倍) → 1/10
- バンチ長20倍 → 約 1/3 (depend on shape of wakefield)
- → 同じoffsetに対する影響: 7倍
- アラインメントの許容誤差: 1/7
- ビーム軌道のジッターの許容値(ビームサイズとの比): 1/70 (ATF2 の方が厳しい)
- 長さ当たり同じwakeとすると、(ビームラインの長さ 1/20)
  - 上の値の20倍(ATF2 と ILC で同程度の厳しさ)

### 10月の委員会での「まとめ」と、その結果

- 12月までの目標
  - 70 nm 以下のビームサイズを確認した後、さらに小さいビームサイズを目指す。(40 nm):(最後の2日間に70 nm 程度のビームサイズを観測できた)
- 改善、対策
  - ビーム調整の方針決定過程を明確に:(シフト体制が整い、情報の共有、 studyの継続性を持つことができた。)
  - 取出し軌道とエミッタンスの相関の再調査: (調査したがまだ不十分)
  - IPでのビーム位置のモニター設置:(設置されたが性能はまだ不十分)
  - Multi-pole filed error への対策
    - 最終4極磁石(H-focus)の交換, S-band BPM 取り外し:(実施)
    - Skew 6極補正磁石の追加: (ビーム調整に使用した。有効性については さらに調査が必要。)
  - IP ビームサイズモニターの安定性、再現性の改善: (明らかに改善された)

# まとめ

- ビームサイズ約70nm に相当する強さのmodulationを確認。
  - バンチ当たりの電子数 1x10<sup>9</sup> 程度の低電荷でのみ(電荷を増やすと modulation が見えない)
  - 誤差の大きさなどは解析中
- ビームサイズモニターとしての性能を確認できた
  - 夏期シャットダウン中の改造により、安定性、再現性は明らかに改善 した。
  - レーザー自体の安定性にはまだ改善の余地がある。
- ビームサイズが、ビーム強度に強く依存することが判明
  - Wakefield が原因と思われるが、さらに調査を要する。
  - ILC の設計に影響があるのかどうか要検討
- 海外から多数の参加者を得ることができ、積極的に実験の進展に貢献。 国際協力の成果があった。