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Abstract

A fast and accurate computer simulation program for electron drift and diffusion in gases under the influence of electric
and magnetic fields is described and some calculated results are compared to precise experimental results in carbon
tetraflouride and methane mixtures. The calculated Lorentz angles are shown to be typically within 1° of the measured
experimental values. The program allows the electric and magnetic fields to be at any angle to each other. ( 1999
Elsevier Science B.V. All rights reserved.

1. Introduction

The modeling of electron motion in gas ava-
lanche radiation detectors can help in the optimisa-
tion of their design in many different detector
geometries. The combination of the gas simulation
program Magboltz [1] and electric field simulation
programs Garfield [2] or Maxwell [3] has been
used in many current and future detector designs
for experiments in high energy and nuclear physics.

The present work was stimulated by the ob-
served break down in the accuracy of the predic-
tions of Magboltz in some gases at large magnetic
fields. This loss of accuracy was caused by some of
the approximations used in the Magboltz program
and occurs in simulations in large magnetic fields
with a gas having a cross-section with a deep Ram-
sauer minimum. The Boltzmann transport equa-
tion solved in Magboltz uses a solution for the
energy distribution function which is an expansion
in Legendre polynomials. The standard solution of

the Boltzmann transport equation truncates the
energy distribution expansion after the first two
terms of the Legendre polynomials, the Magboltz
program uses an expansion up to the third Leg-
endre polynomial which was found useful in im-
proving the computational accuracy of the drift
velocity to better than 1%. Higher terms in the
expansion would improve the accuracy further but
require a large increase in computation time.

Recently, Ness [4,5] has extended the multi-term
formalism to the case of transverse electric and
magnetic fields using the more general expansion of
the distribution function in spherical harmonics.
The results from Ness [5] served as a benchmark
test for the accuracy of the Lorentz angle calcu-
lations using the Maxwell model and the Reid
Ramp and Step models [6]. The calculations using
the Magboltz program gave good agreement with
the Maxwell model, but deviations of up to 10% in
the Lorentz angles were observed with the results
from the Ramp and Step models [5]. The reasons
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for this behaviour are well known and stem from
the large anisotropy in the velocity of the electrons
in the direction of the electric field. This anisotropy
is poorly simulated if the truncation of the energy
distribution function is not taken to a large number
of terms in the spherical harmonics or Legendre
polynomials.

In order to improve the simulation and also
guarantee the calculation accuracy to better than
1% for the Lorentz angle the Monte Carlo integra-
tion technique was applied to the solution of the
transport equations. This technique is independent
of the expansions used in describing the electron
energy distribution and gives guaranteed conver-
gence to an accuracy which is dependent only on
computation time.

2. The Monte Carlo integrator

The Monte Carlo integration technique in the
case of an electric field has been previously de-
scribed by Fraser and Mathieson [7]. We only
discuss here the differences due to the extension of
their algorithms to include the magnetic field at any
angle to the electric field. The collision types
involved have been extended from elastic and
inelastic collisions [7] in order to include also,
attachment, ionising and super-elastic collisions.
The collision angular distributions have also been
introduced using a new technique [9].

The inclusion of a magnetic field introduces
some complications in the movement of the elec-
tron. In order for the calculation to be executed as
quickly as possible it is necessary to introduce an
analytic description of the electron motion rather
than to integrate along the electron path.

If the magnetic field, B, is taken along the X-axis
and the electric field, E, is at an angle, U in the
X!Z plane the equations of motion can be given
analytically. The electric field is now decomposed
into components:

E
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"E sin U.
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The only unknown is the time step, Lt, which is
chosen by the null collision [8] technique. The
position and velocity of the electron after the time
Lt can now be updated and so the motion of the
electron through the gas is followed between colli-
sions.

The angular distributions of elastic collisions are
taken to be isotropic which implies that the cross-
sections used are momentum transfer cross-sec-
tions. The momentum transfer formalism is exact if
elastic collisions only occur, but in the case where
elastic and inelastic collisions can occur this is no
longer true. The inelastic collisions may have an
anisotropic angular distribution and the inelastic
scattering angular distribution needs to be in-
cluded. The angular distribution for the elastic and
inelastic levels are treated using the technique of
Longo and Capitelli [9], this technique allows the
angular distribution to be included by using both
a momentum transfer inelastic cross-section, Q

mn
,

and the total inelastic cross-section, Q
tn
, for excita-

tion of a level n. The angular distribution is then
given in terms of the forward scattering probability,
P
n
, where

P
n
"1/2#(Q

tn
!Q

mn
)/Q

tn
.
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The angular distribution algorithm now requires
the selection of an extra random number to choose
between forward and backward scattering. Once
the choice of forward or backward scattering is
made the next random number is used to give
isotropic forward or isotropic backward scattering.
Thus the minimum computation is maintained for
the inclusion of angular distributions by using this
relatively simple formalism. A further advantage is
that phase shift analyses of electron scattering can
give both the total and the momentum transfer
cross-section in a self consistent manner from the
same phase shifts.

The program outputs the drift velocity in the
Cartesian coordinate system defined above as
»

X
, »

Y
and »

Z
. The general case where the mag-

netic field is not at right angles to the electric field
leads to all three components taking finite values
and has important consequences for the calculation
of the diffusion tensor.

3. Calculation of the diffusion tensor

The diffusion can be calculated using either the
displacement formalism or by using the correlation
function between velocity and displacement, the
Kubo [10] formalism. The Kubo formalism re-
quires accurate knowledge of the drift velocity and
is more computationally intensive when all three
drift velocity components are finite. Therefore, the
displacement formalism was used to give the diffu-
sion tensor.

The diffusion is given as

D
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Where subscripts ij refer to the dimensions x, y or z.
The spatial coordinates X

i
, X

j
and drift velocity

components »
i
, »

j
of the electron are sampled at

time intervals *t separated by a number of colli-
sions M. The summation is taken over the N colli-
sions that are calculated in the N M total collisions
of the simulation and M is chosen so that the error
in the calculation of the diffusion coefficients is
within a factor of two of the accuracy of the velocity
vectors.

The diffusion is also calculated in the coordinate
system aligned along the drift direction for the

special case where the electric and magnetic fields
are at right angles, then the diffusion is defined
using only three components Dl, Dt and D

xx
where

Dl is the diffusion along the drift direction, Dt is the
diffusion transverse to the drift direction and also
transverse to the B field and D

xx
is the diffusion

transverse to the drift direction but parallel to the
B field. This definition of the diffusion allows the
easiest simulation of detector response in the com-
mon case where there are axial wires in a solenoidal
B field.

The program outputs the calculated velocity and
diffusion at an equally spaced number of collisions
during the simulation, this allows the convergence
of the calculation to be checked against the final
calculated values. The time taken for convergence
to better than 0.5% on the velocity and 1% on the
diffusion is typically 10 s on a 200 MHZ DEC
ALPHA computer for a typical counter gas mix-
ture with 10 inelastic levels.

4. Results and discussion

The accuracy of the Monte Carlo program, Mag-
boltz II, and Magboltz were checked with bench-
mark results [5] in model gases which serve as
standard tests for simulation codes. These models,
the Maxwell model and the Reid ramp and step
models [6] and results obtained from them are
discussed briefly below. The gases which requires
the largest number of terms in the Boltzmann ex-
pansion to accurately describe their behaviour are
carbon tetraflouride and methane; therefore, these
gases and some of their counting mixtures were
simulated with the Monte Carlo program and the
results compared with recent accurate measure-
ments in magnetic fields. The agreement of the
measured Lorentz angles with predictions is shown
to be typically within the experimental errors of 1°
or 2° for very large Lorentz angles.

4.1. Model gases

4.1.1. Maxwell model
The Maxwell model is a model where the cross-

section is inversely proportional to the square root
of the electron energy. The collision frequency is
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then constant independent of electron energy and
the Boltzmann equation can be solved exactly. The
results of Ness [5] have been tested with the Monte
Carlo integrator and our results agree to within the
statistical precision of our calculation (set to 0.1%)
for both diffusion and drift velocity.The Maxwell
model however is not a good test for the break-
down in the three term Legendre polynomial ex-
pansion that is used in Magboltz, identical results
were obtained with Magboltz for this model. This
reflects the fact that the electron energy distribution
is highly isotropic in this model and only two or
three terms in the Legendre polynomial expansion
are required in order to obtain 0.1% accuracy.

4.1.2. Reid Ramp model
This model was originally introduced [6] to in-

vestigate the breakdown of the two term expansion
of the energy distribution function in the Bol-
tzmann equation. This model has properties which
are much closer to real gases as used in radiation
detectors and displays similar levels of breakdown
in the two term expansion as seen in a 80/20 ar-
gon—methane mixture. The results of Ness [5] serve
here as benchmarks against which the Monte Carlo
integrator and the Magboltz program were
checked for the case of perpendicular electric and
magnetic fields. The results from the Monte Carlo
integrator were again in excellent agreement, to
0.1%, with the results of Ness. The Magboltz pro-
gram gave results for the Lorentz angle at some
electric and magnetic fields which were in error by
10%, this inaccuracy was only observed with the
magnetic field. When no magnetic field was used
the velocity vector from Magboltz was always ac-
curate to 1% demonstrating the increased sensitiv-
ity of the Boltzmann equation to higher terms in
the expansion when a magnetic field is introduced.

4.2. Real gases

4.2.1. Carbon tetraflouride and methane
The requirements for fast detector response often

lead to the use of carbon tetraflouride (CF
4
), in

radiation detectors. This gas obtains its high drift
velocity because of the large Ramsauer dip in the
elastic cross-section which coincides with a very

Fig. 1. Carbon tetraflouride cross-sections: (1) elastic, (2) vibra-
tional (momentum transfer), (3) vibrational (total), (4)
vibrational (harmonics), (5) attachment, (6) excitation and (7)
ionisation cross-section.

large vibrational inelastic cross-section. Fig. 1
shows the CF

4
cross-sections; they consist of three

vibrational levels, vibrational level harmonics at
the 8 eV resonance and attachment, excitation and
ionisation levels. Fig. 1 also shows the third vibra-
tional level has a total and a momentum transfer
cross-section, these are both required to describe
the angular distribution of scattering from this
level. The Monte Carlo program used here was
ideally suited to the extraction of cross-sections for
this gas because the accuracy of the simulation does
not require the solution of the transport equations
of a large number of terms in the expansion in
Legendre polynomials or spherical harmonics. The
cross-section set shown in Fig. 1 was derived start-
ing from cross-sectional data of the electron scat-
tering experiments [11—17], these were adjusted
within the experimental errors to fit the data avail-
able from drift velocity, diffusion, attachment and
ionisation measurements [18—24]. The experi-
mental drift velocity and diffusion results, Figs. 2
and 3, display rather large disagreements at the 3 or
4% level between experiments and so unlike the
case of methane, where experimental results agree
at 1%, there is some uncertainty in the extracted
cross-sections. This uncertainty is largest at ener-
gies below 0.12 eV. The experimental maximum
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Fig. 2. Drift velocity in carbon tetraflouride.

Fig. 3. Diffusion to mobility ratio in electron volts for trans-
verse and longitudinal diffusion in CF

4
.

drift velocity is uncertain at the first drift velocity
maximum and recent measurements vary between
133 and 140 micrometer/nanosecond, this uncer-
tainty on the maximum drift velocity leads to some
uncertainty on the angular distribution of the scat-
tering from the third vibrational level. The ratio of
the momentum transfer to total cross-section of the
third vibrational level is particularly sensitive to the
drift velocity maximum, this ratio was adjusted so
that the calculated maximum drift velocity passed

Fig. 4. Methane cross-sections: (1) elastic, (2) vibrational, (3)
excitation (4 levels) and (4) ionisation cross section.

Fig. 5. Drift velocity and Lorentz angle in 80/20 CF
4
/CH

4
at

B"1.0 T.

through the middle of the experimental drift
velocity range. In all energy ranges the cross-
sections agree well with electron scattering
results.

Fig. 4 displays cross-sections for methane which
are all isotropic since we obtained good fits to the
published data without introducing angular distri-
butions. These cross-sections are close to those
previously used [1] but the vibrational inelastic
scattering cross-sections have been increased by
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Fig. 6. Drift velocity and Lorentz angle in methane at
B"0.5 T.

Fig. 7. Drift velocity and Lorentz angle in methane at
B"1.0 T.

5% to better fit new data [25] in mixtures of
methane and noble gases.

Using these two cross-section sets we simulated
the drift velocity and Lorentz angles in pure meth-
ane and a mixture of 80% CF

4
20% CH

4
. The

calculated results are shown in Figs. 5—7 and com-
pared to measured data [26—28]. The agreement
with measured Lorentz angles is typically within 1°
for methane and methane—CF

4
mixtures. The total

drift velocity is in very good agreement with the
measured values at both 0.5 and 1.0 T in pure
methane. The deviation of the prediction from ex-
periment at the maximum drift velocity of the
CH

4
—CF

4
mixture can be traced to the fact that the

experimental measurement at the maximum is from
one of the sets of data that have high drift velocity
and the cross-sections have been fit to the average
data which contains both high and low values at
the drift velocity maximum.

5. Conclusion

A simulation program has been written which is
suitable for use in optimising the design of gas
radiation detectors used in a magnetic field. It has
been shown that approximately 1° accuracy can be
obtained for the predicted Lorentz angle. The simu-
lation is free from the complexities involved in
solving the multi-term Boltzmann equation and is
fast, taking about 10 s to produce a 0.5% accuracy
for a typical gas mixture used in gas radiation
detectors. The accuracy can be improved at the
expense of computation time, the accuracy increas-
ing approximately according to the square root of
the computation time. The solution is general and
allows the magnetic field to be at any angle to the
electric field. The derived cross-section set for the
gas, CF

4
, is limited in accuracy by the inconsistency

in the experimental data sets of drift velocity and
diffusion coefficients. The gas data base for Mag-
boltz [1] containing cross-sections for many other
gases used in radiation detectors can also be used
with this program.
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