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Abstract

The measurement of the ionization by charged particles in a medium (gas or condensed) together with the measurement of their
momentum or energy is used for tracking the particles and to determine their identity. For tracking the lateral extent of the ionization
cloud should be known. For tracking and for charged particle identification (PID), one must understand that energy loss of particles,
ionization and detector output are related, but not identical. In this paper, I discuss the relevant physics processes involved in PID and
tracking and the stochastic nature of the energy loss mechanism. These calculations can be made with analytic and Monte Carlo
methods. The expression dE/dx should be abandoned; it is never relevant to the signals in a particle-by-particle analysis. Specific terms
such as energy loss, energy deposition, ionization and pulse height should be used instead. It is important that an accurate data analysis
requires attention to track segmentation. I will show that properties of straggling functions for gases and thin silicon detectors are similar
for equivalent absorber thicknesses and general conclusions given for one absorber will be valid for others. Thus, these techniques can be
used in Time Projection Chambers (TPCs) and Silicon Drift Detectors. I will show how to use this formalism in the STAR and ALICE
TPCs and describe how its use has improved the performance of the detector.
© 2006 Elsevier B.V. All rights reserved.
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Nomenclature FVP  Fermi Virtual Photon approximation
GOS  Generalized Oscillator Strength
List of abbreviations PAI Photo Absorption Ionization
symbol Meaning pdf probability density function
ADC Analog to Digital Converter PID “Particle IDentification”
BB Bethe—Bloch P10 gas used in STAR TPC, 90% Ar, 10% methane
B-F  Bethe-Fano algorithm RMS “Root-Mean-Square” deviation
CCS  Collision Cross Section STAR Solenoidal Tracker at RHIC
DOS  Dipole Oscillator Strength SVT  “Silicon Vertex Tracker”
FWHM Full-Width-at-Half-Maximum TPC  “Time Projection Chamber”

List of symbols. For locations: E = equation, F = figure, S = section, 7' = table.

Symbol Location Description

a,b S§8.2, E38 parameters for linear scaling

A El atomic weight, g/mol

B E43 magnetic field

c speed of light

C S1.1,1.4,6.1,13, E28 a “track descriptor”

D S1.1,9 energy deposition in absorber

D E42 “separation power”

dE/dx S1.1,3.3 Bethe stopping power (properly d7'/dx)

dT/dx Sl1.1 Bethe stopping power

e El electron charge

E S51.2 energy loss in a single collision

Eax S2.1 maximum energy loss in a single collision, Emay = 2mc? fy?
Enin E22 minimum energy loss in Bethe stopping power

Ey S9 atomic ionization energy

f(O) S1.1,6.1 straggling function for track descriptor

f) F1,S1.1,E20 energy loss straggling function

F(4) E26,F13,18,19 cumulative of energy loss straggling function

f(E,0) E6 dipole oscillator strength DOS

f(E,K) E3 generalized oscillator strength GOS, f(E,K) = (E/Q)F(E, K)
F(E,K) E2 matrix element for energy transfer £ with momentum change K
/e F21-23 truncation fraction

g(D) S1.1,9 straggling function for energy deposition D

G(J) S1.1 straggling function for ionization J

h(Q) S1.1,F54 pulse height or ADC function

I E17,22 logarithmic mean excitation energy of an absorber

J S1.1,9 number of ion pairs created by an energy deposition D in segment x
kr El coefficient for Rutherford cross-section kg = 2me* /mc? = 2.54955eV cm?
k E1,22 coefficient for collision cross-section k = kg NoZ/(Af*) = 153.45keV cm?
L) E29 likelihood function

m El electron mass

M S1.2 mass of particles heavier than e

me E18,20 average number of collisions in a segment x, m, = xX;

M, E13,27,32 moments of a distribution function

n F3 actual number of collisions in a segment x by one particle

N ES number of atoms or molecules per unit volume

Na El Avogadro’s number = 6.022 x 10* molecules/mole

ng S56.1 number of segments in a track

p S1.2 momentum of a particle; also gas pressure

P(n) E18 Poisson distribution
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q S2.1 q=hK
0 $2.2 0=K?*/2m
(0] S1.1 ADC value corresponding to J (List of abbreviations and Figs. 18, 19)
r TB a ratio of two quantities
. E21 a random number
I's E41 “resolution”
R TE range of electrons
Ry Fa Rydberg constant, 13.6eV
S stopping power (equivalent to dE/dx)
So E16 sum rule result
St El4 restricted stopping power
t S1.1 length of a track in gas or solid, 1 = > x
T S1.4 kinetic energy of a particle with speed v
v E2 speed of a particle
4 51,9 volume of a “cell” for a segment
w F1,13,15 FWHM of a straggling function
W (T) S1.4,9 average energy needed to produce one electron ion pair
X S1.1 length of a segment along a track
y E12 a parameter
z El charge number of particle (mostly 1)
Z El atomic number of atom or molecule
o E7 fine structure constant
p S1.1 v/c; “speed of a particle”
p=1 /l B S1.1
0 S9 delta ray = secondary electron
o(p) E36 “density effect”
A S1.1 energy loss by a fast particle in a segment of length x
Ap F1 most probable energy loss for a straggling function f(4)
A, Ay F13 values for FWHM of f(4) : f(4,) = f(4u) = 0.5/ (4;)
e E7 complex dielectric constant of absorber ¢ = & + ie;
g E35,37 minimum energy loss in Landau theory, =~ E;,
A S1.2,E7, F7 mean free path between collisions
A E37 Landau parameter
d(4) S8 universal Landau function
D(E;v) S3.1,F6 collision cross-section cumulative in energy loss £
0 E12,23 density of an absorber
o E5,7,F5,6,J.1 collision cross-section (CCS)
E33,T8.2,F21-23 also RMS for tracks
OR E1,F6 Rutherford (or Coulomb) collision cross-section
a(E;v) E5-7 collision cross-section differential in energy loss E for single collisions of a
particle with speed v
o, E7 photo absorption cross-section for photon energy Af
2(v) S1.2,E12,F24,25,J.1 total collision cross-section per unit absorber length
e E7 coefficient in FVP theory
¢ E25,35 parameter of Landau theory, ¢ = xk/f’
NE) S3.2,F10 complementary function to @(F)

{ E29 parameter for likelihood method
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1. Introduction
1.1. General concepts

The concept dE/dx [1] representing the mean rate of
energy loss in an absorber (Section 3.3) is used inappro-
priately in the description of the physics of most high
energy particle detectors. Consider Fig. 1 which gives the
probability density function (pdf) f(4) for energy losses 4
of particles' with fy = 3.6 traversing x = 12mm of Ar gas.
The most probable energy loss 4, and the width w of f(4)
are more representative of f(4) than the mean energy loss
(4) = xdE/dx. Details are given in Section 5.1, in
particular it will be seen that A,/x depends on x.
Correspondingly, the energy loss quantities ((C) and o)
per unit length derived for tracks depend on track length
(see Table 95).

The functions f(4) customarily are called “‘straggling
functions” [4] or straggling spectra, except in high energy
physics where they are called “Landau functions” in a
generic sense. Here, “Landau function” is used only to
designate the function described in Ref. [2] and shown in
Fig. 1 by the dotted line. For very thin absorbers the energy
loss spectra are more complex. An example for particles
with fy = 2.1 traversing x = 1 um of Si is given in Fig. 2
(also see Appendix G). Such spectra have been described
earlier [5] and have been measured [6]. Structures of this
type are also observed in measurements of straggling
effects on resonant yields of nuclear reactions, called the
“Lewis effect” [7].

This study describes the theory of the electronic
interactions of fast charged particles with matter. Collision
and energy loss cross-sections are derived and straggling
functions and their properties are calculated. The use of
these functions for tracking and for particle identification
(PID) in time projection chambers, TPC, or silicon vertex
trackers, SVT, is described. The aim is to achieve an
uncertainty of 1% or less in the calculations.

The trajectory of a fast particle through an absorber is
called a track with length ¢. It is subdivided into segments
of length x. One method of PID consists of measuring the
ionization by a particle in several thin detectors and either
its energy [8,9] or its momentum [10,11]. Much of the past
work on PID [12,13] has been based on empirical
information without consideration of problems that will
be described here.

Various analytic expressions have been used to describe
and correlate experimental data. In particular, straggling
functions have been approximated by Gaussians, and mean
values and variances of straggling functions have been used
for the data analysis. Such data are given for calculated
straggling functions in Sections 3-5. It will be seen that
mean values and variances for segments of tracks should be

IThe charge of the particles is assumed to be z = +1e throughout and it
is usually not included in the equations.

06F T T T T 3

f(A)(1/keV)

A (keV)

Fig. 1. The straggling function f(4) for particles with y = 3.6 traversing
1.2cm of Ar gas is given by the solid line. It extends beyond
Eax~2 mczﬂzyz = 13MeV. The original Landau function [2,3] is given
by the dotted line. Parameters describing f(4) are the most probable
energy loss 4p(x; fy), i.e. the position of the maximum of the straggling
function, at 1371eV, and the full-width-at-half-maximum (FWHM)
w(x; fy) = 1463 eV. The mean energy loss is (4) = 3044eV.

T T T T T
100 |~ 2 GeV protons —
- 1 um Si
80 —
@ 60 —
=

40
20

0 | 1 | | |

0 50 100 150 200 250 300

A(eV)

Fig. 2. Straggling in 1 pm of Si, compared to the Landau function. The
Bethe—Bloch mean energy loss is (4) = 400eV.

replaced by most probable values and full-width-at-half-
maximum (FWHM).

The main concern here is with TPCs, but the term
“detector” will be used to indicate that the principles
described also apply to other systems, e.g. SVTs and thin
absorbers in general. An extensive review of the use of Si
detectors can be found in Ref. [14].

In any detector there are several stages which lead from
the interactions of fast charged particles in the detector to a
digital output signal used for tracking and PID [15]. The
first stage is the energy loss 4 in segments due to the
interactions of the particles with the matter in the detector.
For small detector volumes, called pixels or cells [16], the
next stage is the determination of the energy D deposited in
the volume ¥V under observation. The third stage is the
conversion of D into ionization J which is defined as the
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number of ion pairs produced.” In a TPC [11] the fourth
stage is the transport of the electrons (as an ‘“‘electron
cloud” or an ‘“electron cluster””) to the proportional
counters located in the “end caps” [11]. The fifth stage is
the amplification and collection of ions on ““pads” (for the
STAR TPC “inner” pads are 3 x 12mm, “outer” are 4 x
20mm in area) resulting in an analog electronic signal J’,
and finally the conversion into a digital signal Q with an
analog to digital converter (ADC). The processes occurring
during these stages are discussed in Sections 9—-11. For Si
detectors corresponding details are described in Ref. [14].

In each stage the quantity from the previous stage is
modified and we must determine this modification. For the
stages from the traversal of a particle through the detector
ending in the ADC output we must distinguish the
following quantities. For track segments I am using
symbols which have been defined in various publications:

energy loss 4 and its pdf f(4) [17,18],

energy deposition D with the pdf g(D) [19,20],
ionization J with the pdf G(J) [16,21],

transport of electrons to proportional counters [11] or
amplifiers [14],

proportional counter output J' with the pdf H(J') [11],
e pulse-height or ADC output Q with the pdf 4#(Q) [11,22].

For tracks, Section 6, the calculated truncated mean
value of the energy losses per segment, A4/x, is called C and
modified quantities and pdfs for each stage corresponding
to those for segments must be defined. Experimentally
measured values are used with a suffix x.

In order to clearly understand the stages outlined above
the replacement of the universal use of the expression
“dE/dx” for all of the above quantities by the specific
concepts 4, D, J,J', 0 and C defined here is proposed.’

The pdfs defined above will be calculated and described.
It will be seen in Sections 9 and 10 that the differences
between f(4), g(D) and G(J) for the STAR TPC are not
large. In most reports so far they have been disregarded.
For the ALICE TPC they are explored in Ref. [23].

This study is mainly about the calculation of the energy
loss functions f(4) and f(C) and their dependence on
particle speed and absorber thickness, Sections 2—7. The
functions for the other stages depend on the geometry of
the elements of the TPC and are explored in less detail in
Sections 9 and 10. It will be seen that the moments of f(4),
e.g. mean value and standard deviation, are not appropriate
for a description of the functions for segments, especially
for thin absorbers. Instead, most probable energy loss 4,

2“Jon pairs” is used generically to also mean electron hole pairs,
scintillator photons etc.

3Other expressions currently in use in the high energy field should be
replaced by words describing the specific process or observation made.
Examples are the expressions “hit” which should be replaced by
“segment,” or, to be more specific, “ionization in a segment,” or by
“one collision of Au ions”; “event” which might be “collision of two
heavy ions” (or whatever else it might be); “cluster,” footnote 40.

and FWHM w should be used. Truncated mean values and
standard deviations for tracks will be useful for some
applications.

A brief description of the physics of the interactions of
fast particles with matter is given in Section 1.2. A full
theoretical foundation is given in Sections 2 and 3. The
absorbers considered are Ne, Ar, P10 gas (a mixture of
10% CHy4 and 90% Ar) and Si. Calculations, measure-
ments and applications given here are mainly for the STAR
TPC. The concepts presented can readily be applied to
most other detectors such as ALICE [23,24]. In order to
approximate the gas mixture used in the ALICE TPC in
2005, (85% Ne, 10% CO,, 5% N;) a density p=
0.91 mg/cm? is used for Ne. It is important to always be
aware of the fundamental microscopic interaction pro-
cesses which are described in Section 1.2.

Calculations of straggling functions are described in
Sections 1.3 and 3-5. It will be shown that the parameters
describing the straggling functions do not have simple
relations to particle speed f§, segment lengths x, and track
lengths ¢. In particular, conclusions based on the central
limit theorem are coarse approximations. Since the
“resolution” for experimental data [25] can be as low as
2% or 3%, calculations should be made with an
uncertainty of 1% or less. Therefore, few analytic functions
can be given for results, and functions are presented in the
form of tables and graphs [26]. Scaling procedures can
greatly reduce the flood of calculated data (Section 8). For
a detailed study of the measurements in a detector we must
clearly distinguish measurements for single segments (pad-
rows or pixels) and for tracks. Data about the lateral extent
of tracks can be derived and may be needed for tracking
measurements (Sections 3.2 and 9).

An introduction to the subject was given by Allison and
Cobb [10]. An extensive review of “Particle Detection with
Drift Chambers” has been written by Blum and Rolandi
[16]. Calculated straggling functions for solid state
detectors are compared with experimental data in Refs.
[18,27]. Other aspects of the subject may be found in
“Radiation Detection and Measurement” by Knoll [22]. A
general survey of the “electronic” interactions of charged
particles with matter including a derivation of the Bethe
dE/dx can be found in Ref. [28].

1.2. Interaction of radiation with matter

The interactions of a fast charged particle with speed
f = v/c or momentum p = Mcfly can be described as the
occurrence of random individual collisions in each of which
the particle loses a random amount of energy E. The
particle can be considered to produce a track in matter [28].
The average probability of collisions is given by the
macroscopic (or total) collision cross-section X(f3y), or,
equivalently, by the mean free path A(fy) = 1/2Z(fy)
between collisions. The pdf for single energy losses E is
described by the differential collision spectrum o(E; 7).
These functions are discussed in Sections 2 and 3.
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) Energy loss per collision: E;

j n o AEV) EgeV)
10 o] + 2 56 37
9 ———= 00+ + O + Jd § 703 559
8§ — ¢ o o + O 4 126 68
7T——=P o 9 4 82 32
6 ——= @ © + 0O ° 8 419 292
5 ———= o + o o o |5 565 502
4 — (o] Qo e} 5 95 35
33— (o] e} o [e)e] o 7 146 26
22— S & 4 105 34
] ——— @] O O 0O O+ (e} O 9 930 774

x=1.8 mm P10 A=YE;

Fig. 3. Monte Carlo simulation of the passage of 10 particles (index j) with fy = 3.6 through segments of P10 gas. The thickness of the gas layer (at 1 atm
and 25°C) is x = 1.8 mm. The direction of travel is given by the arrows. Inside the gas, the tracks are defined by the symbols showing the location of a
collision. The mean free path between collisions is 2 = 0.3mm (see Fig. 7 or Table 2), thus the average number of collisions per track is six. At each
collision point a random energy loss E; is selected from the distribution function @(E; fy), Fig. 9. Two symbols are used to represent energy losses: o for
E;<33eV, + for E;>33¢eV; the mean free path between collisions with E;>33 eV is 2mm. Segment statistics are shown to the right: the total number of
collisions for each track is given by n;, with a nominal mean value (n) = x/A = 6 and the total energy loss is 4; = }_ E;, with the nominal mean value
(4) = xdE/dx = 440eV, where dE/dx is the Bethe—Bloch stopping power, M in Table 2. The largest energy loss E, on each track is also given. The mean
value of the 4; is 325 & 314 eV, much less than (4). Note that the largest possible energy loss in a single collision is Ea.x = 13 MeV, while the probability

for E>350,000¢eV is 0.002 per cm, Eq. (12) or Figs. 9 and 10.

The energy loss interactions along a particle track can be
simulated with a Monte Carlo calculation [26,29]; see
Section 4.4. A simple picture of this process for short
segments is shown in Fig. 3. The total energy loss in a
segment j is A; = E;. Other details are given in the
caption. All understanding of the rest of this paper follows
from this model.

1.3. Straggling functions and particle identification

From theoretical simulations of the processes in the TPC
we can obtain a better understanding of PID than from the
data we can get from experimental measurements. Studies
describing calculated straggling functions relevant to PID
have been presented over several years by the author [30].
It is useful to understand that the width w of straggling
functions is caused by two effects: the spread in the number
of collisions appearing in the Poisson distribution de-
scribed in Section 4.1 and the spread of the pdfs for
multiple collisions described in Section 4.2. This distinction
cannot be discerned in the Landau—Vavilov or the Bohr
calculations.

Several methods to calculate straggling functions are
described in Section 4, examples are given in Sections 5 and
6. The dependence of the properties of straggling functions
on segment or track length and fy are given in Section 7. In
Section 8 it will be shown that a two-parameter scaling
procedure implicit in Landau’s formulation [5,17] is useful
in reducing the amount of numerical calculation.

The calculations for tracks given here were obtained with
Monte Carlo simulations [29] for individual tracks and the
subsequent binning into distributions for many tracks. All

calculations in Sections 4-8 are made only for energy
losses. The other stages from energy loss to final ADC
output are considered in Sections 9 and 10. By comparing
experimental functions to calculated ones it is possible to
understand the operation and processes of the TPC and to
diagnose errors in parameters currently used for the TPC,
Section 11. As an introduction to PID spectra produced by
different particles with the same momentum are shown in
Section 12.

PID analysis is discussed in Section 13. The use of
truncated mean values as “‘descriptors” C for track proper-
ties has certain advantages, but likelihood methods are also
considered. The “resolution” in PID can be defined
plausibly by “overlap numbers.” They depend strongly
on the total length of the track measured, the number of
segments in the tracks, the particle speed and the number
of tracks for each particle type (Section 13.2). In this study
it is suggested that the use of analytic approximation
functions (e.g. Gaussians) be replaced by the use of
tabulated straggling functions [26].

1.4. Measurements with time projection chambers

An example of experimental values C for individual
tracks, each with momentum p, can be seen in Ref. [1, Fig.
28.5, p. 262] and in Ref. [11, Fig. 11, p. 676]. The sequence
of experimental observations in a detector is outlined in
Sections 1.1, 9, 10, Appendix D. It is assumed that
J=D/W(T), where W(T) is the energy required to
produce an ion pair by particles with kinetic energy T
[31]. The output from the TPC is the pulse-height Q for



H. Bichsel | Nuclear Instruments and Methods in Physics Research A 562 (2006) 154-197 161

each segment. For Si a detailed description of these steps is
given in Ref. [14].

For tracks the measured Q/x are combined into the
descriptor quantity C (which, so far, usually is called dE/dx
[11]), see Sections 6 and 13.1, and a experimental straggling
function f(C) for tracks is generated. Comparisons of
experimental data with calculations are given in Section 14.
The achievement of a 1% uncertainty of the calculations of
4p and C seems to be possible for TPCs as it has been for Si
detectors [18]. A larger uncertainty of FWHM w should be
expected due to the diffusion correction (Section 10).
Methods for PID are described in Section 13.

2. Models of collision cross-sections (CCS)

The collision cross-sections (CCS) differential in energy
loss give the probabilities for the energy losses in single
collisions. A reliable calculation of CCS is needed to obtain
straggling functions for thin or very thin absorbers used for
PID (Figs. G.1 and G.2). Several models are given and their
differences are assessed. The first one is the Rutherford
cross-section, which is the cross-section for the collision of
two free charged particles. It has been used extensively [17]
(Appendix J). If charged particles collide with electrons
bound in atoms, molecules or solids, the cross-section can be
written as a modified Rutherford cross-section.

An approximate but plausible way of describing these
interactions is to consider the emission of virtual photons
by the fast particle, which then are absorbed by the
material. Here this is called the Fermi virtual photon (FVP)
method [32]. The differential CCS then is closely related to
the photo absorption cross-section of the molecules. Bohr
[33] described this as a “resonance’ effect.

A more comprehensive approach is given by the
Bethe—Fano (B-F) method [18,28,34]. These models are
described here. Binary encounter methods have been used
[35,36], but are not discussed. Comparison of the models
are made in Section 2.4 and in Appendix A. Most of the
calculations have been made with double precision
arithmetic (i.e. 64 bits).

2.1. Rutherford cross-section or(E; f) and modifications

Much work on straggling functions has been based on
the use of the Rutherford cross-section [4,17,33,37]; see
Section 4.5. For the interaction of a particle with charge ze
and speed f§ = v/c colliding with an electron at rest it can
be written in an approximation adequate for present
purposes as Ref. [3]

kg (1 = BE/Emay)

UR(E; B) = 'B2 E2 5
2me* 2 ~19.2 2
kr = = 2.54955 x 10”7z°eVcem®,
Na Z z
k = kg /;_?Zz 0.1535414—ﬁ2Mchm2 (1)

where m is the mass of an electron, 4 the atomic mass of
the absorber in g/mol and Emax~2mc?f>y? is the maximum
energy loss* for heavy particles. For electrons a value
Eyax = T/2 is usually used. Note that the mass of the
particle does not appear in Eq. (1).

Various attempts have been made to take into account
that electrons are bound in matter [18,27,41-43]. They are
discussed briefly in Section 4.5. In the ALICE Technical
Design Report of the TPC [23] the cross-section for a gas
consisting of 90% Ne and 10% CO, is represented by Eq.
(1) with a denominator E*? instead of E>. Details about
this method are given in Appendix J.

2.2. Bethe—Fano (B-F) cross-section

Bethe [44] derived an expression for a cross-section
doubly differential in energy loss E and momentum
transfer K using the first Born approximation for inelastic
scattering on free atoms. Fano [34] extended the method
for solids. In its non-relativistic form it can be written as
the Rutherford cross-section modified by the “inelastic
form factor” [34,45]:

do(E, Q) = (kr/B*)IF(E,K)|*dQ/ Q" )

where F(E,K) is the transition matrix element for the
excitation and Q = ¢*>/2m, with q = #K the momentum
transferred from the incident particle to the absorber.
Usually, F(E,K) is replaced by the generalized oscillator
strength (GOS) f(E, K) defined by

FEK) = g F(E, K). 3)

An example of f(E, K) is shown in Fig. 4. A full set of GOS
for H-atoms can be seen in Ref. [45, Fig. 10]. Then we get
do

—- “)
0

In the limit K — 0, f(E, K) becomes the optical dipole
oscillator strength (DOS) f(E, 0). Because of the 1/Q factor
in Eq. (4), the values of the DOS are important for accurate
cross-sections.

The cross-section differential in energy loss E is obtained
by integrating Eq. (4) over Q,

do(E, Q) = or(E; v)Ef (E, K)

o(E; ) = ow(E; ) /Q Ef(E, K)%Q 3)

with Q... ~E?/2mu? [45]. The dependence on particle speed
v enters via Q,;, in addition to its appearance in or(E;v).
In our current understanding, this approach to the
calculation of ¢(E;v) is a close approximation to reality.
The relativistic expression is described in Refs. [18,34]. A
detailed study of f(E, K) for all shells of solid silicon and
aluminum has been made [18,46]. Checks have been made
that f(E,0) agrees with optical data [18]. Here o(E;p)

“The exact form of Epa [1,38-40] is not important for the present
application.
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Fig. 4. Generalized oscillator strength (GOS) for Si for an energy transfer
¢ =48