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Charge Centroid Method 
with Readout Pads
Fundamental Limits on Spatial Resolution 

for a MPGD Readout TPC

Analytic Formulation of Spatial Resolution
Important Outcome from KEK Beam Tests

(Asia, Europe, and North America)
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For simplicity, we will consider for a while a 
charged particle at normal incidence. We 
also assume that the effect of delta-rays is 
negligible (good approximation if there is a 
strong enough B-field) so that all the track 
electrons can be regarded as starting from 
a single point when projected to the (x, z) 
plane. These track electrons drift towards 
the amplification region while experiencing

Basic Assumptions

Coordinate System
We set our coordinate system in such a way 
that the readout pads are arranged in a row 
to measure the x-coordinate with charge 
centroid method, the y-coordinate from 
the pad row number, and the z-coordinate 
from the drift time. 

Coordinate Measurement Process
MPGD Readout TPC

diffusion. The track electrons are then gas 
amplified while experiencing further 
diffusion. As we have discussed, when we 
readout pad signals with a slow enough 
electronics, only the real charge arriving at 
a readout pad counts. The spatial width of 
the signal is then determined by the width 
of the real charge distribution on the pad 
plane as determined by the diffusion in the 
drift and the amplification regions. Notice 
that we are dealing with normal incidence 
for which angular pad effect is absent.

In what follows we start from an ideal 
situation with a perfect readout plane, 
switching on one-by-one complications 
expected for more realistic situations.
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Fundamental Processes

Amplification Gap

Readout Pads

Beam

Drift Volume Drift and Diffusion

Amplification and
          further Diffusion

Pad Response

Ionizations

Coordinatex

      Liberation of Electrons
PI(N ; N̄)

PD(xi;σd) =
1

√

2πσd

exp

(

−

x2
i

2σ2

d

)

PG(G/Ḡ; θ) =
(θ + 1)θ+1

Γ(θ + 1)

(

G

Ḡ

)θ

exp

(

−(θ + 1)

(

G

Ḡ

))

Normal incidence  
(no angle effect)
No δ-ray

σd = Cd

√

z
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Ionization Statistics

We assume here an ideal readout plane that 
can measure the x-coordinates of individual 
track electrons exactly. The probability 
distribution function for the center of 
gravity of N track electrons is given by

PDF for C.O.G. of N electrons
Ideal Readout Plane: Coordinate = Simple C.O.G.

P (x̄) =
∞∑

N=1

PI(N ; N̄)
N∏

i=1

(∫
dxi PD(xi;σd)

)
δ

(
x̄− 1

N

N∑

i=1

xi

)

passed through the TPC at x=0 parallel with 
the readout plane and perpendicular to the 
pad rows.
The center of gravity of the N electrons is 
the best possible estimator of the incident 
x-coordinate of the track

Ideal readout plane

σd = Cd

√

z

x
xiGaussian diffusion

PD(xi;σd) =
1√

2πσd

exp
(
− x2

i

2σ2
d

)

Ionization statistics

σd = Cd
√

z

where Cd is the diffusion coefficient and z 
is the drift length. The track is assumed to

〈x̄〉 :=
∫

dx̄ P (x̄) x̄ = 0

The variance of the C.O.G. is then given by

σ2
x̄ :=

∫
dx̄ P (x̄) x̄2 = σ2

d

〈
1
N

〉
=: σ2

d
1

Neff

by definition. This leads us to

Neff :=
1

〈1/N〉 < 〈N〉

What decides the spatial resolution is not 
the average number of ionization electrons 
but the inverse of the average of its 
inverse. 
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Gas Gain Fluctuation

We now switch on the gas gain fluctuation 
and assume that the coordinate measured 
by the readout plane is the gain-weighted 
mean of the N ionization electrons.

PDF for gain-weighted mean
Coordinate = Gain-Weighted Mean

Again we assume that the charged particle 
passed through the TPC at x=0 parallel with 
the readout plane and perpendicular to the 
pad rows.
The average of the gain-weighted mean has 
then no bias

Gain-weighted meanGas gain fluctuation

〈x̄〉 :=
∫

dx̄ P (x̄) x̄ = 0

The variance of the C.O.G. is then given by

where use has been made of

The gas gain fluctuation therefore further 
reduces the effective number of electrons.

P (x̄) =
∞∑

N=1

PI(N ; N̄)
N∏

i=1

[∫
dxi PD(xi;σd)

×
∫

d

(
Gi

Ḡ

)
PG

(
Gi

Ḡ
; θpol

)]
δ

(
x̄−

∑N
i=1 Gi xi∑N

i=1 Gi

)

x
xi

Gi

We used the Polya 
parameter as an index
even though the PG is 
non-Polya in general. 
Notice that 

N∑

i=1

Gi ≈ N Ḡ

σ2
x̄ :=

∫
dx̄ P (x̄) x̄2 ≈ σ2

d

〈
1
N

〉 〈(
G

Ḡ

)2
〉

=: σ2
d

1
Neff

N∑

i=1

Gi ≈ N Ḡ

We hence have
Neff :=

[〈
1
N

〉 〈(
G

Ḡ

)2
〉]−1

=
1

〈1/N〉

(
1 + θpol

2 + θpol

)
< 〈N〉
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Sample Calc. for Neff

Distribution of N 
   (<N> = 71)

Distribution of 1/N 
   (<1/N> = 0.028)

Distribution of Q
    (K = 0.67)

For 4 GeV pion and pad row pitch of 6mm in pure Ar

〈

(

G

Ḡ

)2
〉

= 1 +

(

σG

Ḡ

)2

≡ 1 + K

K =
1

1 + θ

θ = 0.5

M.Kobayashi

Neff =

[

〈

1

N

〉

〈

(

G

Ḡ

)2
〉]

−1

= 21 < 〈N〉 = 71

In the case of Snyder’s model, gain fluctuation is exponential and K=1 (theta=0) and 
the Neff is reduced by a factor of 2 by it. In the case of Legler’s model, theta>0 and 
the reduction is less sever. If we assume theta=0.5, for instance, we have a factor of 
1.5 reduction:
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Finite Size Pads

We now replace the continuous readout 
plane with an array of finite size pads. 
The finite size pads break the translational 
symmetry. We hence need to specify the  
track position relative to the pad center. 
The arrival point of i-th ionization electron 
is given by

PDF for charge centroid
Coordinate = Charge Centroid

where       is the normalized pad response 
function for a-th pad

diffusion : 

track position

The charge centroid is then given by

with     being the pad pitch. The probability 
distribution function for charge centroid is

The charge in units of 
electron charge on 
a-th pad is given by

x
xi

Gi

xi = x̃ + ∆xi

〈
(∆xi)2

〉
= σ2

d = C2
d z

Qa =
N∑

i=1

Gi Fa(x̃ + ∆xi) + ∆Qa

∑

a

Fa(x̃ + ∆xi) = 1

     is the gas gain for the i-th ionization 
electron, and          is the electronic noise:

Fa

Gi

∆Qa
〈
(∆Qa)2

〉
= σ2

E

x̄ =
∑

a

Qa (aw) /
∑

a

Qa

w

P (x̄; x̃) =
∞∑

i=1

PI(N ; N̄)
N∏

i=1

[∫
d∆xi PD(∆xi;σd)

∫
d

(
Gi

Ḡ

)
PG

(
Gi

Ḡ
; θpol

)]

×
∏

a

[∫
d∆Qa PE(∆Qa;σE)

∫
dQa δ

(
Qa −

N∑

i=1

Gi Fa(x̃ + ∆xi)−∆Qa

)]

× δ

(
x̄−

∑
a Qa (aw)∑

a Qa

)
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In order to take into account the effect of 
finite size pads as known as the S-shape 
systematics, we define the variance by

Variance of charge centroid

σ2
x̄ :=

∫ + 1
2

− 1
2

d

(
x̃

w

) ∫
dx̄ P (x̄; x̃) (x̄− x̃)2

Substituting the PDF given above in this 
and with some arithmetics, we obtain

σ2
x̄ =

∫ + 1
2

− 1
2

d

(
x̃

w

) [
[A] +

1
Neff

[B]
]

+ [C]

where 

[B] :=
∑

a,b

a b w2 〈Fa(x̃ + ∆x)Fb(x̃ + ∆x)〉

−
(

∑

a

aw 〈Fa(x̃ + ∆x)〉
)2

[C] :=
(σE

Ḡ

)2
〈

1
N2

〉 ∑

a

(aw)2

The correlation function and the averaged 
pad response functions are defined by

〈Fa(x̃ + ∆x)Fb(x̃ + ∆x)〉
:=

∫
d∆xPD(∆x;σd) Fa(x̃ + ∆x) Fb(x̃ + ∆x)

and
〈Fa(x̃ + ∆x)〉 :=

∫
d∆xPD(∆x;σd) Fa(x̃ + ∆x)

is a term representing the contributions 
from diffusion, gas gain fluctuation, and 
finite pad pitch. The contribution of this 
term scales as 1/Neff and dominates the 
spatial resolution at a long drift distance.
The last term

is a purely geometric term corresponding to 
the S-shape systematics due to the finite 
pad pitch and disappears rapidly as z 
increases. On the other hand, 

is an electronic noise term, which is z-
independent and scales as           .

〈
1/N2

〉

For a delta-function like pad response fun. 
we have an asymptotic form at large z of

σ2
x̄ !

1
Neff

(
w2

12
+ C2

d z

)

if electronic noise is negligible.

[A] :=

(
∑

a

(a w) 〈Fa(x̃ + ∆x)〉 − x̃

)2
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Interpretation
σ

2

x

z

[A]
[B]

[C]

w
2

12
if σPRF ! w

!

1

Neff

(

w2

12
+ C

2

dz

)

if σPRF ! w

[A] Purely geometric term (S-shape 
systematics from finite pad 
pitch): rapidly disappears as Z 
increases

[B] Diffusion, gas gain fluctuation & 
finite pad pitch term: scales 
as           , for delta-fun like PRF 
asymptotically:

[C] Electronic noise term: Z-
independent, scales as 

1/Neff

〈

1/N2
〉

σ
2

x̄ !

1

Neff

(

w2

12
+ C

2

dz

)
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Application to Micromegas
For a delta-function like PRF, there is a 
scaling law:            depends only on            
and 

The formula has a fixed point 

Full formula enters asymptotic region at 

 

Full formula has a minimum of

at

Cd√z/w

Neff=18.5

Full Theory

Asymptotic Formula

0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.5 1

σx/w σd/w
Neff

(0, 1/
√

12)

σd/w ! 0.4

σx/w ! 0.1

σd/w ! 0.3

No Noise

(0, 1/
√

12) : hodoscope limit

σ0/w = 1/
√

12 Neff
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Comparison with MC

drift distance (mm)

ArIso(95:5)
MP-TPC Micromegas

B=0T

B=0.5T

B=1T

Analytical Theory Neff=21.3

Monte Carlo Simulation

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 100 200

Edrift = 220V/cm

w = 2.3mm

Theory reproduces the Monte Carlo 
simulation very well !

We can estimate the resolution 
analytically 

pad pitch

diffusion const.

pad response function

δ-fun. for MM: 
gauss. for GEM:

drift distance

σx = σx(z;w, Cd, Neff , [fj ])

σPRF ! 12µm

σPRF ! 350µm

13



Global Likelihood

χ2

drift distance (mm)

ArIso(95:5), B=1T
MP-TPC Micromegas

Analytical Theory Neff=18.5 c)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 100 200

Comparison with 
Measurements

Theory reproduces the data well.

Underestimation in the data of       at 
short drift distance is due to track 
bias caused by S-shape systematics. 

Global likelihood method eliminates 
the S-shape systematics at short 
distance when possible and hence 
gives better resolution than the 
simple charge centroid method used 
in the chi-square fit.

σx

Edrift = 220V/cm

w = 2.3mm

KEK beam test data
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Extrapolation to LC TPC
Need to reduce pad size relative 
to PRF

Resistive anode for MM.

Digital pixel readout for MM 
corresponding to an ideal 
readout plane to avoid the 
effect of gain fluctuation 
(the best if feasible).

Defocusing + narrow (1mm) 
pad for GEM.

ArIsoCF 4(95:2:3), B=4T
Analytical Theory N eff=21.3

2.3 mm pitch

1.0 mm pitch

drift distance (mm)
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 500 1000 1500 2000

Recent results seem promising for both resistive 
anode and digital pixel readout schemes (Paul’s talk)!
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Application to GEM
In the case of GEM, there is no simple scaling as with micromegas, since there is an 
additional dimensionful parameter that is the intrinsic signal width (         ) which is 
determined by the diffusion in the transfer and induction gaps. When it is large 
enough compared with the pad pitch we can avoid the hodoscope effect at a short 
drift distance. 

σPRF

Drift distance [mm]
0 50 100 150 200 250 300 350 400 450 500

 [m
m

]
x

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
<10, <2GEM, Ar:CF4:iC4H10(94:3:3), 1.0T, 

m]    33 [=    28 
0

],  cmm /   1.36 [= 21.8 
eff

N/
D

C

 z
2

eff
N/

D
C + 2

0
 = 2

vdrift = 4.2 [cm/µs]

CD = 128 [µm/
√

cm]

σ2
PRF = σPR(0)2 − w2

12
= (270 [µm])2

Neff = 22× (10./6.3) = 35

The TU-TPC data indicates
Neff = (128/22) = 34± 4

from drift time data and 

The theory assumes

from charge width data and

from MP-TPC result.

in good agreement with the MP-TPC result.

TU-TPC test at KEK cryo hall (Dec. 2007)

Preliminary
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How to Measure Cd?

The average charge on a-th pad is given by
The average charge on a-th pad

A detour

which has the variance

From this we obtain

〈Qa(x̃)〉 = NG 〈Fa(x̃ + ∆x)〉

resulting in the average charge fraction

where 
x̂ := aw − x̃

is the location of the pad center measured 
from the incident position of the track and 

〈Qa(x̃)〉 /(N̄Ḡ) = 〈Fa(x̃ + ∆x)〉

:=
∫

d∆xPD(∆x;σd) Fa(x̃ + ∆x)

=
∫ a w−x̃+w/2

a w−x̃−w/2
d∆x

1√
2πσ

exp

[
−1

2

(
∆x

σ

)2
]

=
∫ +w/2

−w/2
dξ

1√
2πσ

exp

[
−1

2

(
x̂ + ξ

σ

)2
]

σ2
PR =

∫
dx̂QPR(x̂) x̂2

=
1
w

∫ +w/2

−w/2
dξ

∫ +∞

−∞
dx̂

1√
2πσ

exp

[
−1

2

(
x̂ + ξ

σ

)2
]

x̂2

=
1
w

∫ +w/2

−w/2
dξ (σ2 + ξ2) = σ2 +

w2

12

width due to diffusion in the drift region. 
We can hence define a normalized apparent 
pad response function

QPR(x̂) :=
1
w

∫ +w/2

−w/2
dξ

1√
2πσ

exp

[
−1

2

(
x̂ + ξ

σ

)2
]

σ2 := σ2
PRF + σ2

d = σ2
PRF + C2

d z

is the squared sum of the intrinsic width of 
the pad response function at z=0 and the 

σ2
PR(0) := σ2

PR − C2
dz = σ2

PRF +
w2

12
By plotting          as a function of z, we can 
hence extract Cd from the slope and               
from the intercept with the finite pad 
pitch correction of           .

σ2
PR

σ2
PRF

w2/12
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Cd Measurement
TU-TPC test at KEK cryo hall (Dec. 2007)

vdrift = 4.2 [cm/µs]

CD = 128 [µm/
√

cm]

σ2
PRF = σPR(0)2 − w2

12
= (270 [µm])2

from drift time data, 
plot the apparent pad 
response function as a 
function of the drift 
distance. Then perform a 
straight-line fit.

Assuming

From the slope

roughly consistent with what we 
expect from the diffusion in 
transfer and induction gaps.

Drift distance [mm]
0 50 100 150 200 250 300 350 400 450 500

]2
 [m

m
2 PR

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
 V_GEM=260V<10, <2GEM, Ar:CF4:iC4H10(94:3:3), 1T, 

m]  9.65 [(0)=   536 
PR

],  cmm /   1.35 [=  128 
D

C

 z
2

D
 + C

2
(0)

PR
 = 2

σ2
PR(0) := σ2

PR − C2
dz = σ2

PRF +
w2

12

From the intercept

Preliminary
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Consider an inclined track having an angle 
phi to the yz plane and an angle theta to 
the xy plane (pad plane). The projection of 
the track electrons to the xz  plane is no 
longer point-like even if the cluster size is 
negligible for secondary ionizations. This 
extra charge spread adds up to that caused 
by diffusion. Consequently, the statistical 
fluctuation of the locations of the primary 
ionizations as well as that of the 2ndary 
ionizations cause additional contributions to 
the coordinate measurement error. The 
effect is further amplified by the gas gain 
fluctuations. The degradation of spatial 
resolution due to the finite phi is known as 
the angular pad effect and is inevitable as 
long as we use ordinary readout pads, since 
they break the rotational symmetry in the 

Resolution degradation for inclined tracks
Angular Pad Effect

phi direction (notice that the symmetry 
breaking must be much softer in the case 
of pixel readout). If the theta is nonzero, 
the drift distance depends on where you 
are on the track and the average number of 
ionization electrons will be larger due to 
the longer track segment per pad row. As 
long as we use a short enough pad, the drift 
distance can be regarded as approximately 
constant within a pad row. We can hence 
assume that the effect of the finite theta 
can be taken into account by scaling Neff 
by the amount expected from the increase 
of the track segment length. For this 
reason we assume in what follows that the 
theta is zero unless otherwise stated. We 
again start from an ideal situation. 
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Ionization Statistics

We assume here an ideal readout plane that 
can measure the x-coordinates of individual 
track electrons exactly. The probability 
distribution function for the center of 
gravity is given by

PDF for C.O.G.
Ideal Readout Plane: Coordinate = Simple C.O.G.

Ideal readout planeGaussian diffusion

PD(xi;σd) =
1√

2πσd

exp
(
− x2

i

2σ2
d

)

Primary ionization statistics

σd = Cd
√

z

where Cd is the diffusion coefficient and z 
is the drift length. The “l” is the projected 
track length to the xy plane and s_i is the 
projected location of i-th cluster along the 
track. The arrival point of j-th electron in 
the i-th cluster is (x_ij, y_ij):

Cluster size distribution
xij = x̃ + si sinφ + ∆xij

yij = si cos φ + ∆yij

where s_i=0 is in the middle of the row in 
question. The “L” is the height of the row. 
The average x-coordinate of the center of 
gravity of the track electrons arriving at 
the row is 

〈x̄〉 :=
∫

dx̄ P (x̄) x̄ = x̃

since s_i, delta x_ij, and delta Y_ij average 
to zero. 

P (x̄) =
∞∑

N=1

PPI(N)
N∏

i=1

[∫
dsi

l

∞∑

Mi=1

PSI(Mi)

×
Mi∏

j=1

∫
d∆xij d∆yij PD(∆xij) PD(∆yij)





× δ

(
x̄−

∑
i,j xij θ

(
L
2 + yij

)
θ
(

L
2 − yij

)
∑

i,j θ
(

L
2 + yij

)
θ
(

L
2 − yij

)
)
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By definition the variance of the C.O.G. is 
given by

Variance of the C.O.G. We can cast this into the form:

xij = x̃ + si sinφ + ∆xij

Notice that the 2nd term defines Neff by

σ2
x̄ :=

∫
dx̄ P (x̄) (x̄ − 〈x̄〉)2

Substituting
〈x̄〉 = x̃

we have

The delta x_ij integral is straightforward

since cross terms just vanish.

where the 1st term on the R.H.S. is given by

while the 2nd term by

which is a more microscopic definition in 

σ2
x̄ =

∞∑

N=1

PPI(N)
N∏

i=1

[∫
dsi

l

∞∑

Mi=1

PSI(Mi)

×
Mi∏

j=1

∫
d∆xij d∆yij PD(∆xij) PD(∆yij)





×
(∑

i,j(si sinφ + ∆xij) θ
(

L
2 + yij

)
θ
(

L
2 − yij

)
∑

i,j θ
(

L
2 + yij

)
θ
(

L
2 − yij

)
)2

σ2
x̄;diff = σ2

d

∞∑

N=1

PPI(N)
N∏

i=1

[∫
dsi

l

∞∑

Mi=1

PSI(Mi)

×
Mi∏

j=1

∫
d∆yij PD(∆yij)



 1
∑

i,j θ
(

L
2 + yij

)
θ
(

L
2 − yij

)

1
Neff

:=
∞∑

N=1

PPI(N)
N∏

i=1

[∫
dsi

l

∞∑

Mi=1

PSI(Mi)

×
Mi∏

j=1

∫
d∆yij PD(∆yij)



 1
∑

i,j θ
(

L
2 + yij

)
θ
(

L
2 − yij

)

σ2
x̄ = sin2 φ

〈∑
i s2

i

(∑
j θ

(
L
2 + yij

)
θ
(

L
2 − yij

))2

(∑
i,j θ

(
L
2 + yij

)
θ
(

L
2 − yij

))2

〉

+ σ2
d

〈
1

∑
i,j θ

(
L
2 + yij

)
θ
(

L
2 − yij

)
〉

σ2
x̄ =

∞∑

N=1

PPI(N)
N∏

i=1




∫

dsi

l

∞∑

Mi=1

PSI(Mi)
Mi∏

j

∫
d∆yij PD(∆yij)





×




sin2 φ

∑
i s2

i

(∑
j θ

(
L
2 + yij

)
θ
(

L
2 − yij

))2
+ σ2

d

∑
i,j θ

(
L
2 + yij

)
θ
(

L
2 − yij

)

(∑
i,j θ

(
L
2 + yij

)
θ
(

L
2 − yij

))2





σ2
x̄;ang = sin2 φ

∞∑

N=1

PPI(N)
N∏

i=1

[∫
dsi

l

∞∑

Mi=1

PSI(Mi)

×
Mi∏

j=1

∫
d∆yij PD(∆yij)




∑

i s2
i

(∑
j θ

(
L
2 + yij

)
θ
(

L
2 − yij

))2

(∑
i,j θ

(
L
2 + yij

)
θ
(

L
2 − yij

))2
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terms of the combined effects of primary 
and 2ndary ionization statistics together 
with diffusions. It’s worth noting that

Nacc :=
∑

i,j

θ

(
L

2
+ yij

)
θ

(
L

2
− yij

)

just counts the number of track electrons 
accepted by the row in question. If the 
track is far away from the readout plane, 
the memory about parent clusters will be 
lost by the time individual track electrons 
arrive at the readout plane because of 
diffusions. On the other hand, if the track 
is near the readout plane, the correlation 
among the track electrons belonging to the 
same parent cluster is very strong and 
hence they are either all accepted or all 
rejected by the row and hence the Neff 
value will be smaller than those at longer 
drift distances. This clustering effect 
should be there even in the case of phi=0. 
Neff is in principle z-dependent!

The probability of a 2ndary electron at s_i 
reaches the row in question is given by

With this the probability of k electrons 
created at s_i reach the row is written in 
the form:

Then we can rewrite the P.D.F. for the 
C.O.G. as

where
PPI(N) :=

N̄N

N !
exp(−N̄)

and
PD(∆x;σd) :=

1√
2πσd

exp
(
− (∆x)2

2σ2
d

)

η(si cos φ) :=
∫ + L

2 −si cos φ

−L
2 −si cos φ

d∆y√
2πσd

exp
(
− (∆y)2

2σ2
d

)

P̄SI(k; yi) :=
∞∑

M=1

PSI(M)
M !

k!(M − k)!
η(yi)k(1− η(yi))M−k

P (x̄) =
∞∑

N=1

PPI(N)
N∏

i=1

[∫
dsi

l

∞∑

ki=0

P̄SI(ki; si cos φ)

ki∏

j=1

∫
d∆xij PD(∆xij ;σd)





× δ

(
x̄−

∑N
i=1

∑ki

j=1(x̃ + si sinφ + ∆xij)
∑N

i=1 ki

)
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Notice that for an LC-TPC, for which the 
Cd value is expected to be less than 50 
microns/sqrt(cm), sigma_d/L never exceeds 
0.2 even for a drift length greater than 
200 cm.
The Neff value is hence approximately the 
drift-length independent, justifying our 
analytic formula for the phi=0 case.

From these we have 

which implies 

Defining 

We can further reduce this formula for 
Neff to

/Ld
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For a row with a height of L=6.3mm, Neff 
has been calculated as a function of the 
relative diffusion, sigma_d/L, assuming Ar
100% and normal incidence and plotted in 
the following figure. We can see the effect 
of de-clustering that appears as a slight 
increase of Neff with the drift distance,
being consistent with our naive expectation.

σ2
x̄:diff = σ2

d

∞∑

N=1

PPI(N)
∑

k1,··· ,kN

N∏

i=1

[∫
dyi

l cos φ
P̄SI(ki; yi)

](
1

∑N
i=1 ki

)

¯̄P (ki) :=
∫

dy

l cos φ
P̄SI(ki; y)

Neff :=




∞∑

N=1

PPI(N)
∑

k1,··· ,kN

N∏

i=1

(∫
dyi

l cos φ
P̄SI(ki; yi)

) (
1

∑N
i=1 ki

)


−1

Neff =




∞∑

N=1

PPI(N)
∑

k1,··· ,kN

N∏

i=1

(
¯̄PSI(ki)

) (
1

∑N
i=1 ki

)


−1
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The angular effect is contained in 

Angular effect

Defining

we can rewrite this formula as

and recalling
¯̄P (ki) :=

∫
dy

l cos φ
P̄SI(ki; y)

〈
y2

〉
ki

:=
∫

dy

l cos φ
P̄SI(ki; y) y2

Notice that
PPI(N) :=

N̄N

N !
exp(−N̄)

depends on      through     .   On the other 
hand,          and         are angle-independent
since

φ N̄
〈
y2

〉
k

¯̄P (k)

It is probably useful to further rewrite the 
formula in the following form:

where 

N̂eff :=




12
L2

∞∑

N=1

PPI(N) N
∑

k1,··· ,kN

N∏

i=2

[
¯̄P (ki)

] k2
1

〈
y2

〉
k1(∑N

i=1 ki

)2





−1

l cos φ = ymax − ymin =: ∆Y
/Ld
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The following is a sample calculation for 
L=6.3 [mm].

σ2
x̄:ang = tan2 φ

∞∑

N=1

PPI(N)
∑

k1,··· ,kN

N∏

i=1

[∫
dyi

l cos φ
P̄SI(ki; yi)

] ∑N
i=1 k2

i y2
i(∑N

i=1 ki

)2

σ2
x̄:ang = tan2 φ

∞∑

N=1

PPI(N)
∑

k1,··· ,kN

N∑

i′=1

∏

i "=i′

[
¯̄P (ki)

] k2
i′

〈
y2

〉
ki′(∑N

i=1 ki

)2

= tan2 φ
∞∑

N=1

PPI(N) N
∑

k1,··· ,kN

N∏

i=2

[
¯̄P (ki)

] k2
1

〈
y2

〉
k1(∑N

i=1 ki

)2

σ2
x̄:ang =

L2

12 N̂eff

tan2 φ
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With this we have[I] Short drift limit
In the short drift limit, the diffusion 
becomes negligible and its corresponding 
P.D.F. becomes a delta-function and hence 
we have

η(y)→ θ

(
L

2
+ y

)
θ

(
L

2
− y

)
as

σd

L
→ 0

leading us to

From this we have

and

Notice that L/Deta Y is the probability of a 
primary cluster is created within the row in 
question. We hence define

η̄ :=
L

∆Y

P̄SI(k; yi) :=
∞∑

M=1

PSI(M)
M !

k!(M − k)!
η(yi)k(1− η(yi))M−k

→ PSI(k) θ

(
L

2
+ y

)
θ

(
L

2
− y

)
+ δk,0 θ

(
−L

2
+ y

)
θ

(
y − L

2

)

¯̄P (k) :=
∫

dy

∆Y
P̄SI(k; y)→ L

∆Y
PSI(k) +

(
1− L

∆Y

)
δk,0

〈
y2

〉
k

:=
∫

dy

∆Y
P̄SI(k; y) y2

→
(

L

∆Y

)
PSI(k)

L2

12
+

(
(∆Y )2

12
− L

∆Y

L2

12

)
δk,0

[
N̂eff

]−1
:=

12
L2

∞∑

N=1

PPI(N) N
∑

k1,··· ,kN

N∏

i=2

[
¯̄P (ki)

] k2
1

〈
y2

〉
k1(∑N

i=1 ki

)2

→
∞∑

N=1

PPI(N)
∑

k1,··· ,kN

N∏

i=2

[PSI(ki) η̄ + (1− η̄) δki,0]
Nk2

1 η̄ PSI(k1)(∑N
i=1 ki

)2

=
∞∑

N=1

PPI(N)
N∑

N ′=1

η̄N ′
(1− η̄)N−N ′

NCN ′

∑

k1,··· ,kN′>0

N ′∏

i=1

[PSI(ki)]
∑N ′

i=1 k2
i(∑N ′

i=1 ki

)2

where in the last line N’ is the number of 
clusters created within the y range of the  
row in question. We can hence obtain

N̂eff !





〈 ∑N ′

i=1 M2
i(∑N ′

i=1 Mi

)2

〉



−1

in the short drift limit. Notice that the 
effective number of track electrons for 
the angle term is determined by primary 
ionization statistics for N’ and secondary 
ionization statistics for M_i. If L and hence 
<N’> is large enough for the approximation:

N ′∑

i=1

Mi ≈ N ′ 〈M〉 =: N ′M̄

then we arrive at

lim
z→0

Neff =

[〈
1

NPI

〉 〈(
M

M̄

)2
〉]−1

25



[II] Long drift limit

This last formula has exactly the same 
form as the effect of gas gain fluctuation.
Since the secondary ionization has a long 
tail and the number of primary electrons 
per row is less than 20 for L=6.3 mm, the 
approximation is expected to be bad. 
Nevertheless, the formula suggests that 
the effective number of electrons for the 
angle term is much smaller than that for 
the diffusion term as seen from the sample 
calculation.

from the same cluster reaches the row in 
question is negligible. We hence obtain

In the long drift limit (sigma_d/L>>1), the 
diffusion dominates the row height and we 
have

η(y) :=
∫ + L

2

−L
2

dy′√
2πσd

exp
(
− (y′ − y)2

2σ2
d

)

→ L√
2πσd

exp
(
− y2

2σ2
d

)
as

σd

L
→∞

Notice that this probability is infinitesimal 
in the limit and hence we can safely ignore 
the probability of more than one electron 

leading us to
P̄SI(k; y) ! (1− M̄η(y))δk,0 + M̄η(y)δk,1

P̄SI(k; y) :=
∞∑

M=1

PSI(M)
M !

k!(M − k)!
η(y)k(1− η(y))M−k

→
∞∑

M=k

PSI(M)
[
(1− η)Mδk,0 + Mη (1− η)M−1δk,1

]

#
∞∑

M=k

PSI(M) [(1−Mη)δk,0 + Mηδk,1]

Using this we have

η̄ :=
L

∆Y

¯̄P (k) :=
∫

dy

∆Y
P̄SI(k; y)→

(
1− M̄ η̄

)
δk,0 + M̄ η̄ δk,1

and
〈
y2

〉
k

:=
∫

dy

∆Y
P̄SI(k; y) y2

→
(

(∆Y )2

12
− M̄ η̄σ2

d

)
δk,0 + M̄ η̄ σ2

d δk,1

with

where we have assumed that Delta Y is big 
enough compared to sigma_d. Using these 
formulae we can now calculate Neff for the 
angle term.
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where K is the number of electrons arrived 
at the row in question. We can hence write

[
N̂eff

]−1
:=

12
L2

∞∑

N=1

PPI(N) N
∑

k1,··· ,kN

N∏

i=2

[
¯̄P (ki)

] k2
1

〈
y2

〉
k1(∑N

i=1 ki

)2

→ 12 σ2
d

L2

∞∑

N=1

PPI(N)
∑

k1,··· ,kN

N∏

i=2

[
(1− M̄ η̄) δki,0 + M̄ η̄ δki,1

] N k2
1 M̄ η̄

(∑N
i=1 ki

)2

=
12 σ2

d

L2

∞∑

N=1

PPI(N)
N∑

K=1

∑

k1,··· ,kK

K∏

i=1

[
(M̄ η̄)K(1− (M̄ η̄))N−K

NCK

] 1
K

The effective number of track electrons 
for the angle term hence decreases with 
the drift length because of the increase of 
sigma_d as seen in the sample calculation. 
As a matter of fact, we can rewrite the 
angle term in the large drift limit as

σ2
x̄:ang → tan2 φ

〈
1
K

〉
σ2

d

which indicates that diffusion dominates 
also in the y-direction.  For convenience I 
show the same sample calculation here 
again. We see slight increase of the Neff

/Ld
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at small drift distance due to de-clustering 
followed by monotonic decrease at longer 
drift distance. If you make the row too 
narrow, you cannot benefit because of the 
diffusion in the y direction. The figure 
suggests that we have to keep the diffusion 
for the maximum drift below 0.15. L=6.3mm
for the LC-TPC seems reasonable.

[N̂eff ]−1 = lim
σd
L →∞

12 σ2
d

L2

〈
1
K

〉
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Gain-weighted meanGaussian diffusion

PD(xi;σd) =
1√

2πσd

exp
(
− x2

i

2σ2
d

)

Primary ionization statistics

σd = Cd
√

z

where Cd is the diffusion coefficient and z 
is the drift length.  G_ij is the gas gain for 
j-the electron in i-th cluster whose P.D.F. is 
given by P_G as before. 
Recall that the primary ionization statistics 
is governed by

Cluster size distribution

Gas Gain Fluctuation
Coordinate = Gain-Weighted Mean

PDF for gain-weighted mean
We now switch on the gas gain fluctuation 
and assume that the coordinate measured 
by the readout plane is the gain-weighted 
mean of the N ionization electrons.

P̄SI(k; yi) :=
∞∑

M=1

PSI(M)
M !

k!(M − k)!
η(yi)k(1− η(yi))M−k

PPI(N) :=
N̄N

N !
exp(−N̄)

and effective cluster size distribution by

where k is the number of electrons that is 
accepted by the row in question starting 
from the i-th cluster created at y=y_i.
Since Y_i and delta x_ij have no bias, we 
obviously have

〈x̄〉 :=
∫

dx̄ P (x̄) x̄ = x̃

P (x̄) =
∞∑

N=1

PPI(N)
N∏

i=1

[∫
dyi

∆Y

∞∑

ki=0

P̄SI(ki; yi)

ki∏

j=1

(∫
d∆xij PD(∆xij ;σd)

∫
dGij PG

(
Gij

Ḡ

))



× δ

(
x̄−

∑N
i=1

∑ki

j=1 Gij(x̃ + yi tanφ + ∆xij)
∑N

i=1

∑ki

j=1 Gij

)
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By definition the variance of the gain-
weighted mean  is given by

Variance of the G.W.M.

σ2
x̄ :=

∫
dx̄ P (x̄) (x̄ − 〈x̄〉)2

Substituting
〈x̄〉 = x̃

we have

σ2
x̄ =

〈(∑N
i=1

∑ki

j=1 Gij (yi tanφ + ∆xij)
∑N

i=1

∑ki

j=1 Gij

)2〉

= σ2
d

〈 ∑
i,j G2

ij
(∑

i,j Gij

)2

〉
+ tan2 φ

〈(∑N
i=1 yi

∑ki

j=1 Gij
∑N

i=1

∑ki

j=1 Gij

)2〉

Making the same approximation

as we did in the phi=0 case, we obtain

∑

i,j

Gij ≈ Ḡ
N∑

i=1

ki

For the angle-dependent term we have

σ2
x̄:diff := σ2

d

〈 ∑
i,j G2

i,j
(∑

i,j Gi,j

)2

〉
! σ2

d

〈
1∑
i ki

〉 〈(
G

Ḡ

)2
〉

for the angle-independent term which is 
none other than the formula we derived 
before for the phi=0 case.

[I] Short drift limit
In the short drift limit, the angle term 
becomes

since there is no diffusion in this limit and 
hence we can replace k_i by M_i and the 
average of y_i^2 becomes independent of 
k_i and just gives L^2/12. The formula 
implies the effective number for the angle 
term being 

σ2
x̄:ang ! tan2 φ

[〈 ∑
i M2

i

(
∑

i Mi)
2

〉
+

〈
1∑
i Mi

〉
σ2
(G

Ḡ )

]
L2

12

N̂eff !
[〈 ∑

i M2
i

(
∑

i Mi)
2

〉
+

〈
1∑
i Mi

〉
σ2
(G

Ḡ )

]−1

where the 2nd term in the square bracket 
is from gain fluctuation.

σ2
x̄:ang := tan2 φ

〈(∑N
i=1 yi

∑ki

j=1 Gi,j
∑N

i=

∑ki

j=1 Gij

)2〉

! tan2 φ

[〈∑
i k2

i y2
i

(
∑

i ki)
2

〉
+

〈∑
i ki y2

i

(
∑

i ki)
2

〉
σ2
(G

Ḡ )

]
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We restart from
[II] Long drift limit

Recalling that in the long drift limit the row 
height becomes negligible and the effective 
cluster size k_i for the i-th cluster can be 
at most 1 and that each electron accepted 
by the row must have experienced average 
diffusion of sigma_d^2, we have

σ2
x̄:ang ! tan2 φ

[〈
1∑
i ki

〉
+

〈
1∑
i ki

〉
σ2
(G

Ḡ )

]
σ2

d

! tan2 φ

〈
1
K

〉 〈(
G

Ḡ

)2
〉

σ2
d

where K is the number of electrons arrived 
at the row in question. This matches our 
naive expectation from the phi=0 formula 
for the x-resolution.

σ2
x̄:ang := tan2 φ

〈(∑N
i=1 yi

∑ki

j=1 Gi,j
∑N

i=

∑ki

j=1 Gij

)2〉

! tan2 φ

[〈∑
i k2

i y2
i

(
∑

i ki)
2

〉
+

〈∑
i ki y2

i

(
∑

i ki)
2

〉
σ2
(G

Ḡ )

]

/Ld
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GG/

In the short drift region, the gas gain 
fluctuation only slightly reduces the Neff 
for the angle term (10% effect). Since the 
sigma_d/L will not exceed 0.2 for the LC-
TPC, we can conclude that the angle term is 
rather insensitive to the gain fluctuation.
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Finite Size Pads

We now replace the continuous readout 
plane with an array of finite size pads. 
The finite size pads break the translational 
symmetry. We hence need to specify the  
track position relative to the pad center. 
The arrival point of j-th ionization electron 
from i-th primary cluster is given by

PDF for charge centroid
Coordinate = Charge Centroid

the gas gain for the j-th ionization electron 
from the i-th primary cluster, and          is 
the electronic noise:

diffusion : track position

The charge centroid is then given by

with     being the pad pitch. The probability 
distribution function for charge centroid is

The charge in units of electron charge on 
a-th pad is given by

∆Qa

〈
(∆Qa)2

〉
= σ2

E

x̄ =
∑

a

Qa (aw) /
∑

a

Qa

w

xij = x̃ + yi tanφ + ∆xij

i-th cluster y position

yij = yi + ∆yij

〈
(∆xij)2

〉
=

〈
(∆yij)2

〉

= σ2
d = C2

d z

where       is the normalized pad response 
function for a-th pad as before and        is

Fa

Gij

P (x̄; x̃) =
∞∑

N=1

PPI(N)
∑

M1,··· ,MN

N∏

i=1

[∫
dyi

∆Y
PSI(Mi)

Mi∏

j=1

(∫
d∆xij PD(∆xij ;σd)

∫
d∆yij PD(∆yij ;σd)

∫
dGij PG

(
Gij

Ḡ

))] ∏

a

[∫
d∆Qa PE(∆Qa;σE)

∫
dQa δ



Qa −
N∑

i=1

Mi∑

j=1

Gij Fa(xij , yij)−∆Qa









× δ

(
x̄−

∑
a Qa (aw)∑

a Qa

)

Qa =
N∑

i=1

Mi∑

j=1

Gij Fa(xij , yij) + ∆Qa
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In order to take into account the effect of 
finite size pads as known as the S-shape 
systematics, we define the variance by

Variance of charge centroid

σ2
x̄ :=

∫ + 1
2

− 1
2

d

(
x̃

w

) ∫
dx̄ P (x̄; x̃) (x̄− x̃)2

as with the phi=0 case. Substituting the 
PDF given above in this and with some 
arithmetics, we obtain 

with [A’], [B’], and [C] corresponding to [A],
[B], and [C] for the phi=0 case.
[A’] is independent of gas gain and given by

In the de-clustering limit, only k_i=1 counts 
and [A’] becomes

σ2
x̄ =

∫ + 1
2

− 1
2

d

(
x̃

w

) [
[A′] + [B′]

〈(
G

Ḡ

)2
〉]

+ [C]

where we have defined

〈Fa〉 :=
∫

d∆xPD(∆x;σd)

× Fa(x̃ + y tanφ + ∆x)

[A′] :=
∑

a,b

(abw2)

[〈∑
i k2

i

(
〈〈Fa〉 〈Fb〉〉ki

− 〈〈Fa〉〉ki
〈〈Fb〉〉ki

)

(
∑

i ki)
2

〉

+
〈(∑

i ki 〈〈Fa〉〉ki∑
i ki

) (∑
i ki 〈〈Fb〉〉ki∑

i ki

)〉

−
〈∑

i ki 〈〈Fa〉〉ki∑
i ki

〉 〈∑
i ki 〈〈Fb〉〉ki∑

i ki

〉]

+

[
∑

a

(aw)
〈∑

i ki 〈〈Fa〉〉ki∑
i ki

〉
− x̃

]2

〈〈Fa〉〉k :=
1

¯̄P (k)

∫
dy

∆Y
P̄SI(k; y) 〈Fa〉

〈〈Fa〉 〈Fb〉〉k :=
1

¯̄P (k)

∫
dy

∆Y
P̄SI(k; y) 〈Fa〉 〈Fb〉

and the outermost average is taken as

〈[· · · ]〉 :=
∞∑

N=1

PPI(N)
∑

k1,··· ,kN

N∏

i=1

(
¯̄P (ki)

)
[· · · ]

lim
σd
L →∞

[A′] =




∑

a,b

(abw2) 〈〈Fa〉 〈Fb〉〉k=1

−
(

∑

a

(aw) 〈〈Fa〉〉k=1

)2



〈

1∑
i ki

〉

+

[
∑

a

(aw) 〈〈Fa〉〉 − x̃

]2

and hence almost purely geometric when 
the 2nd term dominates in the R.H.S.
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[B’] is given by

This term represents the contributions 
from diffusion, gas gain fluctuation, and 
finite pad pitch. In the de-clustering limit, 
[B’] becomes

where

[B′] :=
∑

a,b

(abw2)

〈∑
i ki

(
〈〈Fa Fb〉〉ki

− 〈〈Fa〉 〈Fb〉〉ki

)

(
∑

i ki)
2

〉

〈〈Fa Fb〉〉k :=
1

¯̄P (k)

∫
dy

∆Y
P̄SI(k; y)

∫
d∆xPD(∆x;σd)

× Fa(x̃ + y tanφ + ∆x) Fb(x̃ + y tanφ + ∆x)

lim
σd
L →∞

[B′] :=
∑

a,b

(abw2) [〈〈Fa Fb〉〉k=1 − 〈〈Fa〉 〈Fb〉〉k=1]

×
〈

1∑
i ki

〉

The last term [C] is exactly as before and 
from the electronic noise contribution

[C] :=
(σE

Ḡ

)2
〈

1
(
∑

i ki)
2

〉
∑

a

(aw)2

As far as the clustering effect is negligible 
this term is independent of the drift length 
as before.

As noted before, the de-clustering limit is 
never reached in practice, since the pad 
row height is so chosen. It is hence useful 
to consider an asymptotic formula in such a 
case where the diffusion is large enough 
compared to the pad width while it is short 
enough compared to the pad height.
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