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Purpose
Being a non-expert, I will focus on very basic principles, 
trying to introduce you, students excluding experts, to 
more advanced topics containing more practical and 
technical aspects to be covered by real experts in this 
school. 
Emphasis will be put on concepts and philosophy, and 
hence practical examples will be minimum, for them 
take a look at excellent text books such as 

           V.Palldino & B.Sadoulet 1974: LBL-3013 
           F.Sauli 1977: CERN 77-09 
           W.Blum & L.Rolandi 1993
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Subjects to be Covered
Liberation of electrons by ionization (dE/dx) 

Classical theory of electron transportation in a 
chamber gas and its applications 

Behaviors of electrons in E and B fields 

Transport coefficients: Vd, Cd 

Gas amplification 

Creation of signals 

Coordinate measurement



Subjects Left Out
Electron attachment 

CF4, O2 contamination, etc. 

Transportation of ions 

+ve ion feed back and gating 

Ion exchange and aging

These are very important in practice, but simply beyond the 
scope of my lectures. 



Liberation of Electrons
Through Ionization of Gas Molecules  
By a Fast Moving Charged Particle

This part will be brief, though it is a deep subject.



Ionizing Collisions
Various Ionization Mechanisms

A charged particle going through a chamber 
gas ionizes gas molecules along its path and 
leaves a track of ionization. This is called 
primary ionization. The ionizing collisions 
are statistically independent, and hence the  
number of such collisions obeys the Poisson 
distribution:

Primary Direct Ionization

P (n; n̄) =
n̄n

n!
e�n̄

where the average number of collisions is 
given by the thickness (   ) of the medium 
and the mean free path (   ) as

n̄ = L/�

L
�

The mean free path is of course related to 
the cross section per electron in the gas 
and the electron density in the gas.

N⇥I � = 1

The probability distribution for the free 
flight path (  ) is then given byl

f(l;�)dl = P (0; l/�) P (1; dl/�) = e�l/� dl

�

The average number of ionizing collisions 
per 1cm is about 28 for a minimum ionizing 
particle passing through an Ar gas at 1atm.  
This corresponds to an ionization cross 
section of 

Secondary Ionization
The electrons kicked out from molecules, if 
energetic enough, will further ionize gas 
molecules. Some of the gas molecules might 
be excited to some intermediate state that 
can lead to further ionizations through a 

⇤I(Ar) ⇤ 10�18 [cm2] ⇥ ⇥R2
Ar � ZAr �2

QED



process like of a length “L” is given by

Average Energy for Ionization

A⇥B � AB+ e�

where A* is an excited molecule and B is a 
molecule with an ionization potential that is 
lower than the excitation energy of A*. 
A* is often a metastable excited state of a 
noble gas used as the main gas component 
(e.g. Ar) and B is often a quencher added to 
stabilize the gas amplification process. 
A* can also be an optical excitation with a 
long life time. 

A� = metastable � Penning E�ect
A� = optical excitation � Jesse E�ect

Only a certain fraction of the energy loss 
by the fast charged particle is used for 
ionization. We define “W” as the average 
energy required for the creation of a single 
ionization electron. Then the average 
number of ionization electrons along a track

�nI⇥ =
�

dE

dx

⇥
L

W

The “W” depends on the gas and the nature 
of the incident particle, but it is known to 
be independent of incident energy if E > a 
few keV for electrons or if E > a few MeV 
for alpha-particles. 

For a noble gas, “W” ranges from 46 eV for 
He to 22 eV for Xe. For Ar it is 26 eV.  
The “W” values are typically a factor of 1.5 
to 2 larger than the ionization potentials. 

In order to see how the average energy 
loss depends on the particle’s speed or on 
the nature of the gas, and to understand 
the distribution around the average, let us 
review next the Allison-Cobb formulation 
of the  energy loss process. 



Allison-Cobb Formulation
dE/dx as a photo-absorption/ionization by a virtual photon

The energy loss of a charged particle that 
passes through a dielectric medium is due  
to the negative work done by the E-field 
created by the electrons and the nuclei of 
the molecules making up the medium:

A Charged Particle in a Dielectric

dE/dx · dx = �e

�
⇤

a

Ea

⇥
· dx

where e is the particle charge and the sum 
is over all the charges in the medium. 
Averaging the both sides over a small tube 
around the incident particle, we have

⇤dE/dx⌅ · dx = �eE · dx

with
E =

�
⇤

a

Ea

⇥

If we can determine the E-field by solving 
the Maxwell equations, we can get dE/dx

The Maxwell equations in a dielectric with a 
magnetic permeability of one (           ) read

⇤dE/dx⌅ = �eE(c�t, t) · �/�

The Maxwell equations

⌅ · B = 0

⌅⇤E = � 1
c

⇤

⇤ t
B

⌅ · D = 4�⇥

⌅⇤B =
1
c

⇤

⇤ t
D +

4�

c
j

The charge and current densities are 
⇥(x, t) = e �3(x� c�t)
j(x, t) = c� ⇥(x, t)

B = H

where        is the velocity of the charged 
particle that can be regarded as constant 
during its passage through the dielectric 
medium.

c�



In order to close the Maxwell equations we 
need a material equation for the dielectric 
medium:

which expresses the dependence of the 
electric flux density on the electric fields  
at causally connected space-time points 
through a Green function G. 
Defining Fourier transform of f as

In the limit of            , we have

The Solution

D(x, t) = E(x, t) +
� �

0
d�

�

|�|<c�⇥
d3� G (|�| , �) E(x� �, t� �)

f̃(k,⇥) �
�

d3x dt

(2�)2
f(x, t) e�i(k·x��t)

we have
D̃(k,⇥) = �(k, ⇥) Ẽ(k,⇥)

with
�(k, ⇤) = 1 +

� ⇤

0
d⇥

�

|�|<c�⇥
d3� G (|�| , ⇥) ei(k·��⇤⇥)

The dielectric constant being independent 
of the direction of the wave vector shows 
the isotropy of the dielectric medium. 
Notice that the E- and D-fields being real 
implies

��(k, ⇥�) = �(k,�⇥)

� �⇥

with�

|�|<c�⇥
d3� G (|�| , �) eik·� �

�

|�|<c�⇥
d3� G (|�| , �) = G̃(�)

�(k, ⇥)� 1 ⇤ iG̃(0)
⇥

� G̃�(0)
⇥2

+ · · · = � G̃�(0)
⇥2

+ · · ·

since only the region near         contributes.� � 0

With the scalar and vector potentials

in the Coulomb gauge

we can translate the Maxwell eqs. into
k2⇥ ⇤̃(k,⌅) = 2e �(⌅ � c� · k)

k2Ã(k,⌅) =
⇥ ⌅2

c2
Ã(k,⌅)� ⇥ ⌅k

c
⇤̃(k,⌅) + 2e� �(⌅ � c� · k)

The solution is hence given by
⇤̃(k,⌅) =

2e

⇥k2 �(⌅ � c� · k)

Ã(k,⌅) = 2e
⌅k/ck2 � �

⇥⌅2/c2 � k2 �(⌅ � c� · k)

B̃(k, ik · Ã(k,�) = 0

B̃(k,⇥) = ik ⇥ Ã(k,⇥)

Ẽ(k,⇥) =
i⇥

c
Ã(k,⇥)� ik�̃(k,⇥)



Putting them together into the energy loss 
formula after inverse Fourier transform, 
we obtain

All we need is the complex dielectric const.

The Energy Loss Formula

⇤dE/dx⌅ = �e (�/�) · E(c�t, t)

= �e

⇤
d3k d⌅

(2⇤)2
(�/�) · Ẽ(k,⌅) ei(k·c�t�⇥t)

= � 2e2

(2⇤)�2c2

⇤ +⇤

�⇤
d⌅

⇤ ⇤

|⇥|/c�
dk i (⌅k)

�
⌅2/k2c2 � �2

⇥⌅2/c2 � k2
� 1

k2⇥

⇥

⇥dE/dx⇤ = � 2e2

⇤�2

⇧ �

0
d⌅

⇧ �

⇥/c�
dk

⇤
(⌅k)

�
�2 � ⌅2

k2c2

⇥
Im

�
1

⇥⌅2 � k2c2

⇥
+

⌅

kc2
Im

�
1
⇥

⇥⌅

or with ��(k, ⇥�) = �(k,�⇥)

The 1st term in the square bracket is from 
the vector potential (transverse) and 
vanishes at beta=0 while the 2nd term is 
from the scalar potential (longitudinal) and 
stays finite at beta=0. The energy loss is 
calculable when the complex dielectric 
constant is given. The formula suggests if 
the dielectric constant is real, there will be 
no energy loss.

Allison-Cobb (PAI) Model

Allison and Cobb relate its imaginary part 
to the photo-absorption cross section of 
the medium with

� := �1 + i�2

�1(⇤)� 1 =
2
⇥

P
� ⇥

0
d⇤�

⇤� �2(⇤�)
⇤�2 � ⇤2

�2(⇤) � N

Z

� c

⇤

⇥
⇥�(⇤)

where N is the electron density of the 
medium and Z the atomic number of the 
molecule. They then get the real part of 
the dielectric constant with the Kramers-
Kronig relation

The upper limit of the omega integral is of 
course finite in reality as constrained by 
kinematics:

� ⇤max =
2mec2 �2⇥2

1 + 2⇥ (me/m) + (me/m)2

where      is the particle mass and        the 
electron mass.

m me



The photo-absorption cross section for Ar 
is shown below.
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Indeed, we have
eikx = ei(Re k+i Im k)x

= ei(Re k)x e�(Im k)x

= ei(Re k)x e�
1
2 (x/�)

which together with

implies the attenuation length “lambda” to 
be given by

1/⇥ � 2 Im k = 2 (⇤/c) Im
⇤

�
= 2 (⇤/c) Im (�1 + i�2)1/2

⇥ (⇤/c) �2

for a low density medium such as our TPC 
gas mixtures. 
On the other hand, the attenuation length 
is related to the absorption cross section 
for photons:

⇥�(⇤) =
1

(N/Z)�
leading us to

�2(⇤) � N

Z

� c

⇤

⇥
⇥�(⇤)

The cross section is roughly consistent with 
what you expect from the geometrical 
cross section of Ar:

⇥(0.18 [nm])2 � 8� �QED ⇥ 58 [Mb]
# electrons in the outermost shell



The cross section can be translated into 
the imaginary part of the dielectric const. 
as shown in the next figure.
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where the region near the L-shell peak is 
zoomed up to show the resonance effect. 

These are, however, for real photons. The 
crucial step taken by Allison and Cobb was 
to extend this to virtual photons.



Kramers-Kronig Relation
Relation between Real and Imaginary Parts of Epsilon

The complex dielectric constant is analytic 
in the upper half omega plane as is seen 
from its definition

Analyticity of Epsilon

It is real on the imaginary axis because of

�(k, ⇤) = 1 +
� ⇤

0
d⇥

�

|�|<c�⇥
d3� G (|�| , ⇥) ei(k·��⇤⇥)

��(k, ⇥�) = �(k,�⇥)

which is also easily derived from the above 
definition of the epsilon. 
Recall also its asymptotic behavior 

with
�

|�|<c�⇥
d3� G (|�| , �) eik·� �

�

|�|<c�⇥
d3� G (|�| , �) = G̃(�)

�(k, ⇥)� 1 ⇤ iG̃(0)
⇥

� G̃�(0)
⇥2

+ · · · = � G̃�(0)
⇥2

+ · · ·

This shows that the integral of the epsilon 
over the upper semicircle vanishes. We can 
hence express the epsilon using Cauchy’s 
integral:

The 1st term must vanish because of 
causality (G=0 for tau<0) and G’s continuity.

⇥(⌅)� 1 =
1

2⇤i

⇤ +⇤

�⇤
d⌅⇥

⇥(⌅⇥)� 1
⌅⇥ � ⌅ � i(+0)

=
1

2⇤i

⇤ +⇤

�⇤
d⌅⇥

�
P

1
⌅⇥ � ⌅

+ i⇤ �(⌅⇥ � ⌅)
⇥

(⇥(⌅⇥)� 1)

=
1

2⇤i
P

⇤ +⇤

�⇤
d⌅⇥

⇥(⌅⇥)� 1
⌅⇥ � ⌅

+
1
2

(⇥(⌅)� 1)

Moving the last term of the R.H.S. to the 
L.H.S. we get

�(⇤)� 1 =
1
⇥i

P
� +⇤

�⇤
d⇤⇥

�(⇤⇥)� 1
⇤⇥ � ⇤

Taking the real parts of the both sides, 
dividing the integral path into -ve and +ve 
parts, and noting                           , we have

�1(⇤)� 1 =
2
⇥

P
� ⇥

0
d⇤�

⇤� �2(⇤�)
⇤�2 � ⇤2

�2(�⇥) = ��2(⇥)



We have shown that the evaluation of the 
energy loss can be reduced to that of the 
imaginary part of the epsilon. As mentioned 
above, Allison and Cobb used the photo-
absorption cross section to estimate the 
imaginary part. To show how, let us first 
introduce the general oscillator strength 
function “f” by

The Allison-Cobb Model

�2(k, ⇤) =
2⇥2Ne2

me ⇤
f(k, ⇤)

The general oscillator strength function is 
related to the dipole transition probability 
for absorption or emission of a photon. 
Since the epsilon_2 is an odd function of 
omega, the “f” is an even function of omega. 
Since the imaginary part of the epsilon is 
related to the absorption cross section we 
can hence express the oscillator function in 
terms of the cross section

Strictly speaking, the formula is valid only 
for real photons. Allison and Cobb, however, 
assume that this holds approximately for 
even virtual photons, as long as they are 
below the free electron boundary.

f(k, ⇤) =
me c

2�2e2Z
⇥�(|⇤|)
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The assumption implies that the “f” does 
not depend on “k” in the resonance region.



Allison and Cobb further assume that the 
contribution from the region above the 
free electron line can be approximated as a 
contribution entirely coming from this line. 
The assumption is equivalent to ignoring the 
momentum of bound electrons. This seems a 
rather crude approximation, but it works as 
they respect the Bethe sum rule:

� �

0
f(k, �) d� = 1

and set
f(k, ⌅) =

me c

2⇥2e2Z
�

�
|⌅|� �k2

2me

⇥ ⇤ |⇥|

0
⇤�(⌅�) d⌅�

From classical point of view, the oscillator 
strength function counts the number of 
bound electrons in a molecule contributing 
to a particular oscillation mode with the 
frequency omega. The Bethe sum rule 
hence just dictates that the total number 
of bound electrons in the molecule is const. 

Putting these together, we arrive at 

⇥2(k, ⇧) =
Nc

⇧Z

⇤
⌅�(|⇧|) ⇤
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2me
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⇧ |⇥|

0
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�
|⇧|� �k2

2me

⇥⌅

Now all we need to do is to put this into the 
dE/dx formula
⇥dE/dx⇤ = � 2e2

⇤�2

⇧ �

0
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⌅
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�
1
⇥
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and carry out integrations. Since the 1st 
term in the square bracket is dominated by 
the resonance region due to the pole of the 
propagator, we can set

�2(k, ⇤) � Nc

⇤Z
⇥�(|⇤|)

Since there is no k-dependence here, the k-
integral is now straightforward. As for the 
2nd term in the square bracket, since it is 
dominated by the nearly free electron 
region, and since we are dealing with a low 
density material (          ), we can set|�| � 1

Im
�

1
�

⇥
= � �2

|�| ⇥ � �2(k, ⇥)



With these approximations, we can carry 
out the integrations in an elementary way 
and obtain

⇥dE/dx⇤ =
e2

⇤�2c2

 ⇤

0
d⇧
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Z

d⇧⇥
⌃

The Allison-Cobb Formula

with

and the Kramers-Kronig relation

�1(⇤)� 1 =
2
⇥

P
� ⇥

0
d⇤�

⇤� �2(⇤�)
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�2(⇤) =
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⇤Z
⇥�(|⇤|)

The Differential Cross Section
We can reinterpret the average energy loss 
formula as from discrete collisions of the 
particle with a bound electron exchanging a 
virtual photon with an energy       . � �

Denoting the differential cross section for 
the particle hitting the bound electron with 
the virtual photon  by      , we can writed�

�
dE

dx

⇥
=

⇤ �

0
N (�⇥)

d�

d(�⇥)
d(�⇥)

Since there is no fear for confusion, we put

and compare this with the Allison-Cobb 
formula.  We then obtain
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Z

dE⇥

�

The 1st and 2nd lines on the R.H.S. are 
from the vector potential (transverse 
photons) and the 3rd and 4th lines from 
the scalar potential (longitudinal photons).



The transverse cross section vanishes in 
the beta->0 limit, while the longitudinal 
cross section behaves as 1/beta^2.  
On the other hand, in the beta->1 limit, the 
longitudinal cross section becomes const. 

The 2nd term becomes important in this 
limit and is related to the emissions of 
Cherenkov photons. As a matter of fact, 
recalling that             and                       
for a low density medium, we notice that  
below and above       

�2 � 1 |�1 � 1|⇥ 1

� = 1/
�

⇥1

atan
�
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Above, the 2nd term becomes

N
d⌅C
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⇥ �

c

�
1 � 1

⇤1(⇧) ⇥2

⇥

which is none other than the well known  
frequency distribution of the Cherenkov 
radiation.

The Beta Dependence The rest of the cross section can be put 
together and cast into the form
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The cross section hence behaves as
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where                        and                 . The 
conditions hold over a rather wide range 
for a low density medium with                 .  
In the relativistic region where
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the X-section thus shows the relativistic 
rise d⇥NC

dE
� 2a ln(�) + ab



The relativistic rise comes from the fact 
that in the beta->1 limit the virtual photon 
gets closer to the real photon pole of the 
propagator and hence acquires a longer 
range, resulting in a larger cross section. 
This rise, however, saturates where

(�⇥)2 ⇥ 1/|⇤� 1|

and reaches an asymptotic value
d⇥NC

dE
⇥ a ln |�� 1|�1 + ab

The saturation due to a finite density of 
the medium is called the density effect. 

The saturation sets in when 
2 ln � ⇥ ln |⇥� 1|�1

or when
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Saturation
by Density Effect

It is worth remembering that the minimum 
occurs at around             with almost no 
dependence on the medium. 

�⇥ � 4

It should also be noted that the saturation 
depends on the photon energy. In the free 
electron region (high omega limit), we have

� = 1� 4⇥Ne2

me ⇤2
:= 1�

⇤2
p

⇤2
< 1

where the plasma frequency is given by
⇥2

p := 4�Ne2/me



In this high frequency or high E region, the 
gamma* is given by 

�� � ⇤

⇤p
=

� me

4⇥Ne2

⇥1/2 E

�

The higher the energy, the larger the 
gamma at which the saturation sets in.

The Energy Transfer / Collision
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E2

 E
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Z

dE⇥

�

For a low E, the resonance region dominates 
and hence the 1st and the 3rd terms of

give a major contribution. The E spectrum 
hence reflects the resonance structures of 
the photo-absorption cross section.

At high E values, only a quasi-free electron 
region will be kinematically allowed, and 
hence the 4th term determines the trend.

d⌅

dE
� �

⇤⇥2

1
E2

� E

0

⌅�(E�)
Z

dE�

Recalling the relation between the cross 
section and the oscillator strength and the 
Bethe sum rule, we have

d⇤

dE
� 2⇥e4

mec2

1
�2E2

=
e2

c2 �2

⌅2
p

2 N E2

This is the Rutherford scattering formula. 
The formula indicates that the delta-ray 
production has a long tail characterized by 
1/E^2 behavior. 

There is of course a kinematical limit to set 
the maximum energy transfer, but this 
limit is practically never reached since such 
energetic collisions create delta electrons 
which will make separate tracks.



The Bethe-Bloch Formula
Relation between Allison-Cobb and Bethe-Bloch

The dE/dx formula can be separated into 
the transverse and the longitudinal parts

The Decomposition to T/L Parts

�
dE

dx

⇥
=

�
dE

dx

⇥

T

+
�

dE

dx

⇥

L

Let us now examine them separately.

The Transverse Part
⇤

dE

dx

⌅

T

=
e2

(2⇤) c2�2 i

⇧ +⇥

�⇥
d⌅ ⌅
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(⇥/c�)2
dk2
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�2k2c2 � ⌅2

k2c2 � ⇥(⌅) ⌅2

⇥
1
k2

The transverse part is given by

Replacing the complex dielectric constant 
by the Allison-Cobb model led us to the 
Allison Cobb formula. This time we will try 
to carry out the integrations directly. We 
assume that the epsilon does not depend on 
k following Allison and Cobb. The k-integral 
is then straightforward:

⇤
dE

dx

⌅

T

=
e2

(2⇤) c2�2 i
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⇥

To proceed further, we will make full use of 
the analyticity of the epsilon in the upper 
half omega plane. We will try to move the 
integration path to the upper semicircle, 
since the epsilon reaches its asymptotic 
form there:

�(⇥)⇥ 1 �
⇥2

p

⇥2

and hence we can carry out the integration.  
There is, however, a cut on the imaginary 
axis if 1� �2 ⇥(0) < 0

In this case, the discontinuity across this 
cut contributes to the integration along the 
real axis, too. We thus split the integral as

�
dE

dx
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=
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�C�

�
�

dE

dx

⇥

Ccut



where we defined the integration paths as 
in the following figure:

0
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The upper semicircle gives
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In the low density limit, since there exits 
no cut, this gives the total transverse 
contribution, which is entirely specified by 
the plasma frequency of the medium. 

For a high beta value, the cut shows up and 
we have
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This represents the density effect. 
Putting these together, we arrive at
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The formula corresponds to the 1st and the  
2nd terms of the Allison-Cobb formula. 

The Longitudinal Part
The longitudinal part is given by
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Slightly going off the Allison-Cobb model 
we assume that epsilon is k-independent.



We carry out the k-integration to get Recalling the kinematic relation
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We recall here that epsilon becomes real in 
the omega->0 limit. This means that for the 
epsilon to acquire an imaginary part, there 
must be photon absorption that in turn 
requires some finite amount of energy to 
excite the lowest level. There must hence 
be a lower limit to the omega range of the 
integration as well as to the k-integration 
range.  
Noting that
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we introduce such a limit on the k-integral 
with a frequency     defined by
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where “I” is the effective binding energy.

� ⇤max =
2mec2 �2⇥2

1 + 2⇥ (me/m) + (me/m)2

we have
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With these, we arrive at
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that corresponds to the 3rd and 4th terms 
(longitudinal part ) of the Allison-Cobb 
formula.

The Bethe-Bloch Formula
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Putting the T and L parts together, we get

with
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p := 4�Ne2/me

and
Tmax = � ⇤max � 2mec

2 �2⇥2



The dE/dx Fluctuation
Energy loss per a finite sample thickness

Let     be a finite sample thickness and        
be the corresponding energy loss.  
What we need is a probability distribution 
function:             . The distribution must 
satisfy the following equation

The General Formula
x �

F (x,�)

F (x + �x,�) = F (x,�)
⇤
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where the 1st term on the R.H.S. is the 
probability of losing       in the first      and 
then nothing happening in the next       , 
while the 2nd term on the R.H.S. gives the 
sum of the probabilities of losing             in 
the first       and       in the subsequent      . 
This leads us to the following equation

� x
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By making Laplace transform
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corresponding to its original form:

The equation is readily solved to yield
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By inverse Laplace transformation, we get 

This is a general solution. In principle we 
can numerically calculate the probability 
distribution once a concrete expression is 
given for the differential X-section (e.g. 
the Allison-Cobb). Landau analytically did 
the integral with the Rutherford scattering 
cross section. 

Landau Distribution
Let       be a characteristic energy (of the 
order of average binding energy) of atoms 
in the medium and          be the maximum 
energy transfer from the particle to an 
electron in the medium. Landau assumed 
that the integral in the exponent comes 
only from the region

E0

Emax

1/Emax � s� 1/E0

We will discuss physical meanings of this 
assumption later. The assumption ensures 
that we can always choose       in such a way 
that

E1
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Then we can separate the integral into two 
parts           and            , and in the first we 
can make approximation
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Recalling the Rutherford formula
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where we choose the lower limit of the 
integral so as to reproduce the Bethe-Bloch



In this way, we can take the bound electron 
effects approximately. 
On the other hand, the 2nd term can be 
partially integrated to give 
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where the Euler constant is 
�E � 0.577

The 2nd term now becomes
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Putting the 1st and 2nd terms together, we 
arrive at
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Introducing a dimensionless scaling variable
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we finally arrive at

The universal function           attains its 
maximum of about 0.18 at

⇥(�)

� = �MPV ⇥ �0.05

It has a FWHM of about 4, suggesting that 
xi sets the scale of energy loss.
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Let us now examine the approximation we 
made to derive the Landau distribution and 
clarify the region of applicability.  
Inspection of 
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The Most Probable Value (MPV) position is
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which shows roughly the same beta 
dependence as the Bethe-Bloch formula.

Region of Applicability

⇤(�) :=
1

2⇥i

� +i⇥+⇥

�i⇥+⇥
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tells us that the major contribution comes 
from the region where ln u ~ 0 or u ~ 1. The 
assumption for the important “s” region

1/Emax � s� 1/E0

can hence be translated to
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⇥ 1 and sEmax =
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or equivalently
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� Emax ⇥ 2mec
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It says that the medium must be thick 
enough for “xi” to be much larger than the 
binding energy scale, while it must be thin 
enough to be much less than the maximum 
energy transfer per collision. 

FWHM � 4

�MPV ⇥ �0.05



Comparison with Data
Allison-Cobb (1980)

The energy loss 

# ionization 
electrons 

Average energy 
for creation of 1 
electron

� = nI W

WAr = 26 [eV]

nI(1 [cm] Ar) � 100

# primary clusters
1 [cm] of Ar

� 30

Some numbers to 
remember



Cluster Size Distribution
The number of electrons per cluster

Depending on the number of electrons made 
by 2ndary ionizations, each primary cluster 
has different number of electrons in it. Its 
distribution function is not easy to calculate  
from the 1st principle, since the number of 
electrons per cluster is typically a few and 
hence its statistical treatment as with the 
number of ionization electrons per a finite 
sampling thickness is inadequate. 
What we actually measure with a TPC is 
usually the charge collected on a pad with a 
finite size. Individual primary clusters seem 
not to be our concern. This is, however, 
certainly wrong for pixel readout. Even for 
conventional pad readout, the cluster size 
fluctuation  might be a concern, since its 
fluctuation affects the spatial resolution 

Charge Size for inclined tracks. What we need to know 
is the probability of the primary ionizing 
collision with an energy transfer “E” to yield  
“k” 2ndary electrons:              . Once this is 
known, we can calculate the cluster size 
distribution as 

P2(k;E)

Pcl(k) =
⇤

dE
1
�

�
d�

dE

⇥
P2(k;E)

This was done by Lapique and Piuz (1980) 
for a pure Ar gas. As said above, however, 
the calculation of               is a complicated 
process, since 2ndary ionizing collisions are 
no longer statistically independent. Their 
work was hence only partially successful. 
There is, however, a beautiful measurement 
by the Heidelberg group (Fischle et al 1991) 
that can be used in Monte Carlo simulations.

P2(k;E)



Cluster Size Data
The Heidelberg Group Experiment (Fischle, Heintze, and Schmidt 1991)



Cluster Size Distribution
Geometrical Size of Cluster

The delta electrons have a finite range and 
hence give a finite geometrical size to the 
primary ionization cluster.  
Since the electric field due to a relativistic 
charged particle is perpendicular to its 
trajectory, the delta electron tends to be 
kicked out in the perpendicular direction. 
If the delta ray has a finite range, it would 
result in a shift of the charge centroid in 
that direction, deteriorating the spatial 
resolution. In the case of a TPC operated in 
a high magnetic field, the delta electron is 
curled up and hence the transverse cluster 
size can hardly be affected.  
At B=0, however, the effect may be visible.  
I quote here an empirical formula by 
Kobetich and Katz (1968):

Geometrical Size

R(E) = A E

�
1� B

1 + C E

⇥

A = 5.37� 10�4 [g cm�2keV�1]

B = 0.9815

C = 3.1230� 10�3 [keV�1]

Valid for low and intermediate Z

Typical delta-ray range values in Ar (N.T.P.)
R(1 [keV]) � 30 [µm]

R(10 [keV]) � 1.5 [mm] : 0.05 % of collisions



Cluster Size Distribution
Appendix (Delta-ray Kinematics)

Let the angle between the incident particle 
direction and that of the delta-ray emission 
be    , and let the maximum kinetic energy 
transfer be         , we have

Kinematics

Emax =
2mec2 �2⇥2

1 + 2⇥ (me/m) + (me/m)2

with

This implies that 

This formula tells us that on a purely 
kinematical basis, delta-ray emission should 
approximately be perpendicular to the 
incident particle direction, as long as we are 
talking about a delta-ray with an energy 
negligible compared to the electron mass.

Emax � 2mec
2 (�⇥)2 ⇥ (�⇥)2 [MeV]

For a minimum ionizing particle (           ), we 
hence have

�⇥ � 4

cos2 � � E

2mec2 + E

cos2 � =
2mec2 + Emax

2mec2 + E

E

Emax

for a free electron at rest.

for a particle with               .m� me

�
Emax



Classical Theory of 
Electrons in a Gas



Why Classical Theory?
Is it OK to treat it classically instead of quantum mechanically? 

Inter-molecular Distance

V = 2.24� 104 [cm3/mol]
NA = 6.02� 1023 [mol�1]

Thermal Energies

at 0 �C, 1 atm

�
1
2
m v2

⇥
=

�
1
2
M V 2

⇥
=

3
2
KT = 0.039 [eV] ⇤�

V 2⇥ = 1.4� 10�6 c

�
⇥v2⇤ = 0.39 � 10�3 c

⌅�
V 2⇥

⇤
⇤v2⌅

⇥ 4� 10�3

RAr = 0.18 [nm] Inter-molecular distance
⇥ 20�RAr

�
MAr

�
⇥V 2⇤

= 3.6 � 10�3 [nm]

�
m

�
�v2⇥

= 0.98 [nm]

The de Broglie wave length of the electron is small enough compared to the 
inter molecular distance implying that it is much smaller than the mean free 
path. The C.O.G. motion of the electron can hence be treated classically.

V1 = (3.3 [nm])3 per molecule



Boltzmann Equation
Basic Equation Governing Electron Transportation 

We often see formulae for electron drift and diffusion as derived 
from it, so it must be useful, but itself is rarely discussed in usual 
introductory text books. 
So, what is it? 
Where does it come from? 
And how? 

I can only show you a rough sketch, but I hope it will make you feel 
a little bit more comfortable when you see it next time. 
For (older) pragmatic people, it might become a little bit boring, but 
maybe it’s OK even for them to recall their student time.

We will find that THE KEY WORD IS “PROJECTION”! 
“PROJECTION” is a technique to forget about 

unwanted details and make life easy! 



Phase Space
Our system of interest 

Ionization electrons drift and diffuse independently 
It suffices to consider a single electron in a gas consisting of N 
gas molecules in a chamber (note: N is a huge number).

Stage where solutions dance, we only see their shadows

sample  
point (a)

Phase Space

Solution Lines
(Xa,P a)

6(N + 1)-dim.

x = X0

p = P 0

Electron’s Sub-Space

Projection

Molecules’ 
Sub-Space

Projection = Coarsification 
              = information loss

Microscopic Picture

H =
p2

2m
+

N�

b=1

P 2
b

2Mb

+Uext(x,p)
+UmM(x,X)
+UMM(X,X �)

Causal deterministic motion by

: Lorentz force (E,B)

: elec. + mol. collision

: mol. + mol. collision

Macroscopic Picture

Stochastic probabilistic motion

A shadow trajectory



Motion of a phase space point:  

satisfies 

                          with

Liouville’s Theorem
Solutions flow as perfect incompressible fluid 

Hamiltonian Equation of Motion

Write its formal solution as 

then this is a 1-to-1 map because 
of the uniqueness of solution.

Time Evolution Operator

� =
�

X
P

⇥

�̄ =
�

P
�X

⇥
�̇ =

�H

��̄T

�(t) = D(t)�(0)

D(0) = 1
D(�t)D(t) = D(t� t) = D(0) = 1

D(t1)D(t2) = D(t1 + t2)

D(t) forms an Abelian group:

Liouville’s Theorem

The map preserves phase space volume.

Liouville’s Equation
�(�; t) = �(X,P ; t) State density 

function

0 =
⇥

⇥t
� +

⇥H

⇥�̄
⇥

⇥�T �

J(t) = det
�

�D(t)�
��

⇥
= 1



Proof of Liouville’s Eq.
Proof is easy enough to give here

Derivation of Liouville’s Equation

0 =
d

dt
� =

⇥H

⇥�̄
⇥

⇥�T � +
⇥

⇥t
�

d

dt
A(�; t) = �̇

�

��T A(�; t) +
�

�t
A(�; t)

=
�H

��̄
�

��T A(�; t) +
�

�t
A(�; t)

In general, for any observable A:

Since Liouville’s theorem requires that 
the state density stays unchanged, 
which implies

Proof of Liouville’s Theorem
Equation of motion says

This is actually a continuity equation in 
the full phase space of the system or 
conservation of probability:

D(dt)� = � + dt �̇ = � + dt
�H

��̄T

�D(dt)�
��

= 1 + dt
�2H

��̄T
��

resulting in

We hence have

det
⇤

�D(dt)�
��

⌅
= 1 + dt Tr

⇤
�2H

��̄T
��

⌅
+ O

�
(dt)2

⇥

= 1 + O
�
(dt)2

⇥

1
dt

(J(dt)� 1) =
1
dt

(J(dt)� J(0)) =
d

dt
J(0) = 0

d

dt
J(t) = lim

t1�t

�

�t
det

⇤�
� D(t� t1)D(t1)�

� D(t1)�

⇥ �
� D(t1)�

� �

⇥⌅

= lim
t1�t

�

�t

⇤
det

�
� D(t� t1)D(t1)�

� D(t1)�

⇥⌅
·
⇤
det

�
� D(t1)�

� �

⇥⌅

=
⇤

d

dt
J(0)

⌅
· J(t1) = 0

which leads us to

� J(t) = 1

�
d6(N+1)� �(�; t) = 1



State Density Function
All we know about the ensemble 

The bundle of solution lines forms a 
manifold consistent with constraints 
imposed upon the system such as 
conservation of total energy and 
chamber volume boundaries

Projection = Coarsification 
              = information loss

Microscopic Picture
Once an initial distribution is given, the state density function evolves 
deterministically according to Liouville’s equation.

Macroscopic Picture
Thermal equilibrium = Equal weight

But how should we fix the initial 
distribution?  
Ergodic hypothesis: 
Probability is proportional to phase 
space volume

�(�; t) = �(D(�t)�; 0)

Projected volume decides probabilityDynamical variables of interest

Dynamical 
variables to 
be integrated 
out

x = X0

p = P 0

{Xb,P b}

Projection



Maxwellian Distribution
A detour which proves the power of ergodic hypothesis

The strip is actually the 
surface of a 3(N-1)-dim. 
sphere:

State Density Function for Molecules
Ignore the electron, for the moment, and concentrate on the molecules, whose sate density function in thermal 
equilibrium. Good approximation since we can safely assume that the molecules colliding with the electron never 
met it in the past.

Interaction hamiltonian of the molecules has a nonzero 
value only when the inter-molecule distance becomes 
negligibly small compared to its average determined by 
the gas density. 

The phase space points uniformly distribute over the 
surface of a 3N-dim. sphere of radius R=sqrt(Etot) x 
3N-dim. box with a volume L^{3N}. Note that the 
projection of spatial dimension simply gives L^{3N}.

R

N�

b=1

Y 2
b = R2

Y1=
�

Mb/2 |V 1|

|Y 1|=Y1
subspace

N�

b=2

Y 2
b = R2 � Y 2

1

�
R2 � Y 2

1

Projection

Etot =
N�

b=1

1
2
MbV

2
b :=

N�

b=1

Y 2
b = R2

S3(N�1)

�⌥
R2 � Y 2

1

⇥

⌅
�⌥

R2 � Y 2
1

⇥3(N�1)�1

⇥ R3N�4
⇧
1� (Y1/R)2

⌃3N/2

⇥ R3N�4

⇤
1� Y 2

1 /((2/3)R2/N)
3N/2

⌅3N/2

⇤ R3N�4 exp
⇤
� Y 2

1

(2/3)(R2/N)

⌅
⌅ exp

⇤
� Y 2

1

kBT

⌅



Projection of Liouville’s Eq.
Electron distribution as the projection of the full state fun. 

Separating the part containing the 
electron’s dynamical variables from the 
rest, we have

Liouville’s Equation
�(�; t) = �(X,P ; t) State density 

function

0 =
⇥

⇥t
� +

⇥H

⇥�̄
⇥

⇥�T �

Now project the both sides to the 
electron subspace by integrating out 
molecules’ dynamical variables.

f(x,p; t) =
N⇤

b�=1

�⌅
d6�b�

⇥
� (x,p; {�b�} ; t)

fb(x,p;Xb,P b; t) =
⇤

b� �=b

�⌅
d6�b�

⇥
� (x,p;�b, {�b�} ; t)

1-body distribution function:

2-body distribution function:

The “molecule only” terms become 
surface integrals upon integration and 
vanish because rho has the same value 
everywhere on the surface.

where we have introduced

Notice that
F ext = e

�
E +

p

mc
�B

⇥

0 =
�

�

�t
+

p

m
· �

�x
+ F ext · �

�p

⇥
f

+
N⇤

b=1

⌅
d3Xb

⌅
d3P b F b ·

�
�

�p
� �

�P b

⇥
fb

(e < 0)

0 =
�

⇥

⇥t
+

p

m
· ⇥

⇥x
+ F ext · ⇥

⇥p

⇥
�

+
N⇤

b=1

F b ·
�

⇥

⇥p
� ⇥

⇥P b

⇥
�

+ Molecule Only Terms



Collision Term
Time average over the collision period

Collision Term
We move the 2-body term to the R.H.S. 
and call it the collision term: 

for obvious reason. Notice that if it 
were not for this term, the electron 
would have behaved as a single particle in 
external E and B fields. 
With this term, however, the projected 
trajectory of the electron will show a 
shaggy apparently random motion, though 
the full trajectory should be smooth and 
causal in the full phase space.  

Noting that the 2-body system can be 
regarded as isolated during the short 
period of collision time and the collision 
motion averaged using the projected H:

�
�f

�t

⇥

coll

= �
N⇧

b=1

⌃
d3Xb

⌃
d3P b F b ·

⇤
�

�p
� �

�P b

⌅
fb

which is none other than the 2-body 
Hamiltonian describing the collision. 
Then we have

where             is the 2-body time evolution  
operator and                          

is the 2-body phase space point in question.

D2(t�)

�2 = (x,p;Xb,P b)

�
⇧ t+�t

2

t��t
2

dt⇥F b ·
⇤

�

�p
� �

�P b

⌅
fb =

⇧ t+�t
2

t��t
2

dt⇥
�

�fb

�t⇥

⇥

= fb

�
�2; t +

�t

2

⇥
� fb

�
�2; t�

�t

2

⇥

= fb

�
D2(��t)�2; t�

�t

2

⇥
� fb

�
�2; t�

�t

2

⇥

H̄2 (x,p;Xb,P b) =

⇤

b� �=b

�⌅
d3Xb�

⌅
d3P b�

⇥
H(�)

⇤

b� �=b

�⌅
d3Xb�

⌅
d3P b�

⇥

=
p2

2m
+

P 2
b

2Mb
+ UmM (|x�Xb|)

+ const.



Collision Term (Continued)
Decomposition of 2-body fn. to products of 1-body fns. 

Before and after the collision period of  
the 2-body system, their space coordinates 
don’t change macroscopically, but their 
momenta may seem to jump by a finite 
amount.  
Microscopically, however, the jump is a 
function of the impact parameter and their 
relative momentum and should be causal in 
our classical mechanical treatment.

Probabilistic view point enters upon 
replacing the 2-body state density function 
by the product of the 1-body state density 
functions for the electron and the molecule 
in question.

Notice that the momentum transfer is 
determined by the relative momentum and 
the impact parameter. This replacement 
drops the information on the impact 
parameter by throwing away the coordinate 
information of the molecule. This loss of 
information is the source of the stochastic 
nature of the collision process.  
We hence make the replacement�

d3Xb ⇥
�

d�b |v � V b| �t

since the volume integral should be taken 
over the region where

D2(��t) ⇥= 1

�
p = mv

P b = MbV b

⇥
�

⇧ t+�t
2

t��t
2

dt⇥F b ·
⇤

�

�p
� �

�P b

⌅
fb

= fb

�
D2(��t)�2; t�

�t

2

⇥
� fb

�
�2; t�

�t

2

⇥

fb(�2; t) = fb(x,p;Xb,P b; t)
� f(x,p; t) Fb(P b; t)

or over the X-section along the expected 
trajectory of the 2-body system.



Collision Term (Continued)
Time average over the collision period

Time Averaged Collision Term
Averaged over the collision time, we get

In what follows we understand the time 
derivative as appropriately averaged over 
the collision period as above, and simply 
write

Since the same kind of molecules should 
contribute equally to the summation (rho 
should be symmetric under exchange of 
the same kind of molecules), we can rewrite 
this to �

⇤f

⇤t

⇥

coll

=
⇤

k

Nk

⌅
d3P

⌅
d�k |v � V |

⇥ [f(x,p + �q; t) Fk(P ��q; t)

� f(x,p; t) Fk(P ; t)]

1
�t

⌅ t+�t
2

t��t
2

dt⇥
�

⇤f

⇤t

⇥

coll

=
N⇤

b=1

⌅
d3P b

⌅
d�b |v � V b|

⇥ [f(x,p + �q; t) Fb(P b ��q; t)

� f(x,p; t) Fb(P b; t)]

�
⇤f

⇤t

⇥

coll

=
N⇤

b=1

⌅
d3P b

⌅
d�b |v � V b|

⇥ [f(x,p + �q; t) Fb(P b ��q; t)

� f(x,p; t) Fb(P b; t)]

where       is the number of molecules of k-
th kind. Noting 

1 =
�

d3X

�
d3P Fk(P ; t) = L3

�
d3P Fk(P ; t)

we define the density of molecules of k-th 
kind                    and 

F̄k(P ; t) = L3 Fk(P ; t)

nk = Nk/L3

Nk



The Boltzmann Equation
The fundamental equation

where the external force is given by

Then we finally arrive at the Boltzmann 
equation:

and the velocities are defined by

F ext = e
�
E +

v

c
�B

⇥

p = mv
P = MkV

⇤
⇤

⇤t
+

p

m
· ⇤

⇤x
+ F ext · ⇤

⇤p

⌅
f(x,p; t)

=
⇧

k

nk

⌃
d3P

⌃
d�k |v � V |

⇤
�
f(x,p + �q; t) F̄k(P ��q; t)

� f(x,p; t) F̄k(P ; t)
⇥

part flowing in part flowing out

p + �q

P ��q

P
p

P

p

P ��q

p + �q

Flowing in

Flowing out

TP = C



Inelastic Scattering
A short comment in passing

So far, we have been assuming that the 
electron-molecule collisions are elastic as 
described by a scattering potential. 

If we are to consider inelastic scattering 
involving some change of internal degrees 
of freedom of the colliding molecule, we 
need to expand the phase space to include 
the internal degrees of freedom and then 
project out these internal degrees of 
freedom as needed. 
The resultant loss of information can again 
be taken statistically into account as in the 
form of the inelastic cross section. 

We can hence regard the Boltzmann eq. as 
the one after this extra projection.

The Boltzmann equation, as it is, can hence 
be applied to those more general cases. 

In practice, however, the inclusion of 
inelastic processes complicates the 
treatment significantly, since we can no 
longer assume that the relative speed 
stays the same before and after the 
collision.  

After all, the physics that controls the 
electron transport in a gas lies in the 
collision term, and  that’s where all the 
complications come from. Calculating the 
properties of complex molecules from the 
1st principle (=Q.M.) is often impracticable.  



Transport Coefficients
Things you want to derive from the Boltzmann Equation

We often see formulae for electron drift and diffusion as derived 
from the Boltzmann equation, but they are given almost always 
without proof.  
Where do they come from? 
And how? 

I can only show you a rough sketch, but I hope it will make you feel 
a little bit more comfortable when you see them next time. 
Some of you, pragmatic people might already have been pretty much 
fed up, but be patient recalling your student time.

Again we will find  THE KEY WORD IS “PROJECTION”! 

“PROJECTION” makes life easy! 



The Boltzmann Equation
From now on we will work in velocity space

where the external force is given by

The Boltzmann equation in (x,v) space is 
readily read out from its (x,p) version:

and the velocity changes must satisfy

F ext = e
�
E +

v

c
�B

⇥

part flowing in part flowing out

Flowing in

Flowing out

TP = C

V

V +�V

v + �v

v

⇤
⇤

⇤t
+ v · ⇤

⇤x
+

F ext

m
· ⇤

⇤v

⌅
f(x,v; t)

=
⇧

k

nk

⌃
d3V

⌃
d�k |v � V |

⇤
�
f(x,v + �v; t) F̄k(V + �V ; t)

� f(x,v; t) F̄k(V ; t)
⇥

�q = m�v = �Mk�V

v

V +�V

V

v + �v

Before moving on, it is worth noting that 
the Boltzmann eq. implies a scaling between 
the gas density and the field strengths for 
steady state solutions having no (x;t) 
dependence.



Velocity Space
Decomposition of f(x,v;t) to n(x;t) fbar(v;x,t)

The probability density of finding the 
electron in the vicinity of x is given by

n(x; t) =
�

d3v f(x,v; t)

With this, we can define the velocity 
distribution function by

f̄(v;x, t) := f(x,v; t) / n(x; t)

By definition this must satisfy the 
normalization condition:

as is obvious by integrating both sides of 
the following over velocities

f(x,v; t) = n(x; t) f̄(v;x, t)

Putting this into the Boltzmann equation, 
we have

Notice that on the R.H.S. (collision term),  
n(x,;t) has been factored out, since the 
collision is a very local phenomenon.

It is tempting to assume that fbar will soon 
become independent of position and time 
due to random collisions with molecules, but 
this turns out incorrect as we will see next.

�
d3v f̄(v;x; t) = 1

⇧
⇤

⇤t
+ v · ⇤

⇤x
+

F ext

m
· ⇤

⇤v

⌃ �
n f̄

⇥

= n(x; t)
⌥

k

nk

�
d3V

�
d�k |v � V |

⇤
⇤
f̄(v + �v;x, t) F̄k(V + �V ; t)

� f̄(v;x, t) F̄k(V ; t)
⌅



Simple Minded Factorization
f(x,v;t) = n(x;t) fbar(v) does not work!

If we assume a simple minded factorization

and integrate the both sides of the B.Eq. 
over the electron positions, noting

The 1st term on the R.H.S. is zero since it 
becomes a surface integral where n=0. 
Combining this with the eq. on the left page 
yields 

Integrating both sides of the B.Eq. over 
the electron velocities, we have

where
�v⇥ :=

�
d3v f̄(v;x, t) v

is the local average velocity, which is in 
general position dependent.

f(x,v; t) � n(x; t) f̄(v)

we have

�
d3x n(x; t) = 1

�
�

�t
+ ⇥v⇤ · �

�x

⇥
n(x; t) = 0

which implies a simple drift w/o diffusion, 
possible only if n is uniformly distributed.

⇤
⇤
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⌃
d3V

⌃
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⇤
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f̄(v + �v;x, t) F̄k(V + �V ; t)

� f̄(v;x, t) F̄k(V ; t)
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⌃
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⇤x
· v
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nf̄

⇥
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F ext
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f̄

=
⇧

k

nk

⌃
d3V

⌃
d�k |v � V |

⇤
⇤
f̄(v + �v;x, t) F̄k(V + �V ; t)
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Concept of Velocity Shell
Towards more realistic solutions to the B.Eq.

We will then consider the velocity space in 
a spherical coordinate system: 

v

� = (cos �, ⇥)

We will hence be forced to retain the time 
and position dependence in fbar and think 
about another way of approximation.

The Basic Idea
The motion of the electron is dominated by  
random and almost isotropic velocity with a 
small modulation (drift velocity) due to the 
external E and B fields.

We hence consider a fraction of the phase 
space where the electron has speed in the 
range (v, v+dv), a shell of a 3-dim sphere in 
the velocity space. 
For the class of phase space points in the 
velocity shell, the distribution should be 
almost isotropic with the small modulation.

The Velocity Shell

v3

v1

v2

�
�

The 3rd axis in the 
direction of the average 
velocity of the shell

�v⇥shell



Harmonic Expansion
Expansion in terms of spherical harmonics

Since we took the 3rd axis in the direction 
of the average velocity of the shell, this 
implies

Harmonic Expansion
In each velocity shell, we expand fbar in 
terms of spherical harmonics as

f̄(v;x, t) =
⇥�

l=0

m=+l�

m=�l

Y m
l (�, ⇥) f̄m

l (v;x, t)

The distribution will then be dominated by 
low l spherical harmonics, 
     l=0 (scalar=monopole) : dominant 
     l=1 (vector=dipole) : drift

Average shell velocity

f̄�1
1 = f̄1

1 = 0

Ignoring l>1 terms, we can put

where 
f1(v;x, t) :=

�

⇤
0
0
f1

⇥

⌅

f̄(v;x, t) ⇥ f0(v;x, t) + f1(v;x, t) cos �

= f0(v;x, t) + f1(v;x, t) ·
�v

v

⇥

�l m| [Object]⇥ =
�

d� (Y m
l )� [Object]

Notation

The average shell velocity then becomes 

⇥v⇤�v
=

⌃
d�v v f̄(v;x, t)

� ⌃
d�v f̄(v;x, t)

=
v⌅
6 f̄0

0

⇥

⌅
f̄�1
1 � f̄1

1

�i (f̄�1
1 + f̄1

1 )⌅
2 f̄0

1

⇤

⇧

�v⇥�v
=

vf1

3f0



Harmonic Expansion
Projection of B.Eq. to harmonic components

Harmonic Expansion of B.Eq.
All we need to do is to put

The Scalar Equation (l=0)

into the Boltzmann equation, and project 
out l=0 (scalar) and l=1 (vector) components

f̄(v;x, t) ⇥ f0(v;x, t) + f1(v;x, t) cos �

= f0(v;x, t) + f1(v;x, t) ·
�v

v

⇥

�0 0| [B.E.]⇥ = Scalar Eq.
�1 0| [B.E.]⇥ = Vector Eq.

This projection is a tedious but doable 
mathematical exercise, at least for the 
L.H.S. of the Boltzmann equation. All you 
need to know is the composition rules of 
the spherical harmonics, which you must 
have learned in a Q.M. course. 

I just show the results of the exercise.

where           is in general a complicated fn.  
If collisions are all elastic, a concrete 
formula is known (c.f. Huxley & Crompton)

⇤
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3
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⇤v

⌅

effective collision frequency
�m,k := nk v ⇥m,k(v)

�̄m,k

The scalar equation can be interpreted as 
the continuity equation expressing energy 
conservation.



Scalar Equation
Interpretation of Scalar Eq.

First recall that the total weight of the 
velocity shell (v,v+dv) is

while the shell averaged velocity is given by

Putting these into the scalar equation
⇤

⇤t
(nf0) +

v

3
⇤

⇤x
·(nf1) +

1
4�v2

⇤

⇤v

�
4�

3
v2 eE

m
· (n f1)

⇥

=
1

4�v2

⇤

⇤v

⇤
n

⇧

k

nk⇥̄m,k (v; [f0])

⌅

�v⇥�v
=

vf1

3f0

⇥

⇥t
ñ +

⇥

⇥x
·
�
ñ ⇥v⇤�v

⇥
+

⇥

⇥v

⇤
eE

m
·
⇥v⇤�v

v
ñ

⌅
=

⇥

⇥v

⇧
n

⌥

k

nk�̄m,k (v; [f0])

⌃

ñ dv = (4� v2dv) (n f0)

net gain of the shell population 
due to collisions 

net loss of the shell population due heating up due to external fields change rate of the 
shell population

net loss of the shell population 
due to drift 

The shell population times the mv^2/2 is the total energy of the shell, and hence the 
conservation of population is equivalent to that of energy.

and canceling out common factors, we get



Harmonic Expansion
Projection of B.Eq. to harmonic components (continued)

Momentum Transfer X-Section
The collision term is characterized by a 
quantity called the momentum transfer 
cross section. 
It is defined in general by

The Vector Equation (l=1)

where

The vector equation can be interpreted as 
the continuity equation expressing 
momentum conservation.

where      and      are relative speeds of 
electrons in the molecule rest frame 
before and after the collision, and their 
ratio is unity for elastic scattering, and

vr v�
r

⇥1,k =
�

d⇥k cos �

�0,k =
�

d�k

�

�m,k = �0,k �
v�

r

vr
�1,k

p ⇥m,k =
�

d⇥k p (1� cos �)

�̄m :=
�

k

nk v ⇥m,k(v) : effective coll. freq.

� :=
(�e)B

mc : cyclotron freq. vec.

Notice that the electron charge is -ve, 
hence (-e) is +ve. 

⇥

⇥t
(n f1) + v

⇥

⇥x
(n f0) +

eE

m

⇥

⇥v
(n f0)� � ⇥ (n f1)

= ��̄m(v) (nf1)



Vector Equation
Interpretation of Vector Eq.

The effective collision frequency is related 
to mean free time

path length

⇥ =
1

�̄m

Multiplying the both sides of the vector eq. 
by tau with this in mind makes the 
meanings of the vector eq. clearer.

�
⇥

⇥t
(n f1) + (� v)

⇥

⇥x
(n f0) +

�
�

eE

m

⇥
⇥

⇥v
(n f0)� (� �)⇥ (n f1) = � (nf1)

change of 
distribution 
during tau

velocity increase 
during tau

rotation during tau

velocity change by 
a single collision

This part remains even after the steady 
state is reached and hence should be kept 
as significant.

Can be large 
for a point 
source

Quickly become 
small after injection

On the other hand the total momentum of 
the velocity shell (v,v+dv) is

dptot = (4� v2dv) (n f0) m
v f1

3 f0
=

4� v2dv

3
m v (n f1)



Vector Equation
Separation of Drift and Diffusion

The Vector Equation

We assume that the 1st term (t-derivative) 
is negligible compared with the rest. This 
assumption implies that the electron is in a 
quasi-equilibrium at least locally. 
Then we have

We now decompose f1 as 
f1 = fE + fG

to separate the vector eq. into the 
following two:

v
⇥

⇥x
(n f0) +

eE

m

⇥

⇥v
(n f0)� � ⇥ (n f1)

⇤ ��̄m(v) (nf1)

⇥

⇥t
(n f1) + v

⇥

⇥x
(n f0) +

eE

m

⇥

⇥v
(n f0)� � ⇥ (n f1)

= ��̄m(v) (nf1)

�̄m(v) (nfE)� � ⇥ (n fE) = �eE

m

⇥

⇥v
(n f0)

�̄m(v) (nfG)� � ⇥ (n fG) = �v
⇥

⇥x
(n f0)

Notice that these are linear equations  
of the form

that can be solved by matrix inversion, 

once f0 is given. 
Notice also that upon the integration over 
x  the contribution from fG must vanish.

[ �̄m(v)� �⇥ ]
�
n fE/G

⇥
= [fn. of f0]

�
n fE/G

⇥
= [ �̄m(v)� �⇥ ]�1 [fn. of f0]

[ �̄m(v)� �⇥ ]
�

d3x (n fG)

= �v

�
d3x

⇥

⇥x
(n fG)

= Surf. int. = 0



Vector Equation
Separation of Drift and Diffusion

with

Notice that W is a function of the speed v 
and the position of the electron, and the 
average over the whole phase space sample 
is given by 

We can hence rewrite the average velocity 
of the shell as

Now recall that f1 is related to the drift 
velocity of the shell through

This means that the fG and hence WG does 
not contribute to the average velocity of 
the whole ensemble:

W E/G :=
vfE/G

3f0

�v⇥ = �W E⇥

�W G⇥ = 0
and

We can hence interpret WE as  the drift 
velocity due to the external field and WG 
as the convection velocity due to diffusion 
of the velocity shell at a given spatial point.  

We will hence concentrate on WE for our 
discussions on the drift velocity v_D, while 
for our discussions on the diffusion we will 
focus on WG, which is our next task.

�v⇥�v
=

vf1

3f0

�v⇥�v
=: W = W E + W G

�v⇥ =
⇤

d3x

⇤
(4�)v2dv (n f0)W

=
⇤ �

4�

3

⇥
v3dv

⇤
d3x (n f1)



Drift Velocity
Mobility Matrix

We start from the equation for fE, which 
can be rewritten with WE as

Recall your linear algebra course, then the 
reciprocal of the matrix M is given by

Notice that n(x;t) does not depend on v and 
hence can be cancelled out.  
We now introduce a matrix [M]: 

f0 [ �̄m(v)� �⇥ ]W E = �v

3

�
⇥

⇥v
f0

⇥
eE

m

where use has been made of a shorthand:

�̄m(v)� �

For notational convenience, we will use this 
abbreviation in what follows. 
Now all we need to do is a matrix inversion.

det [M]with 
�2 := �2 = �2

1 + �2
2 + �2

3

and 
� :=

(�e)B
mc

WE can now be written as

which can be averaged over v to give

[M ]�1 =

⇤

⇧
�2 + ⇥2

1 ⇥1⇥2 � �⇥3 ⇥1⇥3 + �⇥2

⇥2⇥1 + �⇥3 �2 + ⇥2
2 ⇥2⇥3 � �⇥1

⇥3⇥1 � �⇥2 ⇥3⇥2 + �⇥1 �2 + ⇥2
3

⌅

⌃

÷ �
�
�2 + ⇥2

⇥

f0 W E = �v

3

�
�

�v
f0

⇥
[M ]�1

�
eE

m

⇥

�W E⇥v (x; t) :=
�

(4⇥)v2dv f0 W E

= [µ]E

[M ] := [ �̄m(v)� �⇥ ]

=

�

⇤
� ⇥3 �⇥2

�⇥3 � ⇥1

⇥2 �⇥1 �

⇥

⌅



Drift Velocity
Mobility Matrix (continued)

We introduced the local mobility matrix:

The matrix [M] becomes “nu” and hence 
the [mu*] becomes a single number:

The Mobility Matrix

which is in general a function of (x;t). 
To get the position-averaged mobility 
suitable for the centroid motion, we define

f�
0 (v; t) :=

�
d3x (n f0)

and the (global) mobility matrix:

�W ⇥ = �W E⇥ = [µ�]E

With this, we can write

Notice that the mobility matrix is 
proportional to a unit matrix if B=0.

Special Case [1] (B=0)

µ� = �4⇤e

3m

⇤ ⇥

0
dv

v3

⇥

�
d

dv
f�0

⇥

If there is a B-field, the mobility matrix 
will acquire nonzero off-diagonal elements 
and hence the direction of the E-field and 
the direction of the drift velocity will 
differ (so-called Lorentz angle effects).

The drift direction should be anti-parallel 
with the E-field. This suggests that the 
integral should be negative, since (e < 0). 
Assuming that f*0 has a single peak, and 
the integral weights more on the higher 
side of the peak, it is indeed so.

[µ] := �4⇥e

3m

⇤
dv v3

�
⇤

⇤v
f0

⇥
[M ]�1

[µ⇥] := �4⇥e

3m

⇤
dv v3

�
d

dv
f⇥0

⇥
[M ]�1



Drift Velocity
Mobility Matrix (continued)

This is the case of our interest. Assuming 
that E and B are in the 3-axis direction, 
then 

and the inverse of [M] becomes

Special Case [2] (B//E)
If the velocity distribution can be taken as 
a delta function:

� =

�

⇤
0
0
�

⇥

⌅

[M ]�1 =
1

� (�2 + ⇥2)

�

⇤
�2 ��⇥ 0
�⇥ �2 0
0 0 �2 + ⇥2

⇥

⌅

But the E-field has no 1- or 2- components, 
there will be no 1- or 2-components in the 
drift velocity, either. Moreover, the 3rd 
component coincides with the B=0 case. 
There is hence no B-field effect on the 
drift velocity in the E//B case.

Special Case [3] (v-dist=delta fn.)

f�
0 =

1
4⇥v2

�(v � v̄)

Putting this into the def. of the mobility 
matrix, we have

The mobility matrix is thus parameterized 
by just two parameters, the collision freq. 
at vbar and the cyclotron frequency.

[µ⇥] = �4⇥e

3m

⌥
dv v3

⇤
d

dv
f⇥0

⌅
[M ]�1

= �4⇥e

3m
[M ]�1(v̄)

⌥
dv

⇧
d

dv

�
v3 f⇥0

⇥

� d

dv

�
v3

⇥
f⇥0

⌃

=
4⇥e

m
[M ]�1(v̄)

⌥
dv v2 f⇥0 =

e

m
[M ]�1(v̄)



Mean Free Time
Mobility Matrix (continued)

Case (3) formula is usually obtained by 
time-averaging the Newtonian equation of 
motion.

Usual Simplistic Arguments

m
dv

dt
= e

�
E +

v

c
�B

⇥
+ F coll

We define the time average of a variable A 
to be 

Upon this time average, the L.H.S. of the 
Newtonian eq. vanishes, since we are 
considering a bounded motion for which the 
velocity stays finite. We hence have

0 = e

�
E +

⇥v⇤t
c

� B

⇥
+ ⇥F coll⇤t

Notice that there appear the mean free 
time and the average momentum transfer. 
The momentum transfer averaged over all 
angles is easy to get for isotropic collisions

We now need to evaluate the time average 
of the collision force:

�F coll⇥t = lim
T⇥⇤

1
T

⇤ T

0
dt F coll

= lim
N⇥⇤

1
�N

i=1 �Ti

N⇥

i=1

⇤ ti

ti�1

dt F coll(t)

= lim
N⇥⇤

1
�N

i=1 �Ti/N

1
N

N⇥

i=1

⇤ ti+ �t
2

ti� �t
2

dt F coll(t)

=
1
�

lim
N⇥⇤

1
N

N⇥

i=1

m �v =
1
�

�m�v⇥

⇥m�v⇤� =
�

d⇥
4⇥

m�v

= �
�

d cos �

2
m v (1 � cos �) = �m v

�A⇥t := lim
T�⇥

1
T

� T

0
dt A(t)



This implies 

Mean Free Time
Mobility Matrix (continued)

This is a simple linear equation, and can be 
solved by matrix inversion as we did, and 
yields the formula you often see in the 
text book

The Drift Velocity Formula

This formula can hence be regarded as the 
limiting case of the delta function like v 
distribution or of a single velocity shell. 
We can also rewrite the Langevin equation 
in the following form

Collecting things together, we arrive at the 
time-averaged Langevin equation:

We can think of the average that appears in

�F coll⇥t =
1
�

lim
N�⇥

1
N

N�

i=1

m �v =
1
�

�m�v⇥

being first taken over scattering angles for 
each group with  nearly the same momentum 
and then over such groups. Then we have

⇥F coll⇤t = �1
�

m ⇥v⇤

�
1
�
� (�e)B

mc
⇥

⇥
⇤v⌅ =

eE

m

Notice that 1/tau=nu and

� :=
(�e)B

mc
tell us that the content of the square 
bracket is the same [M] we met before.

[1� � �⇥] ⇤v⌅ =
e �

m
E

[1� � �⇤] ⌅v⇧ · ⌅v̂⇧ = |⌅v⇧| =
e �

m
E · ⌅v̂⇧

which is known as Tonk’s theorem.

µ(B = 0)

⇤v⌅ =
�

µE

1 + (⇥�)2

� �
Ê � (⇥�)

�
Ê ⇥ B̂

�
+ (⇥�)2

�
Ê · B̂

�
B̂

�



The Inverse of [M]
Another Expression

This implies that the inverse of [M] can be 
cast into the form

The drift velocity formula for a single shell

can be rewritten as

From this we have immediately

B̂
T
[M ]�1B̂ = �

êT
⇥ [M ]�1 ê⇥ =

�

1 + (⇥�)2

where       is a unit vector perpendicular to 
the B-field. We will see later that the 

ê�

[D] =
1
3

�
v2 [M ]�1

⇥
diffusion matrix is given by

Twice integrating  by parts the diffusion 
eq. in the comoving frame, we have

This implies
d

dt
�2

xe
= 2De =

2
3

�
v2 eT [M ]�1 e

⇥

d

dt

⇧
d3x⇥ n(x⇥; t) (x⇥ · e)2

=
⇧

d3x⇥
�

�

�x⇥

⇥T 1
3

⇤
v2 [M ]�1

⌅ �
�

�x⇥

⇥
n(x⇥; t) (x⇥ · e)2

=
⇧

d3x⇥ 2
3

⇤
v2 eT [M ]�1 e

⌅
n(x⇥; t)

=
2
3

⇤
v2 eT [M ]�1 e

⌅

and hence

DL =
1
3

�
v2 �

⇥
DT =

1
3

�
v2 �

1 + (⇥�)2

⇥
and

and

[M ]�1 =
�

�

1 + (⇥�)2

� �
1 + (⇥�)B̂ �+(⇥�)2B̂ B̂·

�

⇤v⌅ =
�

µE

1 + (⇥�)2

� �
Ê � (⇥�)

�
Ê ⇥ B̂

�
+ (⇥�)2

�
Ê · B̂

�
B̂

�

⇥v⇤ =
�

�

1 + (⇥�)2

� �
1 + (⇥�)B̂ � +(⇥�)2B̂ B̂·

� e

m
E



Diffusion 
Diffusion Matrix

So far we have been discussing WE (or 
equivalently fE), the drift due to the 
external fields.  
We now turn our attention to the vector 
eq. for WG (fG), which can be cast into the 
form:

Notice that this time, since n(x;t) depends 
on x, we cannot cancel out n. Nevertheless,   
there appears the same matrix [M]: 

det [M]with 
�2 := �2 = �2

1 + �2
2 + �2

3

and 
� :=

(�e)B
mc

The solution is then

which can be averaged over v to give
[M ] := [ �̄m(v)� �⇥ ]W E

=

�

⇤
� ⇥3 �⇥2

�⇥3 � ⇥1

⇥2 �⇥1 �

⇥

⌅

[M ]�1 =

⇤

⇧
�2 + ⇥2

1 ⇥1⇥2 � �⇥3 ⇥1⇥3 + �⇥2

⇥2⇥1 + �⇥3 �2 + ⇥2
2 ⇥2⇥3 � �⇥1

⇥3⇥1 � �⇥2 ⇥3⇥2 + �⇥1 �2 + ⇥2
3

⌅

⌃

÷ �
�
�2 + ⇥2

⇥

(n f0) [ �̄m(v)� �⇥ ]W G = �v2

3

�
⇥

⇥x
(n f0)

⇥

and hence with the same inverse matrix:

(n f0) W G = �v2

3
[M ]�1

�
�

�x
(n f0)

⇥

n ⇥W G⇤v (x; t) :=
⇤

(4�)v2dv (n f0) W G

= �4�

3

⇤
v2 dv v2 [M ]�1

�
⇥

⇥x
(n f0)

⇥



Diffusion 
Diffusion Matrix (Continued)

Crucial step is to replace f0 on the R.H.S. 
by f0*:

so that we can take out f0* out of the 
spatial derivative and get 

det [M]

with 
�2 := �2 = �2

1 + �2
2 + �2

3

and 
� :=

(�e)B
mc

The approximation 

[M ]�1 =

⇤

⇧
�2 + ⇥2

1 ⇥1⇥2 � �⇥3 ⇥1⇥3 + �⇥2

⇥2⇥1 + �⇥3 �2 + ⇥2
2 ⇥2⇥3 � �⇥1

⇥3⇥1 � �⇥2 ⇥3⇥2 + �⇥1 �2 + ⇥2
3

⌅

⌃

÷ �
�
�2 + ⇥2

⇥

with the diffusion matrix [D] given by

f�
0 (v; t) :=

�
d3x (n f0)

[D] =
4�

3

�
v2 dv v2 [M ]�1 f⇥0

The inverse of [M] is as before:

allowed us to define the diffusion matrix 
[D] that satisfies the usual definition

�

�x
(n f0) � f�

0
�

�x
(n)n ⇥W G⇤v = � [D]

�

�x
n

n ⇥W G⇤v = � [D]
�

�x
n

current density 
(w/o common drift ) grad (density)

There is some subtlety in this approx. but 
we will not get into it now.



Diffusion 
Diffusion Matrix (continued)

where the collision frequency is given by

The matrix [M] becomes “nu” and hence 
the [D] becomes a single number:

Special Case [1] (B=0)

� =
�

k

nk v ⇥m,k(v)

D =
4⇥

3

�
dv

v4

�
f�
0 (v)

The diffusion is hence isotropic (as long as 
the approximation is valid) and inversely 
proportional to gas density and X-section.

We can hence rewrite the diffusion 
constant as

D =
1
3

⇥
dv

(4�v2)f�
0 (v)�

k nk v⇥m,k(v)
v2

Special Case [2] (B//E)
This is the case of our interest. Assuming 
that E and B are in the 3-axis direction, 
then 

and the inverse of [M] becomes

[M ]�1 =
1

� (�2 + ⇥2)

�

⇤
�2 ��⇥ 0
�⇥ �2 0
0 0 �2 + ⇥2

⇥

⌅

� =

�

⇤
0
0
�

⇥

⌅

DL =
1
3

�
dv

(4⇥v2)f�
0 (v)

�
v2

DT =
1
3

�
dv

(4⇥v2)f�
0 (v) �

�2 + ⇤2
v2

= D33

= D11,22

D12 = �D21 =
1
3
�

�
dv

(4⇥v2)f�
0 (v) ⇤

�2 + ⇤2
v2

Then we have

All the other components are zero.



Diffusion 
Diffusion Matrix (continued)

DL =
1
3

�
dv

(4⇥v2)f�
0 (v)

�
v2

DT =
1
3

�
dv

(4⇥v2)f�
0 (v) �

�2 + ⇤2
v2

= D33

= D11,22

D12 = �D21 =
1
3
�

�
dv

(4⇥v2)f�
0 (v) ⇤

�2 + ⇤2
v2

Notice that the longitudinal diffusion const.

is the same as with the B=0 case. 
On the other hand, the transverse one

is reduced by a factor

in the integrand. Where the tau, being the 
inverse of the collision frequency, is the 
mean free time between collisions.

�2

�2 + ⇤2
=

1
1 + (⇤⇥)2 ⇥ =

1
�

with

corresponds to rotation about the field axis 
but it is not of our interest.

If the velocity distribution can be taken as 
a delta function:

Special Case [3] (v-dist=delta fn.)

f�
0 =

1
4⇥v2

�(v � v̄)

Putting this into the def. of the diffusion 
matrix:

[M ]�1 =

⇤

⇧
�2 + ⇥2

1 ⇥1⇥2 � �⇥3 ⇥1⇥3 + �⇥2

⇥2⇥1 + �⇥3 �2 + ⇥2
2 ⇥2⇥3 � �⇥1

⇥3⇥1 � �⇥2 ⇥3⇥2 + �⇥1 �2 + ⇥2
3

⌅

⌃

÷ �
�
�2 + ⇥2

⇥

[D] =
4�

3

�
v2 dv v2 [M ]�1 f⇥0

with the inverse of [M] given by

we have
[D] =

1
3

v̄2 [M ]�1(v̄)

If B=0, this implies a naive expectation

[D] =
1
3

v̄2� =
1
3

(v̄�)2

�



Random Walk 
Diffusion Matrix (continued)

Case (3) formula is usually obtained by the 
random walk theory with a fixed mean free 
time:

Usual Simplistic Arguments

The probability for the electron to fly over 
a time “t” and then get scattered by the 
molecule by an angle “Omega” is given by

if the scattering is isotropic. For the sake 
of simplicity, let us further assume that 
there is no E and B along the 3rd axis, then 
Newton’s eq. reads

⇥̄ =
1

�(v̄)

P (t, �) =
1
⇥̄

exp
�
� t

⇥̄

⇥
dt

d�
4�

d

dt
v = � � v

The solution to this is a helix

If we have N collisions over the time t, the  
probability of finding the electron at x is 

x(t) =
v̄

⇤

�

⇤
sin � (cos(⇤t + ⇥)� cos ⇥)
sin � (sin(⇤t + ⇥)� sin⇥)

⇤t cos �

⇥

⌅ + x0

P (x) =
N⌃

i=1

�⌥ ⇥

0
dti

1
⌅̄

e�ti/�̄

⌥
d⇥i

4⇤

⇥

⇥ �3

⇤
x�

N⇧

i=1

�x(⇥i,⇧i, ti)

⌅

The average position is apparently zero 
because of the angular integrals which are 
isotropic. 

with

�x⇥ =
�

d3x P (x)x = 0

�x = x� x0



Random Walk 
Diffusion Matrix (continued)

Now the mean square transverse distance 
is given by

Similarly the mean square longitudinal 
distance is given by

which leads us to the expression

DT =
1
3

(v̄�̄)2

�̄ (1 + (⇥�̄)2)

⇤2
L = ⇤2

x3
=

⇧
d3x P (x) x2

3

= v̄2
N⌅

i=1

�⇧ ⇤

0
dti

1
⌅̄

e�ti/�̄

⇧
d�i

4⇥

⇥ N⇤

i=1

t2i cos2 �i

= N v̄2

⇧ ⇤

0
dt⇥

1
⌅̄

e�t�/�̄

⇧
d�
4⇥

t⇥2 cos2 �

=
t

⌅̄
v̄2

⇧ ⇤

0
dt⇥

1
⌅̄

e�t�/�̄ 1
3
t⇥2

= t
2
3

(v̄⌅̄)2

⌅̄
= 2DL t

yielding

⇤2
⌅ = ⇤2

x1
+ ⇤2

x2
=
 

d3x P (x)
�
x2

1 + x2
2

⇥

=
⇤ v̄

⇧

⌅2 N�

i=1

⇧ ⇤

0
dti

1
⌅̄

e�ti/�̄

 
d�i

4⇥

⌃

⇤
N⌥

i=1

2 sin2 �i (1� cos(⇧ti))

= N
⇤ v̄

⇧

⌅2  ⇤

0
dt⇥

1
⌅̄

e�t�/�̄

 
d�
4⇥

2 sin2 � (1� cos(⇧t⇥))

=
t

⌅̄

⇤ v̄

⇧

⌅2  ⇤

0
dt⇥

1
⌅̄

e�t�/�̄ 4
3

(1� cos(⇧t⇥))

= t
4
3

(v̄⌅̄)2

⌅̄ (1 + (⇧⌅̄)2)
= 2⇤2

T = 2 · 2 DT t

DL =
1
3

(v̄�̄)2

�̄

We reencounter the familiar result
DT

DL
=

1
1 + (⇥�̄)2



Diffusion 
Diffusion Matrix (continued)

Now go back to B//E, and rewrite the 
diffusion constants

It is interesting to consider the following 
two extreme cases: 

Case [2] (B//E) Revisited

(a) ⇥� � 1

(b) ⇥� � 1

DT =
1
3

�
dv

(4�v2)f�
0 (v) ⇥(v)

1 + (⇤⇥(v))2
v2

This implies
DT (0)
DT (B)

� 1 + (⇥�1)2 with

valid for a low B-field.

DT (B) ⇤ 1
3

⌥
dv (4�v2)f⇥0 (v) ⇥(v)

⇥
�
(⇤⇥(v))�2 � (⇤⇥(v))�4

 
v2

=
1
3

⇤⇧
v2

⇤2⇥

⌃
�

⇧
v2

⇤4⇥3

⌃⌅

⇤ 1
3

�
⇥v2

⇥

⌅⇥v2⇧
�

v2

�3

⇥
/
�

v2

�

⇥2
+ ⇤2 ⌅⇥v2⇧

�
v2

�

⇥
/
�

v2

�

⇥2

=
DT (0)

⌅⇥v2⇧
�

v2

�3

⇥
/
�

v2

�

⇥2
+ ⇤2 ⌅⇥v2⇧

�
v2

�

⇥
/
�

v2

�

⇥2

This implies

DT (B) ⇤ 1
3

⇧
dv (4�v2)f�

0 (v) ⇥(v)

⇥
⌃
1� (⇤⇥(v))2

⌥
v2

=
1
3

�⇤
⇥ v2

⌅
� ⇤2

⇤
⇥3 v2

⌅⇥

⇤ 1
3

⇤
⇥ v2

⌅

1 + ⇤2 ⌅⇥3 v2⇧ / ⌅⇥ v2⇧

=
DT (0)

1 + ⇤2 ⌅⇥3 v2⇧ / ⌅⇥ v2⇧

DT (0)
DT (B)

� C + (⇥�2)2

with
C =

�
�v2

⇥ ⇤
v2

�3

⌅

�
v2

�

⇥2 and �2
2 =

�
�v2

⇥ ⇤
v2

�

⌅

�
v2

�

⇥2

valid for a high B-field.�2
1 =

�
�3 v2

⇥

�� v2⇥



Amendolia et al. 1986

P9 (1atm, E=115 [V/cm])

�1 = (0.41± 0.02)� 10�10 [s]

�2 = (0.266± 0.006)� 10�10 [s]
C = 2.8± 0.2



Scalar Equation
We need to solve the scalar equation, too

What We Have Done So Far

    which means diffusion does not  
    contribute to the drift velocity of the  
    centroid, as naively expected.

a) We have shown that 
�v⇥ = �W E⇥�W G⇥ = 0 and, hence

b) We have defined the mobility matrix for  
    the centroid 

�W ⇥ = �W E⇥ = [µ�]E

   with which, we can write

[µ⇥] := �4⇥e

3m

⇤
dv v3

�
d

dv
f⇥0

⇥
[M ]�1

[M ]�1 =

⇤

⇧
�2 + ⇥2

1 ⇥1⇥2 � �⇥3 ⇥1⇥3 + �⇥2

⇥2⇥1 + �⇥3 �2 + ⇥2
2 ⇥2⇥3 � �⇥1

⇥3⇥1 � �⇥2 ⇥3⇥2 + �⇥1 �2 + ⇥2
3

⌅

⌃

÷ �
�
�2 + ⇥2

⇥

c) We have also defined the diffusion matrix 

[D] =
4�

3

�
v2 dv v2 [M ]�1 f⇥0

     with which the convection current due to 
     diffusion is given by

n ⇥W G⇤v = � [D]
�

�x
n

Remaining Questions
a) How should we relate [D] to the electron  
    cloud size? In other words, we need to    
    know the spatial distribution, n(x;t). 
b) How can we determine f0*? 

In order to answer these questions, we now 
need to look at the scalar equation.

These results came solely from the vector 
equation, and f0* remains as unknown.



Scalar Equation
Derivation of Diffusion Equation

The Diffusion Equation

⇤

⇤t
(nf0) +

v

3
⇤

⇤x
·(nf1) +

1
4�v2

⇤

⇤v

�
4�

3
v2 eE

m
·nf1

⇥

= n
⇤

k

nk
1

4�v2

⇤

⇤v
⇥̄m,k(v; [f0])

we v-integrate the both sides to get

�coll :=
�

k

nk �̄m,k

⇥E :=
4�

3
v2 eE

m
· nf1

By defining

and

we can rewrite it in the following form
⇤

⇤t
(nf0) +

v

3
⇤

⇤x
·(nf1) = � 1

4�v2

⇤

⇤v
(⇥E � ⇥coll)

Recalling �
d3v f0 =

�
(4�v2)dv f0 = 1

f�
0 (v; t) :=

�
d3x (n f0)

�v⇥�v
=

vf1

3f0

⇥

⇥t
n +

⇥

⇥x
·
�

n

⇤
(4�v2) dv f0

vf1

3f0

⇥
= 0

where the R.H.S. is a surface integral. 
Recall also the shell averaged velocity 
formula

then the quantity in the parentheses is the 
current density at (x; t)

n

�
(4�v2) dv f0

vf1

3f0
= n �W ⇥v

The above equation now becomes
�

�t
n +

�

�x
(n �W ⇥v) = 0

which is none other than the usual equation 
of continuity.

We hence restart from the scalar equation



Scalar Equation
Derivation of Diffusion Equation

In to this continuity equation:
�

�t
n +

�

�x
(n �W ⇥v) = 0

we can now put
n �W ⇥v = n �W E⇥v + n �W G⇥v

recalling

and
n ⇥W G⇤v = � [D]

�

�x
n

We then obtain

⇥W E⇤v = [µ]E � [µ�]E = ⇥v⇤

�

�t
n + ⇤v⌅ · �

�x
n �

�
�

�x

⇥T

[D]
�

�

�x

⇥
n = 0

which is none other than the diffusion eq. 
as you transform this into a more familiar 
form if [D] is a constant D times a unit 
matrix

�

�t
n + ⇤v⌅ · �

�x
n � D

�
�

�x

⇥2

n = 0

In the co-moving frame of the centroid (                      
), this becomes

�

�t
n�D

�
�

�x�

⇥2

n = 0

x� = x � ⇥v⇤ t

The solution to this equation with the point 
source initial condition is given by

n =

⇤
1⇧

2�(2Dt)

⌅3

exp
�
� x�2

2(2Dt)

⇥

This implies that the electron cloud will 
have a Gaussian spread given by

�2
x = 2Dt

after created as a point-like cluster. 

OK, now the remaining task is f0*!



Scalar Equation
Equation for f0*

Velocity Distribution Function Ignoring the time derivative assuming that 
the electron’s velocity distribution reaches 
a steady state in a short time, this reads⇤

⇤t
(nf0) +

v

3
⇤

⇤x
·(nf1) = � 1

4�v2

⇤

⇤v
(⇥E � ⇥coll)

f�
0 (v; t) :=

�
d3x (n f0)

We again start from the scalar equation

This time we integrate out x, since we are 
now interested in the velocity distribution

Upon this integration the 2nd term of the 
L.H.S. vanishes since it becomes a surface 
integral where the electron is absent. 
Noting that the R.H.S. is a function of f0 
and this spatial integration replaces f0 by 
f0*, we have

⇤

⇤t
f�
0 = � 1

4�v2

⇤

⇤v
(⇥�

E � ⇥�
coll)

0 = � 1
4�v2

⇤

⇤v
(⇥�

E � ⇥�
coll)

The equation expresses the balance 
between the external force and the 
collision force. The concrete form of the 
collision term depends on the nature of the  
molecules in the gas in question and hence 
the concrete form of the equation also 
depends on it. When only elastic collision is 
there, it is known (c.f. Huxley & Crompton) 
that the equation becomes 

�
u2 +

⇤
V 2⌅⇥ d

dv
f�
0 +

3 m v

M
f�
0 = 0

u :=
eE

m �
=

eE

m
⇥

with



Scalar Equation
Solution for f0* (elastic only case)

The equation for f0* for a monatomic gas 
and for elastic collisions only

�
u2 +

⇤
V 2⌅⇥ d

dv
f�
0 +

3 m v

M
f�
0 = 0

u :=
eE

m �
=

eE

m
⇥

with

has the solution

f�
0 (v) = A exp

⇤
�3m

M

⇧ v

0

v dv

u2 +
�
V 2⇥

⌅

In this case u=0, and since

Solution for f0*

Special Case I (E=0)
�

1
2

M V 2

⇥
=

3
2

kB T

we end up with

f�
0 (v) = A exp

�
�m v2/2

kB T

⇥

which is none other than the Maxwellian 
distribution as expected.

Special Case II (nu/v=const.)
When the collision frequency divided by v 
or equivalently the cross section can be 
regarded as constant within the range 
where f0* is significant, we have instead

f�
0 (v) = A exp

⇤
�

� v

�

⇥4
⌅

with
�4 =

4 M

3 m

�
e

m

E/nM

⇥m

⇥2

This is called a Druyvesteyn distribution 
and has a sharper peak than the Maxwellian. 

Once the momentum transfer X-section is 
known, nu(v) is known, and hence we can 
calculate f0*. That’s the recipe.  



Cross Section Shape
How sigma_m behaves?

The most popular chamber gas is Ar, so 
let’s try an order of magnitude estimation 
of the electron-Ar cross section. 
Ar has an atomic number A=18 with the 
first 3 shells filled up. It is a perfectly 
symmetric molecule and hence the remnant 
electric field dies away very quickly.  The 
scattering cross section is therefore 
largely determined by the size of the 
outermost orbit. The electron in the 
outermost orbit experiences an attractive 
force from the nucleus largely shielded by 
the other electrons.  
Let’s assume that because of this shielding, 
the electron only feels the net charge of 1 
unit of (-e). 

Order of Magnitude Estimate The orbit radius can then be approximated 
as exactly as with a hydrogen atom for n=3. 

⇥Ar ⇥ � r(3)2

⇥ � (1.5� 10�8 [cm])2

= 7.1� 10�16 [cm2]
But the life is not so simple, This gives a 
kind of upper limit, and the real X-section 
can be much smaller because of the so 
called Ramsauer effect, a QM effect.

The interference makes a dip below the 
resonance peak!

r(n) ⇥ �
mc�QED

n

⇥ (0.5� 10�8 [cm])� 3

= 1.5� 10�8 [cm]

⇥Ar ⇥

�����

⇥
⇥0

Ar + A
1

�� �r + i�r
2

�����

2



Ar Cross Section
That used in Magboltz

⇥0
Ar ⇥ � r(3)2

⇥ � (1.5� 10�8 [cm])2

= 7.1� 10�16 [cm2]

⇥dip �
1
2
m

�c�QED

n

⇥2
� 1.5 [eV]

RAr = 1.8� 10�8 [cm] (exp.)



Characteristic Energy
Mobility and Momentum Transfer Cross Section

For simplicity, we will assume B=0 here.  
In this case the mobility constant can be 
cast into the form

where use has been made of the fact that 
f0* vanishes at the boundaries. If tau is 
constant, we recover our simple-minded 
formula. The mu* becomes max. with tau.

µ� = �4⇥e

3m

 ⇥

0
dv v3⇤(v)

⇤
d

dv
f�0 (v)

⌅

= �4⇥e

3m

 ⇥

0
dv

⇧⇤
d

dv
v3⇤(v)f�0 (v)

⌅

� d

dv

�
v3⇤(v)

⇥
f�0 (v)

⌃

=
4⇥e

3m

 ⇥

0
dv

d

dv

�
v3⇤(v)

⇥
f�0 (v)

=
4⇥e

3m

 ⇥

0
dv v2

⇧
3⇤(v) + v

⇤
d

dv
⇤(v)

⌅⌃
f�0 (v)

=
e

m
⇥⇤⇤ +

e

3m

⌥
v

d

dv
⇤

�

We can further rewrite the formula as

µ =
2e

3m
�⇥⇥ +

e

3m

�
d

dv
(v⇥)

⇥

Here we used a shorthand, mu*=mu, since 
there is no fear for confusion. 
Recalling that (v tau) is inverse of the gas 
density times the effective momentum 
transfer X-section, the 2nd term vanishes 
if the X-section change is negligible over 
the velocity distribution given by f0*. This 
is true near the X-section minimum. On the 
falling edge it is +ve and on the rising edge  
it is -ve.  
On the other hand, (roughly speaking) the 
1st term attains its maximum near the X-
section minimum. Net effect is that the 
mobility attains its maximum near the 
Ramsauer dip.



Characteristic Energy
De/mu as an estimate of the average electron energy

In the thermal limit, the characteristic 
energy is given by

Nernst-Townsend FormulaCharacteristic Energy

which can be cast into the form

Recalling
µ =

e

m
�⇥⇥ +

e

3m

�
v

d

dv
⇥

⇥

and ignoring the variation of tau over the 
velocity range determined by f0*, we have

D =
2

3m

�
1
2
mv2 �

⇥

D =
1
3

⇧ ⇥

0
dv (4�v2) f�0 (v)

�
v2⇥(v)

⇥
=

1
3

⇤
v2⇥

⌅
The diffusion constant at B=0 is given by

�k :=
eD

µ
� 2

3

�
1
2
mv2

⇥

The quantity (eD/mu) is termed the 
characteristic energy of the electron for 
obvious reason.

D e

µ
= kB T = 0.025 [eV] (1 atm, 20�C)

and called the Nernst-Townsend formula. 
For a cool gas such as CO2, this formula 
holds up to about 1kV/cm, while for Ar, 
this breaks down at an E-field value as low 
as 1V/cm. The electrons in a pure Ar gas 
can be easily heated up to 1eV or higher. 

In the thermal limit, Cd (the diffusion 
coefficient: the rms size of a cluster after 
a unit length of drift) is given by

Cd :=

⇥
2D

µE
�

�
2kB T

E



Cd and Vd for CO2
It is interesting to test the expectation 
with the simulation by Magboltz. 
We can see that the diffusion coefficient 
Cd behaves as 1/sqrt(E) up to 1kV/cm with 
almost no dependence on the B-field. 
The almost no dependence of Cd on B can 
be understood as the consequence of the 
smallness of       . 

It is also worth noting that the mobility is 
approximately constant and hence the drift  
velocity is proportional to the E-field in the 
same region: E < 1kV/cm. 

The fact that the electron velocity stays 
thermal up to rather high E-fields is 
attributable to many excitation modes of 
CO2 to cool the electrons.

⇥�

Cd :=

⇥
2D

µE
�

�
2kB T

E

vdrift ⇥ const.� E

Trying to understand Magboltz results (B//E)



Cd and Vd for P5
Trying to understand Magboltz results (B//E)

In the case of P5, a more suitable gas for a 
TPC, the behavior is very different. 
First notice the strong dependence of the 
diffusion constant on the B-field, which 
suggests

DT (0)
DT (B)

� C + (⇥�2)2

Assuming that tau is nearly constant in the 
relevant velocity range, we have

⇥� � 1
and hence

The transverse diffusion is thus expected 
to attain its minimum at the maximum tau, 
or at around the Ramsauer dip. Notice also 
that the drift velocity attains its maximum 
near there as expected.

DT = DL

DT minimum

The DL being different from the DT is 
unexpected and needs explanation. 

�2
2 =

�
�v2

⇥ ⇤
v2

�

⌅

�
v2

�

⇥2 � �̄2



Diffusion Revisited 
Electric Anisotropy

The fact that the diffusion in the E-field 
direction differs from those in the other 
directions was first noticed by Wagner, 
Davis, and Hurst (1967). This is called the 
electric anisotropy. Since our previous 
result indicated that the DL is equal to the 
DT at B=0, some approximation we made to 
some E-dependent terms must have been 
inadequate to explain this phenomenon. We 
then need to go back to the scalar equation

over the electron speed, we can translate 
the scalar equation into the following form

with

By multiplying both sides by the kinetic 
energy of the electron and integrating 

where

⇤

⇤t
(nf0) +

v

3
⇤

⇤x
·(nf1) = � 1

4�v2

⇤

⇤v
(⇥E � ⇥coll)

�coll :=
�

k

nk �̄m,k

⇥E :=
4�

3
v2 eE

m
· nf1

and

The equation expresses the conservation 
of energy.  Recall that if collisions are all 
elastic and the speed of molecules can be 
neglected, we have

� :=
1
2
mv2

When a molecule is at rest, energy loss per 
collision is given by

where lambda is called the fractional 
energy loss.

⇤coll �
�

k

4⇥v2 m

Mk
v (nf0) �m,k

�� = ⇥k� = 2
Mkm

(Mk + m)2
� � 2

m

Mk
�

where
�m,k(v) := nk v ⇥m,k(v)

⇤

⇤t
(n ⇤�⌅v) +

⇤

⇤x
(n ⇤�W ⌅v) = n ⇤W ⌅v · eE �

�
dv mv ⇥coll



Diffusion Revisited 
Electric Anisotropy

Putting these together, we get

indicating local balance between the energy 
gain from the E-field and the loss due to 
collisions. Since the current density

The collision term then becomes

Since we are dealing with a single electron 
in a quasi steady state, the L.H.S. may be 
ignored in considering a change in the scale 
of one mean free time. The eq. then reads

n �W ⇥v = n �W E⇥v + n �W G⇥v

includes the contribution from diffusion, so 
does the L.H.S. of the above equation.

Setting our coordinate axes in such a way 
that the E-field points to the 3rd axis 
direction and recalling that

⇥W E⇤v · eE = eµE2

⇤W G⌅v · eE = �eE D
1
n

�
�n

�x3

⇥

we can rewrite the energy balance eq. as

Denoting              and expanding this eq. 
around the energy corresponding to the 
average energy at the peak of the electron 
spatial probability distribution where the 
derivative is zero, we have

�̄ = ��⇥v

where use has been made of

⇤
dv mv ⇧coll � n

⇤
dv(4⌅v2)f0(⇥⇤) � = n

�
� (⇥⇤)

⇥

v

n ⇥W ⇤v · eE = n
�
� (⇥⇤)

⇥

v

with (�⇥) :=
�

k

�k⇥m,k

eµE2 � eE D
1
n

�
⇧n

⇧x3

⇥
⇥ ⇤�⌅v (⇥⌅) (⇤�⌅v)

⌅

⌅t
(n ⇤�⌅v) +

⌅
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Diffusion Revisited 
Electric Anisotropy

we have

andµ =
e

m
⇥⇤⇤ � e

m⇥

The energy balance eq. can be solved for 
the energy shift as

At the leading edge, where the density has 
a -ve slope, the energy shift is +ve, and at 
the trailing edge, the energy shift is -ve. 
The energy is hence higher at the leading 
edge and lower at the trailing edge than at 
the center. This energy shift induces the 
variation of mobility along the E-field:

µ =
e

m⇤
⇥ e

m⇤0

⇤
1� 1

⇤0

�
⌅⇤

⌅�̄

⇥

0

��̄

⌅

Denoting
� =

⇥̄0
⇤0

�
⌅⇤

⌅⇥̄

⇥

0

Depending on the sign of “gamma”, the 
variation induces a bunching (+ve) or 
debunching (-ve) effect and hence makes 
the longitudinal diffusion different from 
the transverse one. 
Putting these into 

D =
1
3

�
v2⇤

⇥
� 2�̄0

3m⇥0

n ⇥W ⇤v = n µE � D
⇥

⇥x
n

and taking the 3rd component, we have

which implies

The formula shows that DL=DT(B=0) where 
“gamma”=0, the collision freq. attains its 
minimum (=tau maximum) meaning near the 
Ramsauer dip as we have seen for P5.
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Gas Amplification  
in a Strong E-Field

This part will be very brief, since my understanding of 
this subject is very much limited!



Gas Amplification
Average Gas Gain

The probability per unit length for a seed 
electron in a strong E-field producing an 
additional ionization electron is called the 
first Townsend coefficient (    ). We can 
write the average increase of electrons (      
) over a path (    ) to be

Twonsend Coefficient

�

dN ds

dN = N � ds

The Townsend coefficient is determined by 
the cross sections for ionizing collisions or 
excitation collisions leading to secondary 
ionizations through Penning effect or Jesse 
effect. These cross sections are a function 
of the electron’s speed or equivalently its 
energy, which is in turn a function of two 
scaling variables:  “E/(gas density)” and  
“B/(gas density)”, as far as the t- and x-

derivatives of the electron state density 
function on the L.H.S. of Boltzmann eq. can 
be ignored.  
Then the Townsend coefficient, having the 
dimension of inverse length, must scale 
with the mean free path inverse and hence 
should be proportional to the gas density:

unless E-field variation is so quick that the 
f(v;x) changes significantly over a few mean 
free paths. 
Taking this condition for granted we can 
write the average gas gain as a line integral:

Ḡ :=
N

N0
= exp

�⇤ B

A
ds �(E(s))

⇥

� = �0

�
E

⇥
,

B

⇥

⇥
· ⇥

⇥0

which in general depends on the possible 
path along which the avalanche develops.



The formula allows one to calculate the 
average gas gain once the 1st Townsend 
coefficient is given as a function of the E-
field. Strictly speaking, the scaling holds 
only when we change both the E- and B- 
fields simultaneously. As far as I know 
there is no analytic treatment of general E 
and B configurations. When the E- and B- 
fields are parallel, however, the longitudinal 
motion will not be affected by the B-field 
and hence we can ignore the B-field effect 
on the Townsend coefficient (recall that 
the electron energy is characterized by 
eD/mu  which is unaffected).  
In the case of uniform E//B, we have

where      is the amplification gap and       is 
the high voltage across it.  
This should be a good approximation for a 
GEM or micromegas in particular.  Notice 
that the Townsend coefficient increases 

Ḡ(�) = exp [�(V/�) �]

� V

with the E-field. If the E-field is constant, 
the gas gain increases with the gap. The E-
field, however, decreases when the gap is 
increased. This suggests that the gas gain 
must attain a maximum for an appropriate 
gap value, around which the gas gain is 
stable against gap variation. This is the 
operation principle of the micromegas.

Paul Colas



Gas Amplification
Statistics of Avalanche Fluctuation

The avalanche formation involves various 
mechanisms: impact ionization, Penning and 
Jesse  processes. We consider here the 
case where the impact ionization dominates. 
We further assume a uniform E-field in the  
amplification region. A B-field, if there is 
any, should be parallel to the E-field. Now 
let the probability of getting N electrons 
at the point x from the beginning of the 
amplification region be P(N; x), then P(N; x) 
must satisfy the following self-consistency 
equation:

Alkhazov’s Theory (1970)

where pi(l) is the probability of 1st ionizing 
collision taking place at the distance l from 
the origin of the seed electron.

P (N ;x) =
⇥ x

0
dl pi(l)

N�1�

N �=1

P (N ⇥;x� l)P (N �N ⇥;x� l)

Graphically we can represent this as in the 
following figure:

P

P

P pi

N '

N N '

N dl
N ' 1

N 1

0

x

x
x ll

We can define the avalanche fluctuation 
function as

p(z, x) := N̄(x) P (N̄(x)z;x)

Mn :=
⌅ �

0
dz zn p(z, x)

=
�⇤

N=0

1
N̄(x)

�
N

N̄(x)

⇥n

N̄(x) P (N ;x)

and its n-th moment as



Because of the central limit theorem, we 
expect that the avalanche fluctuation fn. 
and hence its moments also are determined 
by the early stage of the avalanche growth, 
which implies that p(z, x) should become x-
independent

an equation for Mn:

P (N ;x) =
⇥ x

0
dl pi(l)

N�1�

N �=1

P (N ⇥;x� l)P (N �N ⇥;x� l)

The self-consistency equation also induces 
an equation for p(z):

M0 = M1 = 1
p(z, x)� p(z)

at large x where

Keeping these in mind, we can derive from

Mn =
n�

k=0

n!
k!(n� k)!

Mk Mn�k

⇥ ⇥

0
dl pi(l) e�n � l

by definition. M1=1 determines the 1st 
Townsend coefficient:

p(z) =
1

� z

⇤ ⇥

z
dz�

⇤ z�

0
dz�� p(z��) p(z� � z��) pi

�
1
�

ln
z�

z

⇥

which can be used to get an approximate 
solution by iterative substitutions.

Mn =
n�1�

k=1

n!
k!(n� k)!

Mk Mn�k J(n)
1� 2J(n)

J(n) :=
� ⇥

0
dl pi(l) e�n � l

This leads us to a recurrence formula:

with 

determined by the probability for the 1st 
ionizing collision.  
On the other hand, we have

Once pi(l) is given, we can hence calculate 
Mn recursively. 

2J(1) = 2
� ⇥

0
dl pi(l) e�� l = 1

N̄(x)� e�x



The self-consistency equation for p(z)

p(z) =
1

� z

⇤ ⇥

z
dz�

⇤ z�

0
dz�� p(z��) p(z� � z��) pi

�
1
�

ln
z�

z

⇥

implies that the large l behavior of pi(l) 
controls the behavior of p(z) near z=0. 
Assuming the exponential shape for the 
large l limit:

where C is a constant, we have

near z=0. Denoting

⇥ :=
a

�
� 1

we hence obtain

where C’ is a constant. In the case of Polya 
distribution, we have

� = �pol :=
1
⇥2
� 1

p(z) � C � z�

Snyder’s Model

pi(l) = � e�� l

p(z) = e�z

If the ionization probability is constant as 
given by the 1st Townsend coefficient:

we have an exponential distribution

as the exact solution to the above equation. 
This can be easily checked by substituting 
this in the self-consistency equation. 
In this case we have 

Mn = n!
We thus have

M2 = 2

in particular.  
We will see the significance of this number 
later when we discuss the effective number 
of seed electrons (Neff). Experimentally 
we know that M2 is smaller than 2 for GEM 
and Mircomegas detectors.

pi(l)� C e�a l as l�⇥

p(z) ⇥ z
a
��1

� ⇤

0
dz⇥

� z�

0
dz⇥⇥ p(z⇥⇥)p(z⇥ � z⇥⇥)

C

�
z⇥�a/�



Derivations of Recurrence Formulae

Mn =
⌅ ⇤

0
dl pi(l)

�
N̄(x � l)

N̄(x)

⇥n ⇤⇤

N=1

N�1⇤

N �=1

�
N ⇥ + (N �N ⇥)
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0
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N ⇥
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p(z) =
⇤ ⇥

0
dl pi(l)

⇤ ze� l

0
dz�� e� l p(z��) p(ze� l � z��)

=
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0
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⇤ ⇥

z
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Derivations of Recurrence Formulae



Legler’s Model
Legler assumed that any ionizing collision 
may take place only after the seed electron 
flying over a minimum distance: 

so as to gain enough energy for ionization 
from the E-field. Legler further assumed 
the probability of ionizing collision being 
constant after the seed electron having 
reached the threshold. The probability of 
the 1st ionizing collision is then given by

x0 := U0/E

As mentioned before, 2J(1) = 1 gives

pi(l) = ai e
�ai(l�x0)�(l � x0)

Notice that in the low E-field limit, where
�x0 � 0 as E/⇥� 0

and hence
ai � � as E/⇥� 0

converging to Snyder’s model.

From 

which leads us to 

Mn =
n�1�

k=1

n!
k!(n� k)!

Mk Mn�k J(n)
1� 2J(n)

with

J(n) :=
� ⇥

0
dl pi(l) e�n � l

M0 = M1 = 1
we have

M2 =
2 J(2)

1� 2 J(2)

�2 = M2 � 1 =
(2� e� x0)2

2� (2� e� x0)2

� := (2� e� x0)2
Denoting

we then obtain

ai =
�

2e��x0 � 1
(0 ⇥ � x0 ⇥ ln 2)

⇥2 = M2 � 1 =
�

2� �
(0 ⇥ � ⇥ 1)

It is hence important to have a high E-field 
in the early stage of the avalanche growth 
in order to suppress gain fluctuation.

� =
2(1�

⇤
⇥)⇤

⇥
=

⇤
⇥

1 +
⇤

⇥
�pol ⇥ �pol



The theta parameter controls the behavior 
near z=0. The inequality

states that the turn over near z=0 is less 
prominent than that expected from the 
variance assuming a Polya distribution

x0 := U0/E

�2 = M2 � 1 =
(2� e� x0)2

2� (2� e� x0)2

�pol :=
1
⇥2
� 1

or for the same theta, the variance is 
smaller than that expected for the Polya.  
Legrer’s model thus suggests a probability 
distribution for the gas gain fluctuation,    
p(z), being non-Polya. Nevertheless, we can 
calculate the variance by

with

If we set
U0 = UI : ionization pot.

and define
⇥ :=

� UI

Ewe have
�2 = M2 � 1 =

(2� e�)2

2� (2� e�)2

The variance depends on the E-field. The 
data suggest

for Ar.
�2 = M2 � 1 >⇥ 0.2

Alkhazov 1970

� =
2(1�

⇤
⇥)⇤

⇥
=

⇤
⇥

1 +
⇤

⇥
�pol ⇥ �pol



As predicted, Legler’s model gives less 
prominent turnover near z=0 and a shorter 
tail in the high z region than the Polya 
distribution with the same sigma value.

�2 =
(2� e�)2

2� (2� e�)2

⇥ :=
�UI

E

Alkhazov’s theory predicts 

with

Sample Calculations
Monte Carlo generated gain fluctuation 
distributions with Legler’s model are shown 
below for chi = 0.1, 0.2, and 0.3: 

As indicated in the figure, the predictions 
by Alkhazov’s theory agree very well with 
the Monte Carlo results.



Excursus on Legler’s Model

pi(l)dl = P

 
0,

Z l

0
dl0n�((V/�)l0)

!
· P
 
1,

Z l+dl

l
dl0n�((V/�)l0)

!

�(✏) = �0 ✓(✏� U0)

Assuming that the electron accelerates 
uniformly from at rest until the 1st 
ionization collision, we have the probability 
of encountering the 1st ionization collision at 
distance, l=l, given by

where P(m,mu) is the Poisson probability 

P (m,µ) =
µm

m!
e�µ

Substituting the following assumption by 
Legler for the cross section:

we obtainZ l

0
dl

0
n�((V/�)l0) = n�0(l � x0)✓(l � x0)

Z l+dl

l
dl

0
n�((V/�)l0) = n�0✓(l � x0) dl

and, hence,
p

i

(l) = e

�n�0(l�x0)
n�0✓(l � x0)

x0 := (U0/V )�

ai = n�0

with

which implies

Townsend coefficient is given by 

Introducing scaling variables eta and chi:

x0 := (U0/V )�

ai =
�

2e��x0 � 1
(0 ⇥ � x0 ⇥ ln 2)

� := ↵x0

⌘ =
�

2e�� � 1

⌘ := aix0 = n�0x0

and rewriting this, we get

with

On the other hand the full gain is given by

� := �/x0 = V/U0with

sigma0 is a kind of effective cross section 
and in general depends on the distribution 
of the electron energy or equivalently (E/n).

lnG = ↵� = ��



Differentiating both sides by some variable 
X, we get, in general, 

Differentiating the logarithms of the both 
sides of the defining eq. of eta on the 
previous page, we have, on the other hand,

which leads us to

with

� = V/U0

Putting them together, we arrive at

⌘ =
�

2e�� � 1

For instance, we have, for X=Delta, 

@�

@�
= 0and

where we have introduced a scaling variable:

As shown at the beginning of this chapter, 
we can make the  coefficient vanish by 
tuning Delta and V depending on the gas 
parameters such as n, sigma0, and U0. 
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� = V/U0
⌘ =

�

2e�� � 1

Similarly, we have, for X=n, 

and
and, hence,

Notice that the coefficient is the same as in 
the case of X=Delta, implying that the gain 
is stabilized against the gas density change 
if it has been stabilized against the change 
in the gap, Delta. This is probably another 
advantage of micromegas.

Case [2] X=n

@�

@n
= 0

Case [3] X=V
In this case, we have

and
@�

@V
= �

1

V

and, hence,

If the coefficient has been tuned to make 
the Delta- and n-dependences vanish to the 
1st order as in the case of micromegas, we 
have 
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From the chi data given as a function of E/n, 
we can estimate eta(E/n), which in turn 
gives sigma_0[E/n]. We can then calculate 
numerically the derivative of sigma_0 with 
respect to E/n.
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Extension to a nonuniform E field
Consider first the avalanche development in 
a uniform E field. Dividing the amplification 
region (0,x) into two parts (0,l), (l,x).

P

P

P

P N

x

x ll

P

1

2

N1

N2,1

N2,2

N2,N1

  

N N2, j
j 1

N1

N2,1 ,L,N2,N1N1

The self-consistency equation for this 
division reads

Here we have assumed that N1 2nd stage 
avalanches develop independently. 
The average of N is then given by 

N̄12 =
⇧

N12

P (N12;x) N12

=
⇧

N1

⇧

N2,1,··· ,N2,N1

N1 N2,jP (N1; l)

�

⇤
N1⌃

j=1

P (N2,j ;x� l)

⇥

⌅

= N̄1 N̄2

which leads us to a functional equation
N̄(x) = N̄(l) N̄(x� l)

Noting that Nbar(0)=1, we have from this

dN̄

dx
(x) = lim

l�0

N̄(x)� N̄(x� l)
l

= lim
l�0

N̄(x� l)
N̄(l)� N̄(0)

l

= N̄(x)
dN̄

dx

����
x=0

dN̄

dx
= � N̄ with � :=

dN̄

dx

����
x=0

We find again the familiar equation

where      is the 1st Townsend coefficient.

P (N ;x) =
⇧

N1

⇧

N2,1,··· ,N2,N1

�

�

⇤N �
N1⇧

j=1

N2,j

⇥

⌅

⇥ P (N1; l)

�

⇤
N1⌃

j=1

P (N2,j ;x� l)

⇥

⌅
�



This eq. allows us to extend our uniform E-
field result to a nonuniform case

we have

which leads us to

This is none other than the average gas 
gain formula we have derived before. 

Let us now consider the variance of the 
avalanche fluctuations:

Recalling the self-consistency equation

(N12)2 =
⇧

N1

⇧

N2,1,··· ,N2,N1

P (N1; l)

�

⇤
N1⌃

j=1

P (N2,j ;x� l)

⇥

⌅

�

⇤
N1⇧

j=1

N2,j

⇥

⌅
2

Ḡ(x) := N̄(x) = exp
�⇤ x

0
dl �(l)

⇥

P (N ;x) =
⇧

N1

⇧

N2,1,··· ,N2,N1

�

�

⇤N �
N1⇧

j=1

N2,j

⇥

⌅

⇥ P (N1; l)

�

⇤
N1⌃

j=1

P (N2,j ;x� l)

⇥

⌅

(N12)2 �
�
N̄12

⇥2 :=
⇤

N12

P (N12;x) (N12)2 �
�
N̄12

⇥2

(N12)2 =
⇧

N1

P (N1; l)
⌃
N1 (N2)2 +

�
(N1)2 �N1

⇥
(N̄2)2

⌥

= N̄1

⇤
(N2)2 � (N̄2)2

⌅
+ (N1)2(N̄2)2

Denoting
N2 � N̄2 := N̄2 f(N̄)

we arrive at
f(N̄1 N̄2) = f(N̄1) + (N̄1)�1f(N̄2)

f(N̄(x)) = f(N̄(l)) + (N̄(l))�1f(N̄(x� l))
or

If the gain of the 1st stage is large, the 
fluctuation in the 2nd stage is negligible, 
being consistent with naive expectation. 
Differentiating both sides with respect to 
x and then taking l-to-x limit, we get

df

dN̄

dN̄

dx
=

1
N̄

�
df

dN̄

⇥

x=0

�
dN̄

dx

⇥

x=0

Recalling that
dN̄

dx
= �N̄ N̄(0) = 1and

we obtain 
df

dN̄
=

1
N̄2

�
df

dN̄

⇥

x=0

=:
C

N̄2



General solution to this equation is Recalling

Ḡ(x) := N̄(x) = exp
�⇤ x

0
dl �(l)

⇥
f(N̄) = C � � C

N̄

We need to impose the boundary condition

f(N̄(0)) = f(1) = 0
since 

P (N ; 0) = �(N � 1)

Denoting 

we can rewrite the equation for f in the 
following form:

f0 := f(�) = C

which requires
C � = C

df

dN̄
=

f0

N̄2

This equation allows us to extend our 
uniform field results to a nonuniform field.

we arrive at

From this and 

with

we can calculate the Polya parameter if the 
Townsend coefficient and f0 are known. 
Notice that the avalanche fluctuation is in 
general non-Polya. Nevertheless we may use 
the Polya parameter as an index.

In the case of Legler’s model, we have

f0(x) =
(2� e�(x))2

2� (2� e�(x))2

⇥(x) := �(x) x0(x) =
�(x) U0

E(x)

f � ⇥2 =:
1

�pol + 1

f
�
Ḡ(x)

⇥
=

⇤ x

0
dx� �(x�)

f0(x�)
[Ḡ(x�)]2



Central Limit Theorem
Sketch of Its Proof

The characteristic function of a probability 
distribution function P(x) is defined by

Characteristic Function

which is essentially the Fourier transform 
of the p.d.f. and hence uniquely specifies it. 
The characteristic function comes in handy 
for calculations of moments: 

By definition, we have

M0 = 1
M1 = x̄
M2 = �2 + x̄2

Once a characteristic function is given, we 
can calculate these moments as

Mn = (�i)n dn

dsn
�(s)

����
s=0

For instance, the characteristic function of 
a Gaussian distribution is 

It is easy to make sure that the first three 
moments obtained from this characteristic 
function indeed coincide the above.

�(s) :=
�

dx eisx P (x)

Mn :=
�

dx xn P (x)

⇤G(s) =
� +⇥

�⇥
dx eisx 1�

2�⇥
e�

(x�x̄)2

2�2

= e�
1
2 �2s2+ix̄s

Examples

M1 = x̄
M2 = �2 + x̄2



The 1st and the 2nd moments obtained 
from the characteristic function are

If theta=0, the Polya distribution becomes 
an exponential one with lambda=1 as is 
clearly seen either from the definition or 
from its characteristic function.

x̄ = 1
⇥2 =

1
1 + �

⇥P (s) =
�

� + 1
� + 1� is

⇥�+1

⇥ eis as � ⇥⇤

The asymptotic form coincides with the 
characteristic function for a Gaussian with 
a mean value of unity and with a zero width.

⇥P (s) =
⇤ ⇥

0
dx eisx (� + 1)�+1

�(� + 1)
x�e�(�+1)x

=
�

� + 1
� + 1� is

⇥�+1

For a Polya distribution

⇥E(s) =
� +⇥

0
dx eisx 1

�
e�x/�

= (1� is�)�1

For an exponential distribution, we have

The Polya distribution becomes a delta-
function in the limit of theta going to 
infinity as is easily seen from its 
characteristic function:

and hence
M1 = x̄ = �
M2 = ⇥2 + x̄2 = 2�2

M1 = x̄ = 1

M2 = ⇥2 + x̄2 =
2 + �

1 + �

from which we have

we have

PP (x) =
(� + 1)�+1

�(� + 1)
x�e�(�+1)x



A p.d.f. for a random variable x induces a 
p.d.f. for a variable (ax). The characteristic 
function for (ax) is then given by

Composition Rules
For a given a set of N variables x1, ..., xN, 
obeying the same p.d.f.: P(x), we consider 
the distribution of

A p.d.f. for a variable x1 and another p.d.f. 
for a variable x2 induce a p.d.f. for their 
sum (x1+x2). The characteristic function 
for this reads 

�ax(s) =
�

d(ax) eis(ax) 1
a
P (x) = �x(as)

⇥1+2(s) =
�

dx eisx

�
dx1

�
dx2 P1(x1) P2(x2)

⇤ � (x� (x1 + x2))

= ⇥1(s) · ⇥2(s)

For N variables with the same p.d.f., we get
�N (s) = [�(s)]N

Proof of Central Limit Theorem

The characteristic function for this is 

Recall now that we can expand phi in terms 
of moments as follows

The characteristic function for (x+a) is 

�x+a =
�

d(x + a) eis(x+a) P (x) = eias �x(s)

In the large N limit, we hence have

z :=
1⇥
N�

N�

i=1

(xi � x̄)

⇥z(s) = [⇥x�x̄(s/
�

N�)]N

⇥x�x̄(s/
⇥

N�) =
⇥⇤

k=0

(is/
⇥

N�)k

k!
Mk

= 1� s2

2N
+ O

�
1

N3/2

⇥

⇥z(s) = [⇥x�x̄(s/
⇤

N�)]N

⇥ lim
N⇥⇤

�
1� s2

2N

⇥N

= e�
1
2 s2

implying that the p.d.f. for z is a Gaussian 
centered at zero with a variance of 1.



Creation of Signals

This part will also be very brief, though practically and 
technically very important.



Signals on Electrodes
In the Case of Conductive Electrodes

As we have seen, primary and 2ndary track 
electrons drift towards a gas amplification 
region experiencing diffusion (and some-
times absorption and recombination, too). 
They act as seeds to individual avalanches. 
Depending on the gas amplification device in 
use, the avalanche locations, shapes, and 
sizes will be different. Nevertheless, as 
long as the space charge effect is negligible 
the electrons and the ions in each avalanche 
drift along the paths determined by the E- 
and B-field experiencing further diffusion 
until eventually collected by electrodes 
that terminate the paths. If the electrodes 
are made of conductive materials, the E-
field adjusts itself instantaneously to the 
movement of the electrons and the ions.

Statement of the Problem We can hence treat the problem of solving 
for the charge induced on each electrode 
electro-statically, assuming that at every 
instance the avalanche charges are fixed at 
definite points in space. The signal time 
development is then entirely determined by 
the locations of avalanche charges as a 
function of time. Since the net charge on 
the electrode in question is the sum of 
contributions from individual charges, it 
suffices to consider a single charge “qi” 
fixed at some point “xi” in the anode-
cathode gap. What we need is the signal 
charge “Qa” on a-th electrode as a function 
of “xi”:

from which we can calculate the net signal:
Qa(xi) = qi Fa(xi)

Qa(t) =
�

i

qi Fa(xi(t))



To solve the problem of finding out the 
response function Fa(x), a theorem known 
as the reciprocal theorem comes in handy. 
Let us hence discuss it here.  

We consider here a set of localized charge 
distributions in a dielectric medium, a gas in 
our case, each of which, say i-th charge 
distribution rho_i, must satisfy Maxwell’s 
equation

Reciprocal Theorem

D = �E

⇤ · (�⇤⌅i) = �4⇥⇤i,

must be satisfied, if there are n conductors 
(D_a; a = 1,..,n). Such phi_i and rho_i are 
then physically realizable and comprise 
possible solutions of the Maxwell equation 
for electrostatic fields. 

with

where phi_i is the corresponding 
electrostatic potential, and the condition

We are interested in the relation between 
different solutions, say i-th and j-th. This 
connection is known as the reciprocal 
theorem which we now prove below.

�
d3x �i⇥j =

�
d3x �j⇥i

If (phi_i, rho_i) and (phi_j, rho_j) are  
solutions of the Maxwell equation for  
electrostatic fields, they are related by

By integrating by parts, the L.H.S. can be 
transformed into the R.H.S. as follows:

Proof:

L.H.S. =
⇤

d3x

�
1
4⇥
⇤ · (��⇤⇤i)

⇥
⇤j

= � 1
4⇥

⇤
d3x⇤ · (�⇤j⇤⇤i) +

1
4⇥

⇤
d3x �⇤⇤j ·⇤⇤i

=
1
4⇥

⇤
d3x �⇤⇤j ·⇤⇤i

=
1
4⇥

⇤
d3x⇤ · (⇤i�⇤⇤j)�

1
4⇥

⇤
d3x⇤ · (�⇤⇤j)⇤i

=
⇤

d3x

�
1
4⇥
⇤ · (��⇤⇤j)

⇥
⇤i = R.H.S.

QED

�i(x) = const. = Vi,a for x � Da



If the proof looks too mathematical to you, 
just note that the charge distribution can 
be written in the form:

and the corresponding solution should be 

Now we divide the charge distribution into 
two parts, charges on the electrodes and 
the charges in the space between the anode 
and the cathode:

where       is the potential of a-th electrode 
for solution j and        is the total charge on 
it for solution i.  
The reciprocal theorem then reads

⇥i(x) =
�

a

ei,a �3(x� xi,a)

�i(x) =
�

a

ei,a

|x� xi,a|

then the reciprocal theorem just becomes a 
trivial identity: 

�

a

ei,a

�

b

ej,b

|xi,a � xj,b|
=

�

b

ej,b

�

a

ei,a

|xj,b � xi,a|

�i(x) =
�

a

�i,a(x) + �̃(x)

Since the potential has the same value at 
any point on a single conductor, we have

⇥
d3x

�

a

�i,a⇥j =:
�

a

Vj,a

⇥
d3x �i,a =:

�

a

Vj,aQi,a

The above form of the reciprocal theorem 
will prove very useful as we will see below. 
If there is no avalanche charge

Vj,a

Qi,a

Procedure to Find Solutions

�̃ = 0
we have

where I have omitted suffix “j” assuming it 
represents a new solution for a new voltage 
configuration {Va} other than “i”s.  If we 
have as many independent solutions as the 
number of conductors “n”, this matrix eq. 
uniquely specifies the vector {Qa}.

�

a

Qi,aVj,a +
⇥

d3x �̃i⇥j

=
�

a

Qj,aVi,a +
⇥

d3x�̃j⇥i

�

a

Vi,aQa =
�

a

Qi,aVa



We can write this as

[Qa] = [Vi,a]�1[Qi,b][Vb] =: [Cab][Vb]

where [Cab] is a generalization of capacity 
and is symmetric and independent of the 
choice of the n solutions. It is completely 
determined by the nature of the dielectric 
medium and the geometry of the electrodes 
as we see below.  
Notice first that the above eq. must hold 
also for “j” belonging to “i”s. We hence have

[Qj,a]T = [Vi,a]�1[Qi,b][Vj,b]T = [Cab][Vj,b]T

Noting that a, b, i, and j are dummy, we get
[Cab]T = [Vj,b]�1[Qj,a] = [Cab]

which means [Cab] is symmetric. Let us now 
prove that [Cab] does not depend on the 
choice of solutions. Assume that we have 
another set of “n” independent solutions 

(V �
i,a, Q�

i,a) (i = 1, · · · , n)
which can be expanded as

[V �
i,a] = [Aij ][Vj,a]

and
[Q�

i,a] = [Aik][Qk,a]

The [C’ab] defined with the new set of 
solutions is then given by

[C ⇥
ab] = [V ⇥

i,a]�1[Q⇥
i,b]

= [Vi,a]�1[Aij ]�1[Aik][Qk,b]

= [Vi,a]�1[Qk,b] = [Cab] QED

Now let us move on to the problem with an 
avalanche charge distribution in the space 
between the electrodes. The solution to the  
Maxwell eq. can be written as the sum

� = �0 + �̃

where       is the solution without the space 
charge under a  given voltage configuration 
{Va} and        is the solution with the space 
charge and with all the electrodes grounded  
so as not to change the voltages given to 
the individual electrodes. 
Signal charge can then be calculated as the 
charge on each electrode by      alone. 

�0

�̃

�̃



As long as the space charge effect due to 
the avalanche charge is negligible, we don’t 
need to know the field produced by it. All 
we need is the signal charge induced on 
each electrode. If the boundary condition 
set by the electrode configuration is simple 
we may solve for    directly. If it is not so, 
the reciprocal theorem comes in handy to 
determine the response function of each 
electrode. In such a case we can prepare a 
set of solutions for the voltage setting in 
which all but a-th electrode are grounded 
and that there is no space charge. Denoting 
the solution in such a case as               , we 
can write down the reciprocal theorem as 

Solving this for Qa, we finally obtain

For a set of point-like charges, we have 

This means that the response function of  
a-th electrode is given by

Ramo’s Theorem

�̃

�̂a(x; V̂a)

QaV̂a +
�

d3x �̃(x) ⇥̂a(x) = 0

⇥̃(x) =
�

i

qi �3(x� xi)
and hence

V̂a Qa(t) +
�

i

qi �̂a(xi(t)) = 0

Qa(t) =
⇤

i

qi

�
� �̂a(xi(t))

V̂a

⇥

Fa(xi) = � �̂a(xi)
V̂a

and the net charge on it by
Qa(t) =

�

i

qi Fa(xi(t))

Differentiating -Qa with respect to t, we 
get Ramo’s theorem for outgoing current:

Ea(x) = �⇥�̂a(x)
with

The signal time development is subject to 
the motion of the avalanche charges. The 
theorem shows that the contribution of an 
avalanche charge to the total charge  
collected by a-th electrode after a long 

Ia(t) = �
⇤

i

qi

�
Ea(xi(t))

V̂a

· ẋi(t)
⇥



A pair of parallel conductive plates is a 
heuristic example since it approximates the 
situation with a MPGD such as micromegas 
or GEM and that it can be easily solved by 
method of mirror image.

A Pair of Parallel Plates

enough time is proportional to the charge 
times the potential difference experienced 
in the field “Ea”. Now consider a pair of 
avalanche electron and its +ve ion partner 
which will not arrive at “a”. Then they must 
arrive at some other electrodes with 

V̂b �=a = 0

difference and hence mainly contribute to 
the signal in the case of micromegas, while 
in the case of GEM, the electrons dominate 
the signal generation.

The contributions of the pair hence cancel. 
The net charge really arriving at electrode 
“a” thus decides the response function. In 
practical applications of MPGD readout 
TPCs, we usually adopt such a slow enough 
readout scheme so as to make full use of 
available statistical power of primary and  
2ndary ionization electrons created by an 
incident track.  
In such a case, the net charge collected by 
a single electrode is determined by the size 
and the shape of the avalanche electron 
distribution when they arrive at the anode. 
It is, however, worth pointing out that the 
+ve ions mostly experience the potential

Let us investigate this in a little bit more 
detail below.

-
+

-
+

Anode

Micromegas

GEM

Anode

O(50 m)
O(1mm)



where     is the average velocity of i-th 
charge. For electrons we have

In the case of a micromegas detector, the 
readout anode pads are usually much larger 
than the avalanche size as well as than the 
gap length. It is hence safe to assume that 
a single pad is going to collect all the real 
charge eventually and that the induction 
signals on the other pads are negligible all 
the time. In this case we can directly apply 
Ramo’s theorem   

We can set        to be the voltage of the 
anode plane relative to the micromegas foil 
and assume that the foil itself is grounded.  
Ea is then the original amplification field:

Ea(x) = �⇥�̂a(x)
with

V̂a

Ea =
V̂a

�
ez

where      is the amplification gap length.�

v�(t) := �v�d �

�
t� �� z0

v�d

⇥
�

�
�
v�d
� t

⇥

v+(t) := v+
d �

�
t� �� z0

v�d

⇥
�

�
�� z0

v�d
+

�� z0

v+
d

� t

⇥
while for positive ions

Ia(t) = �
⇤

i

qi

�
Ea(xi(t))

V̂a

· ẋi(t)
⇥

Ia(t) = �
⇤

i

qi

�
1
�

vi(t)
⇥

vi

where       is the z-coordinate at which the 
electron/ion pair is created and       are the 
electron/ion drift velocities. We take the  
anode plane at z=0 and assume that the 
seed electron enters the amplification gap 
at t=0. Since most avalanche charges are 
created near the anode plane (say, in the 
last several steps) for a micromegas, the 
above formula tells us that its signal is 
mostly due to the motion of positive ions 
with a small but fast contribution from the 
electrons at the beginning.  

z0

v�d

Putting this into the above eq., we obtainMicromegas Case



In the case of a GEM detector, the most 
avalanche charges are created inside the 
GEM holes. We can safely assume that the 
+ve ions stay there while the electrons are 
drifting towards the anode plane and hence 
the current signal is almost entirely due to 
the electrons.  
We can calculate the induced signal on the 
anode pads by method of image. The left 
figure shows a few image charges together 
with the original one at a distance of Z 
from the anode. The potential is then given 
as the sum of the contributions from all 
these charges:

+

-

-

+

+

-

L

Anode

Z

Z

2(L-Z)

2(L-Z)
GEM

2Z

2(L-Z)

O

GEM Case

�̃(x) = q
�⇤

k=0

�
1⌅

x2 + y2 + (z � (2Lk + Z))2

� 1⌅
x2 + y2 + (z + (2Lk + Z))2

� 1⌅
x2 + y2 + (z � (2L(k + 1)� Z))2

+
1⌅

x2 + y2 + (z + (2L(k + 1)� Z))2

⇥



Differentiating this with respect to x on 
the anode plane, we can calculate the E- 
field there. The E-field on the anode plane 
can then be translated into the surface 
charge density 

Integrating this over the pad in question we 
can get the induced signal charge:

Be careful that this is the charge flowing 
into the pad, the outgoing signal charge has 
the opposite sign.  
Notice that Z(t) is given by

The following figure shows the result of a 
sample calculation assuming an induction gap 
of 3mm, a pad width of 1.27mm, and a vd- 
of 0.05[mm/ns]. The pad height is infinite. 

Z(t) = �

⇤
L

v�d
� t

⌅ �
L� �(t) v�d t

⇥
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Even for a point charge, we have finite 
signals on side pads but they return to zero 
when the charge arrives at the central pad 
as predicted by Ramo’s theorem. Of course 
the actual signal width in practice (with a 
slow readout electronics) is mostly due to 
the diffusion in the drift region and the 
transfer and the induction gaps and the 
projected track width.

⇥p(x, y;Z) := � 1
4�

�
⇧⇤̃

⇧z

⇥

(x,y,z;Z)=(x,y,0;Z)

Qa(t) =
�

Da

da �p(x, y;Z(t))



Signals on Electrodes
In the Case of Resistive Anode

A micromegas signal is too narrow for 
ordinary readout pads to benefit from the 
charge centroid method. The spatial 
resolution will be dominated by so-called 
hodoscope effect as we will see later.  
There are at least two ways out known to 
overcome this difficulty: (i) pixel readout 
matching the avalanche size; (ii) resistive 
anode readout to spread the signal. Option 
(i) can be regarded as the use of ultra fine 
pads, an extreme case of the conductive 
electrodes. Though it has a fundamental 
advantage to allow extracting all of the  
available information, there is nothing 
fundamentally different in terms of signal 
generations. We will hence concentrate on 
option (ii) from now on.

Why resistive anode? Although, in principle, the resistive anode is 
also applicable to GEMs, we assume below a 
micromegas detector, since the hodoscope 
effect is more prominent for it.  
The structure of the resistive anode is 
shown below.

M. Dixit et al. 2004



(a) (b) (c)

If the resistive anode has a high enough 
surface resistance, it will be transparent 
for the E-field created by the quick motion 
of the avalanche charges while they are 
drifting in the gas. The signal on each 
electrode below the resistive foil will be 
the same as with conductive electrodes 
alone. We hence consider here the signal 
development after the avalanche electrons 
arriving at the surface of the resistive foil. 
The avalanche electrons then propagate 
along the surface of the resistive foil while 
inducing a mirror charge on the pad plane. 
Let us now derive the equation for the time 
development of the induced charge on the 
pad plane. We assume here that the gap 
between the resistive foil and the pad plane 
is small enough that the induced electric 
field is confined between this gap. Now 
consider a small cylinder (see (a) in the 
next figure) and apply the Gauss law to it. 

Signal Generation Process

Since there is no field above the resistive 
foil and in the pad plane and the field is 
nearly parallel with the side wall, we obtain

d

E = 0

E = 0 E = 0

E�(x)
E�(x + dx)

E�
E = 0

E�

�r

�p

�r

We hence have a mirror relation expected 
for the thin (small d) insulator layer:

�p = ��r

Similarly if we apply the Gauss law to (b), 
we have

��E� da = ⇥r da

0 =
�

�(a)
da · �E = 4⇥(⇤r + ⇤p) da

where we have introduced surface charge 
densities on the resistive foil and the pad 
plane:

leading us to
E� = �1

�
⇥r

⇥ = ⇥r(x, y; t)�(z � d) + ⇥p(x, y; t)�(z)



(a) (b) (c)

Let us now consider a loop shown in (c). If 
we surface-integrate the Faraday law over 
the area surrounded by this loop, we have

where the sigma is the conductivity of the 
resistive foil times the foil thickness which 
is assumed to be negligible. Putting these 
into the charge conservation law (continuity 
eq.) for the resistive foil

d

E = 0

E = 0 E = 0

E�(x)
E�(x + dx)

E�
E = 0

E�

�r

�p

�r

and canceling out the delta function, we get

and noting the mirror relation

where       is the 2-dimensional Laplacian. 
Introducing the capacitance per unit area 
(C) and the resistance per square area (R)

and

E⇥ · dx� (E�(x + dx)� E�(x)) d = 0

where we have ignored the magnetic flux 
passing through the loop. Taylor-expanding 
the 2nd term on the L.H.S. we have

E� = �1
�
⇥r

E⇥ � d
�

�x
E� = 0

Recalling

we obtain
E� = �d

�

⇤

⇤x
⇥r

The current on the resistive foil should be 
proportional to this parallel field

Jr = ⇥ �(z � d)E�

0 =
⇤

⇤t
⇥r �(z � d) +

⇤

⇤x
· J r

C :=
�

d

⌅

⌅t
⇥r �

�
⇤ d

�

⇥
⇥2 ⇥r = 0

�2

R :=
1
�

�p = ��r

we finally arrive at the telegraph equation:
⇥

⇥t
�p �

�
1

RC

⇥
⇥2 �p = 0

This is none other than a 2-dim. diffusion 
eq. which has a Gaussian solution for a point



For R=1MOhm/sqare and C=1pF/pad, gives a 
RC value of 1 micro second/pad area, 
meaning that after about 1 micro second a 
point charge spreads over a pad size. The 
following figure shows expected signals on 
pads about the avalanche:

charge initial condition

as we have seen in treating transportation 
of electrons in a gas:

⇥p(r; t) =
q

2�⇤2
p

e
� r2

2�2
p

where

Notice that the Gaussian width is decided 
by a single parameter “RC” and the elapse 
time. By integrating this Gaussian over a 
readout pad, we can calculate the induced 
charge on it as a function of time.  
Notice that the telegraph equation, being 
homogeneous, obeys superposition principle. 
The net signal is thus obtained by summing 
over all the avalanches arriving at different 
(x0, y0)’s and at different t0’s.

�2
p :=

2
RC

(t� t0)

⇤p(r; t0) =
q

2⇥r
�(r)

and
r :=

�
(x� x0)2 + (y � y0)2

M. Dixit

In practice, the signal width is determined 
by the convolution of this and the spread 
due to the diffusion of seed electrons in 
the drift region as well as the track width.





Subjects Covered
Liberation of electrons by ionization (dE/dx) 

Classical theory of electron transportation in a 
chamber gas and its applications 

Behaviors of electrons in E and B fields 

Transport coefficients: Vd, Cd 

Gas amplification 

Creation of signals 

Coordinate measurement

Paul

Yulan

Takeshi



Subjects Left Out
Electron attachment 

CF4, O2 contamination, etc. 

Transportation of ions 

+ve ion feed back 

Ion exchange and aging

These are very important in practice, but simply beyond the 
scope of my lectures. 

Yulan

Paul


