Time Stamping CDC/TPC Comparison Studies Keisuke Fujii, KEK

Why Time Stamping?

2-Photon Mini-Jet Production $\langle E \rangle \simeq 2.5~{
m GeV}$ $\langle n_{
m ch} \rangle \simeq 5$ in chamber acceptance

2-Photon Mini-Jet Production $\langle E \rangle \simeq 2.5~{
m GeV}$ $\langle n_{
m ch} \rangle \simeq 5$ in chamber acceptance

2-Photon Mini-Jet Production $\langle E \rangle \simeq 2.5~{
m GeV}$ $\langle n_{
m ch} \rangle \simeq 5$ in chamber acceptance

How to Time-Stamp a Track?

Signature State Stat

Staggered Cells

5

Staggered Cells

Staggered Cells

Staggered Cells

Staggered Cells

Sin the Case of JLC-CDC

Staggered Cells

Staggered Cells

Sin the Case of JLC-CDC

Staggered Cells

Sin the Case of JLC-CDC

Staggered Cells

$$\Delta \mathbf{x} = 2 \ v_{\rm drift} \times \Delta T_0$$

In the Case of JLC-CDC

Staggered Cells

Wrong TO breaks a track!

$$\Delta \mathbf{x} = 2 v_{\text{drift}} \times \Delta T_0$$

Naively we expect

In the Case of JLC-CDC

Staggered Cells

$$\Delta \mathbf{x} = 2 \ v_{\rm drift} \times \Delta T_0$$

In the Case of JLC-CDC

Staggered Cells

$$\Delta \mathbf{x} = 2 v_{\text{drift}} \times \Delta T_0$$

In the Case of TPC

In the Case of TPC

In the Case of TPC

External Z Detector (TO Device)

In the Case of TPC

External Z Detector (TO Device)

In the Case of TPC

External Z Detector (TO Device)

In the Case of TPC

External Z Detector (TO Device)

In the Case of TPC

External Z Detector (TO Device)

In the Case of TPC

External Z Detector (TO Device)

$$\Delta \mathbf{z} = v_{\rm drift} \times \Delta T_0$$
In the Case of TPC

External Z Detector (TO Device)

Wrong TO makes a Z-shift!

$$\Delta \mathbf{z} = v_{\rm drift} \times \Delta T_0$$

Naively we expect

In the Case of TPC

External Z Detector (TO Device)

Wrong TO makes a Z-shift!

$$\Delta \mathbf{z} = v_{\rm drift} \times \Delta T_0$$

Naively we expect $\sigma_{\Delta T_0} \simeq \frac{2\sigma_z}{v_{\text{drift}}\sqrt{n}} \left[1 + 3\left(\frac{d}{L}\right) + 3\left(\frac{d}{L}\right)^2 \right]^{-\frac{1}{2}}$

In the Case of TPC

External Z Detector (TO Device)

Wrong TO makes a Z-shift!

$$\Delta \mathbf{z} = v_{\rm drift} \times \Delta T_0$$

Naively we expect

$$egin{aligned} \sigma_{\Delta T_0} &\simeq rac{2\sigma_{
m z}}{v_{
m drift}\sqrt{n}} \left[1+3\left(rac{d}{L}
ight)+3\left(rac{d}{L}
ight)^2
ight]^{-rac{1}{2}} \ &\simeq rac{2\sigma_{
m z}}{v_{
m drift}\sqrt{n}} \quad {
m if} \quad \left(rac{d}{L}
ight)\ll 1 \end{aligned}$$

In the Case of TPC

Assuming that Z resolution of the external detector is negligible

External Z Detector (TO Device)

Wrong TO makes a Z-shift!

$$\Delta \mathbf{z} = v_{\rm drift} \times \Delta T_0$$

Naively we expect

$$\sigma_{\Delta T_0} \simeq \frac{2\sigma_z}{v_{\text{drift}}\sqrt{n}} \left[1 + 3\left(\frac{d}{L}\right) + 3\left(\frac{d}{L}\right)^2 \right]^{-\frac{3}{2}}$$

$$\simeq \frac{2\sigma_z}{v_{\text{drift}}\sqrt{n}} \quad \text{if} \quad \left(\frac{d}{L}\right) \ll 1$$

In the Case of TPC

Assuming that Z resolution of the external detector is negligible $\sigma_z = 500 \ \mu m$ $v_{\rm drift} = 5 \ {\rm cm}/\mu {\rm s}$ n = 120

External Z Detector (TO Device)

Wrong TO makes a Z-shift!

$$\Delta \mathbf{z} = v_{\rm drift} \times \Delta T_0$$

Naively we expect $\sigma_{\Delta T_0} \simeq \frac{2\sigma_z}{v_{\text{drift}}\sqrt{n}} \left[1 + 3\left(\frac{d}{L}\right) + 3\left(\frac{d}{L}\right)^2 \right]^{-\frac{1}{2}}$ $\simeq \frac{2\sigma_z}{v_{\text{drift}}\sqrt{n}} \quad \text{if} \quad \left(\frac{d}{L}\right) \ll 1$

In the Case of TPC

Assuming that Z resolution of the external detector is negligible $\sigma_z = 500 \ \mu m$ $v_{\rm drift} = 5 \ {\rm cm}/\mu {\rm s}$ n = 120

External Z Detector (TO Device)

Wrong TO makes a Z-shift!

$$\Delta \mathbf{z} = v_{\rm drift} \times \Delta T_0$$

Naively we expect $\sigma_{\Delta T_0} \simeq \frac{2\sigma_z}{1 + 3\left(\frac{d}{\tau}\right) + 3\left(\frac{d}{\tau}\right)^2}$

$$\simeq \frac{1}{v_{\text{drift}}\sqrt{n}} \begin{bmatrix} 1+3\left(\overline{L}\right)+3\left(\overline{L}\right) \end{bmatrix}$$

$$\simeq \frac{2\sigma_z}{v_{\text{drift}}\sqrt{n}} \quad \text{if} \quad \left(\frac{d}{L}\right) \ll 1$$

More Realistic Estimation

Helix Fit CDC Hits with TO as an Additional Fit Parameter

CDC Case

CDC Case

Chi2 Distribution (axial only)

CDC Case

Chi2 Distribution (axial only)

CDC Case

Chi2 Distribution (axial only)

-----> Fit seems OK!

TO from Helix Fit (axial only, 100GeV)

TO from Helix Fit (axial only, 100GeV)

TO from Helix Fit (axial only, 100GeV)

We can determine TO with ~1.8ns accuracy as expected!

What happens if we add stereo layers?

At certain Z positions, we lose L/R staggering of the neighboring layers!

Stereo layers allow additional freedom to eliminate track discontinuity by adjusting dip angle!

----> Degradation of time stamping capability?

Chi2 Distribution (axial+stereo, 100GeV)

Chi2 Distribution (axial+stereo, 100GeV)

Chi2 Distribution (axial+stereo, 100GeV)

→ Fit seems OK!

© TO from Helix Fit (axial+stereo, 100GeV)

TO from Helix Fit (axial+stereo, 100GeV)

12

TO from Helix Fit (axial+stereo, 100GeV)

We can still determine TO with ~2.2ns accuracy!

What about Low Pt Tracks?

K.Fujii @ LC-TPC TPC R&D Meeting Multiple Scattering Effects (axial+stereo, 1GeV)

K.Fujii @ LC-TPC TPC R&D Meeting Multiple Scattering Effects (axial+stereo, 1GeV)

K.Fujii @ LC-TPC TPC R&D Meeting Multiple Scattering Effects (axial+stereo, 1GeV)

K.Fujii @ LC-TPC TPC R&D Meeting Multiple Scattering Effects (axial+stereo, 1GeV)

In the Case of TPC

Assuming a generic TPC with

and a T(

$$R_{out}-R_{in}=120~{
m cm}$$

 $\sigma_{
m xy}=150~\mu{
m m}$
 $\sigma_{
m z}=500~\mu{
m m}$
 $B=4{
m T}$
 $n=120$
 $v_{
m drift}=5~{
m cm}/\mu{
m s}$
O device with
 $\sigma_{
m z}^{T_0}=10~\mu{
m m}$

Helix Fit TPC hits Including the External Z Hit with TO as an Additional Fit Parameter

• TO from Helix Fit (d=5cm, 100GeV)

TO from Helix Fit (d=5cm, 100GeV)

TO from Helix Fit (d=5cm, 100GeV)

We can determine TO with ~2.0ns accuracy as expected!

What about Low Pt Tracks?

Multiple Scattering Effects (d=5cm,0.6%X0, 2GeV)

Multiple Scattering Effects (d=5cm,0.6%X0, 2GeV)

Multiple Scattering Effects (d=5cm,0.6%X0, 2GeV)

Multiple Scattering Effects (d=5cm,0.6%X0, 2GeV)

MS Effect more significant than for CDC
Multiple Scattering Effects (d=5cm,0.6%X0, 2GeV)

MS Effect more significant than for CDC

This is probably due to the fact that there is only a single break point to decide TO.

Multiple Scattering Effects (d=5cm,0.6%X0, 2GeV)

MS Effect more significant than for CDC

This is probably due to the fact that there is only a single break point to decide TO.

The material thickness between TPC and TO detector does not matter as long as it stays just in front of the TO detector.

Multiple Scattering Effects (d=5cm,0.6%X0, 2GeV)

MS Effect more significant than for CDC

This is probably due to the fact that there is only a single break point to decide TO.

The material thickness between TPC and TO detector does not matter as long as it stays just in front of the TO detector.

0.6%X0 to 3.0%X0 --> 2% shift in TO resolution

Summary & Conclusions

We have just started CDC/TPC comparison studies for time stamping capability.

- We have just started CDC/TPC comparison studies for time stamping capability.
- CDC alone can determine TO on a track by track basis with a time resolution of ~2ns.

- We have just started CDC/TPC comparison studies for time stamping capability.
- CDC alone can determine TO on a track by track basis with a time resolution of ~2ns.
 - The TO resolution is rather insensitive to multiple scattering.

- We have just started CDC/TPC comparison studies for time stamping capability.
- CDC alone can determine TO on a track by track basis with a time resolution of ~2ns.
 - The TO resolution is rather insensitive to multiple scattering.
- TPC can determine TO together with a TO device with a similar precision.

- We have just started CDC/TPC comparison studies for time stamping capability.
- CDC alone can determine TO on a track by track basis with a time resolution of ~2ns.
 - The TO resolution is rather insensitive to multiple scattering.
- TPC can determine TO together with a TO device with a similar precision.

Multiple scattering effect is, however, more significant.

Refinement of the mini-Jet BG estimate.

Refinement of the mini-Jet BG estimate.

Effect of curling up tracks.

- Refinement of the mini-Jet BG estimate.
- Effect of curling up tracks.
 - Effect is probably more serious for TPC than for CDC.

Further Studies Refinement of the mini-Jet BG estimate. Effect of curling up tracks. Effect is probably more serious for TPC than for CDC. Linking to VTXD to eliminate primary tracks

originating from a displaced vertex in Z.

21

- Refinement of the mini-Jet BG estimate.
- Effect of curling up tracks.
 - Effect is probably more serious for TPC than for CDC.
- Linking to VTXD to eliminate primary tracks originating from a displaced vertex in Z.
- Repeat everything for multi-jet events.