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Abstract

The measurement of the ionization by charged particles in a medium (gas or condensed) together with the measurement of their

momentum or energy is used for tracking the particles and to determine their identity. For tracking the lateral extent of the ionization

cloud should be known. For tracking and for charged particle identification (PID), one must understand that energy loss of particles,

ionization and detector output are related, but not identical. In this paper, I discuss the relevant physics processes involved in PID and

tracking and the stochastic nature of the energy loss mechanism. These calculations can be made with analytic and Monte Carlo

methods. The expression dE=dx should be abandoned; it is never relevant to the signals in a particle-by-particle analysis. Specific terms

such as energy loss, energy deposition, ionization and pulse height should be used instead. It is important that an accurate data analysis

requires attention to track segmentation. I will show that properties of straggling functions for gases and thin silicon detectors are similar

for equivalent absorber thicknesses and general conclusions given for one absorber will be valid for others. Thus, these techniques can be

used in Time Projection Chambers (TPCs) and Silicon Drift Detectors. I will show how to use this formalism in the STAR and ALICE

TPCs and describe how its use has improved the performance of the detector.
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wðx; bgÞ ¼ 1463 eV. The mean energy loss is hDi ¼ 3044 eV.
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1. Introduction

1.1. General concepts

The concept dE=dx [1] representing the mean rate of
energy loss in an absorber (Section 3.3) is used inappro-
priately in the description of the physics of most high
energy particle detectors. Consider Fig. 1 which gives the
probability density function (pdf) f ðDÞ for energy losses D
of particles1 with bg ¼ 3:6 traversing x ¼ 12mm of Ar gas.
The most probable energy loss Dp and the width w of f ðDÞ
are more representative of f ðDÞ than the mean energy loss
hDi ¼ xdE=dx. Details are given in Section 5.1, in
particular it will be seen that Dp=x depends on x.
Correspondingly, the energy loss quantities (hCi and s)
per unit length derived for tracks depend on track length
(see Table 5).

The functions f ðDÞ customarily are called ‘‘straggling
functions’’ [4] or straggling spectra, except in high energy
physics where they are called ‘‘Landau functions’’ in a
generic sense. Here, ‘‘Landau function’’ is used only to
designate the function described in Ref. [2] and shown in
Fig. 1 by the dotted line. For very thin absorbers the energy
loss spectra are more complex. An example for particles
with bg ¼ 2:1 traversing x ¼ 1mm of Si is given in Fig. 2
(also see Appendix G). Such spectra have been described
earlier [5] and have been measured [6]. Structures of this
type are also observed in measurements of straggling
effects on resonant yields of nuclear reactions, called the
‘‘Lewis effect’’ [7].

This study describes the theory of the electronic
interactions of fast charged particles with matter. Collision
and energy loss cross-sections are derived and straggling
functions and their properties are calculated. The use of
these functions for tracking and for particle identification
(PID) in time projection chambers, TPC, or silicon vertex
trackers, SVT, is described. The aim is to achieve an
uncertainty of 1% or less in the calculations.

The trajectory of a fast particle through an absorber is
called a track with length t. It is subdivided into segments
of length x. One method of PID consists of measuring the
ionization by a particle in several thin detectors and either
its energy [8,9] or its momentum [10,11]. Much of the past
work on PID [12,13] has been based on empirical
information without consideration of problems that will
be described here.

Various analytic expressions have been used to describe
and correlate experimental data. In particular, straggling
functions have been approximated by Gaussians, and mean
values and variances of straggling functions have been used
for the data analysis. Such data are given for calculated
straggling functions in Sections 3–5. It will be seen that
mean values and variances for segments of tracks should be
1The charge of the particles is assumed to be z ¼ �1e throughout and it

is usually not included in the equations.
replaced by most probable values and full-width-at-half-

maximum (FWHM).
The main concern here is with TPCs, but the term

‘‘detector’’ will be used to indicate that the principles
described also apply to other systems, e.g. SVTs and thin
absorbers in general. An extensive review of the use of Si
detectors can be found in Ref. [14].
In any detector there are several stages which lead from

the interactions of fast charged particles in the detector to a
digital output signal used for tracking and PID [15]. The
first stage is the energy loss D in segments due to the
interactions of the particles with the matter in the detector.
For small detector volumes, called pixels or cells [16], the
next stage is the determination of the energy D deposited in
the volume V under observation. The third stage is the
conversion of D into ionization J which is defined as the
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number of ion pairs produced.2 In a TPC [11] the fourth
stage is the transport of the electrons (as an ‘‘electron
cloud’’ or an ‘‘electron cluster’’) to the proportional
counters located in the ‘‘end caps’’ [11]. The fifth stage is
the amplification and collection of ions on ‘‘pads’’ (for the
STAR TPC ‘‘inner’’ pads are 3� 12mm, ‘‘outer’’ are 4�
20mm in area) resulting in an analog electronic signal J 0,
and finally the conversion into a digital signal Q with an
analog to digital converter (ADC). The processes occurring
during these stages are discussed in Sections 9–11. For Si
detectors corresponding details are described in Ref. [14].

In each stage the quantity from the previous stage is
modified and we must determine this modification. For the
stages from the traversal of a particle through the detector
ending in the ADC output we must distinguish the
following quantities. For track segments I am using
symbols which have been defined in various publications:
�

2

scin
3

rep

Exa

‘‘se

‘‘on

hea
energy loss D and its pdf f ðDÞ [17,18],

�
 energy deposition D with the pdf gðDÞ [19,20],

�
 ionization J with the pdf GðJÞ [16,21],

�
 transport of electrons to proportional counters [11] or
amplifiers [14],

�
 proportional counter output J 0 with the pdf HðJ 0Þ [11],

�
 pulse-height or ADC output Q with the pdf hðQÞ [11,22].

For tracks, Section 6, the calculated truncated mean
value of the energy losses per segment, D=x, is called C and
modified quantities and pdfs for each stage corresponding
to those for segments must be defined. Experimentally
measured values are used with a suffix x.

In order to clearly understand the stages outlined above
the replacement of the universal use of the expression
‘‘dE=dx’’ for all of the above quantities by the specific
concepts D;D; J; J 0;Q and C defined here is proposed.3

The pdfs defined above will be calculated and described.
It will be seen in Sections 9 and 10 that the differences
between f ðDÞ, gðDÞ and GðJÞ for the STAR TPC are not
large. In most reports so far they have been disregarded.
For the ALICE TPC they are explored in Ref. [23].

This study is mainly about the calculation of the energy
loss functions f ðDÞ and f ðCÞ and their dependence on
particle speed and absorber thickness, Sections 2–7. The
functions for the other stages depend on the geometry of
the elements of the TPC and are explored in less detail in
Sections 9 and 10. It will be seen that the moments of f ðDÞ,
e.g. mean value and standard deviation, are not appropriate
for a description of the functions for segments, especially
for thin absorbers. Instead, most probable energy loss Dp
‘‘Ion pairs’’ is used generically to also mean electron hole pairs,

tillator photons etc.

Other expressions currently in use in the high energy field should be

laced by words describing the specific process or observation made.

mples are the expressions ‘‘hit’’ which should be replaced by

gment,’’ or, to be more specific, ‘‘ionization in a segment,’’ or by

e collision of Au ions’’; ‘‘event’’ which might be ‘‘collision of two

vy ions’’ (or whatever else it might be); ‘‘cluster,’’ footnote 40.
and FWHM w should be used. Truncated mean values and
standard deviations for tracks will be useful for some
applications.
A brief description of the physics of the interactions of

fast particles with matter is given in Section 1.2. A full
theoretical foundation is given in Sections 2 and 3. The
absorbers considered are Ne, Ar, P10 gas (a mixture of
10% CH4 and 90% Ar) and Si. Calculations, measure-
ments and applications given here are mainly for the STAR
TPC. The concepts presented can readily be applied to
most other detectors such as ALICE [23,24]. In order to
approximate the gas mixture used in the ALICE TPC in
2005, (85% Ne, 10% CO2, 5% N2) a density r ¼
0:91mg=cm3 is used for Ne. It is important to always be
aware of the fundamental microscopic interaction pro-
cesses which are described in Section 1.2.
Calculations of straggling functions are described in

Sections 1.3 and 3–5. It will be shown that the parameters
describing the straggling functions do not have simple
relations to particle speed b, segment lengths x, and track
lengths t. In particular, conclusions based on the central
limit theorem are coarse approximations. Since the
‘‘resolution’’ for experimental data [25] can be as low as
2% or 3%, calculations should be made with an
uncertainty of 1% or less. Therefore, few analytic functions
can be given for results, and functions are presented in the
form of tables and graphs [26]. Scaling procedures can
greatly reduce the flood of calculated data (Section 8). For
a detailed study of the measurements in a detector we must
clearly distinguish measurements for single segments (pad-
rows or pixels) and for tracks. Data about the lateral extent
of tracks can be derived and may be needed for tracking
measurements (Sections 3.2 and 9).
An introduction to the subject was given by Allison and

Cobb [10]. An extensive review of ‘‘Particle Detection with
Drift Chambers’’ has been written by Blum and Rolandi
[16]. Calculated straggling functions for solid state
detectors are compared with experimental data in Refs.
[18,27]. Other aspects of the subject may be found in
‘‘Radiation Detection and Measurement’’ by Knoll [22]. A
general survey of the ‘‘electronic’’ interactions of charged
particles with matter including a derivation of the Bethe
dE=dx can be found in Ref. [28].

1.2. Interaction of radiation with matter

The interactions of a fast charged particle with speed
b ¼ v=c or momentum p ¼Mcbg can be described as the
occurrence of random individual collisions in each of which
the particle loses a random amount of energy E. The
particle can be considered to produce a track in matter [28].
The average probability of collisions is given by the
macroscopic (or total) collision cross-section StðbgÞ, or,
equivalently, by the mean free path lðbgÞ ¼ 1=StðbgÞ
between collisions. The pdf for single energy losses E is
described by the differential collision spectrum sðE; bgÞ.
These functions are discussed in Sections 2 and 3.



ARTICLE IN PRESS

2           56           37

8         703         559

4         126           68

4           82           32

8         419         292

5         565         502

5           95           35

7         146           26

4         105           34

9         930         774

nj ∆j(eV)

∆=ΣEi

Et(eV)

10

9

8

7

6

5

4

3

2

1

j

x=1.8 mm P10

Energy loss per collision: Ei

Fig. 3. Monte Carlo simulation of the passage of 10 particles (index j) with bg ¼ 3:6 through segments of P10 gas. The thickness of the gas layer (at 1 atm

and 25 �C) is x ¼ 1:8mm. The direction of travel is given by the arrows. Inside the gas, the tracks are defined by the symbols showing the location of a

collision. The mean free path between collisions is l ¼ 0:3mm (see Fig. 7 or Table 2), thus the average number of collisions per track is six. At each

collision point a random energy loss Ei is selected from the distribution function FðE; bgÞ, Fig. 9. Two symbols are used to represent energy losses: � for

Eio33 eV, þ for Ei433 eV; the mean free path between collisions with Ei433 eV is 2mm. Segment statistics are shown to the right: the total number of

collisions for each track is given by nj , with a nominal mean value hni ¼ x=l ¼ 6 and the total energy loss is Dj ¼
P

Ei, with the nominal mean value

hDi ¼ xdE=dx ¼ 440 eV, where dE=dx is the Bethe–Bloch stopping power, M1 in Table 2. The largest energy loss Et on each track is also given. The mean

value of the Dj is 325� 314 eV, much less than hDi. Note that the largest possible energy loss in a single collision is Emax ¼ 13MeV, while the probability

for E450; 000 eV is 0.002 per cm, Eq. (12) or Figs. 9 and 10.
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The energy loss interactions along a particle track can be
simulated with a Monte Carlo calculation [26,29]; see
Section 4.4. A simple picture of this process for short
segments is shown in Fig. 3. The total energy loss in a
segment j is Dj ¼

P
Ei. Other details are given in the

caption. All understanding of the rest of this paper follows
from this model.

1.3. Straggling functions and particle identification

From theoretical simulations of the processes in the TPC
we can obtain a better understanding of PID than from the
data we can get from experimental measurements. Studies
describing calculated straggling functions relevant to PID
have been presented over several years by the author [30].
It is useful to understand that the width w of straggling
functions is caused by two effects: the spread in the number
of collisions appearing in the Poisson distribution de-
scribed in Section 4.1 and the spread of the pdfs for
multiple collisions described in Section 4.2. This distinction
cannot be discerned in the Landau–Vavilov or the Bohr
calculations.

Several methods to calculate straggling functions are
described in Section 4, examples are given in Sections 5 and
6. The dependence of the properties of straggling functions
on segment or track length and bg are given in Section 7. In
Section 8 it will be shown that a two-parameter scaling
procedure implicit in Landau’s formulation [5,17] is useful
in reducing the amount of numerical calculation.

The calculations for tracks given here were obtained with
Monte Carlo simulations [29] for individual tracks and the
subsequent binning into distributions for many tracks. All
calculations in Sections 4–8 are made only for energy
losses. The other stages from energy loss to final ADC
output are considered in Sections 9 and 10. By comparing
experimental functions to calculated ones it is possible to
understand the operation and processes of the TPC and to
diagnose errors in parameters currently used for the TPC,
Section 11. As an introduction to PID spectra produced by
different particles with the same momentum are shown in
Section 12.
PID analysis is discussed in Section 13. The use of

truncated mean values as ‘‘descriptors’’ C for track proper-
ties has certain advantages, but likelihood methods are also
considered. The ‘‘resolution’’ in PID can be defined
plausibly by ‘‘overlap numbers.’’ They depend strongly
on the total length of the track measured, the number of
segments in the tracks, the particle speed and the number
of tracks for each particle type (Section 13.2). In this study
it is suggested that the use of analytic approximation
functions (e.g. Gaussians) be replaced by the use of
tabulated straggling functions [26].
1.4. Measurements with time projection chambers

An example of experimental values C for individual
tracks, each with momentum p, can be seen in Ref. [1, Fig.
28.5, p. 262] and in Ref. [11, Fig. 11, p. 676]. The sequence
of experimental observations in a detector is outlined in
Sections 1.1, 9, 10, Appendix D. It is assumed that
J ¼ D=W ðTÞ, where W ðTÞ is the energy required to
produce an ion pair by particles with kinetic energy T

[31]. The output from the TPC is the pulse-height Q for
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4The exact form of Emax [1,38–40] is not important for the present

application.
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each segment. For Si a detailed description of these steps is
given in Ref. [14].

For tracks the measured Q=x are combined into the
descriptor quantity C (which, so far, usually is called dE=dx

[11]), see Sections 6 and 13.1, and a experimental straggling
function f ðCÞ for tracks is generated. Comparisons of
experimental data with calculations are given in Section 14.
The achievement of a 1% uncertainty of the calculations of
Dp and C seems to be possible for TPCs as it has been for Si
detectors [18]. A larger uncertainty of FWHM w should be
expected due to the diffusion correction (Section 10).
Methods for PID are described in Section 13.

2. Models of collision cross-sections (CCS)

The collision cross-sections (CCS) differential in energy
loss give the probabilities for the energy losses in single
collisions. A reliable calculation of CCS is needed to obtain
straggling functions for thin or very thin absorbers used for
PID (Figs. G.1 and G.2). Several models are given and their
differences are assessed. The first one is the Rutherford
cross-section, which is the cross-section for the collision of
two free charged particles. It has been used extensively [17]
(Appendix J). If charged particles collide with electrons
bound in atoms, molecules or solids, the cross-section can be
written as a modified Rutherford cross-section.

An approximate but plausible way of describing these
interactions is to consider the emission of virtual photons
by the fast particle, which then are absorbed by the
material. Here this is called the Fermi virtual photon (FVP)
method [32]. The differential CCS then is closely related to
the photo absorption cross-section of the molecules. Bohr
[33] described this as a ‘‘resonance’’ effect.

A more comprehensive approach is given by the
Bethe–Fano (B–F) method [18,28,34]. These models are
described here. Binary encounter methods have been used
[35,36], but are not discussed. Comparison of the models
are made in Section 2.4 and in Appendix A. Most of the
calculations have been made with double precision
arithmetic (i.e. 64 bits).

2.1. Rutherford cross-section sRðE; bÞ and modifications

Much work on straggling functions has been based on
the use of the Rutherford cross-section [4,17,33,37]; see
Section 4.5. For the interaction of a particle with charge ze

and speed b ¼ v=c colliding with an electron at rest it can
be written in an approximation adequate for present
purposes as Ref. [3]

sRðE; bÞ ¼
kR

b2
ð1� b2E=EmaxÞ

E2
,

kR ¼
2pe4

mc2
z2 ¼ 2:54955� 10�19z2 eV cm2,

k ¼ kR
NA

b2
Z

A
¼ 0:15354

Z

Ab2
MeV cm2 ð1Þ
where m is the mass of an electron, A the atomic mass of
the absorber in g/mol and Emax�2mc2b2g2 is the maximum
energy loss4 for heavy particles. For electrons a value
Emax ¼ T=2 is usually used. Note that the mass of the
particle does not appear in Eq. (1).
Various attempts have been made to take into account

that electrons are bound in matter [18,27,41–43]. They are
discussed briefly in Section 4.5. In the ALICE Technical
Design Report of the TPC [23] the cross-section for a gas
consisting of 90% Ne and 10% CO2 is represented by Eq.
(1) with a denominator E2:2 instead of E2. Details about
this method are given in Appendix J.

2.2. Bethe–Fano (B–F) cross-section

Bethe [44] derived an expression for a cross-section
doubly differential in energy loss E and momentum
transfer K using the first Born approximation for inelastic
scattering on free atoms. Fano [34] extended the method
for solids. In its non-relativistic form it can be written as
the Rutherford cross-section modified by the ‘‘inelastic
form factor’’ [34,45]:

dsðE;QÞ ¼ kR=b
2

� �
jF ðE;KÞj2 dQ=Q2 (2)

where F ðE;KÞ is the transition matrix element for the
excitation and Q ¼ q2=2m, with q ¼ _K the momentum
transferred from the incident particle to the absorber.
Usually, F ðE;KÞ is replaced by the generalized oscillator
strength (GOS) f ðE;KÞ defined by

f ðE;KÞ ¼
E

Q
jF ðE;KÞj2. (3)

An example of f ðE;KÞ is shown in Fig. 4. A full set of GOS
for H-atoms can be seen in Ref. [45, Fig. 10]. Then we get

dsðE;QÞ ¼ sRðE; vÞEf ðE;KÞ
dQ

Q
. (4)

In the limit K ! 0, f ðE;KÞ becomes the optical dipole
oscillator strength (DOS) f ðE; 0Þ. Because of the 1=Q factor
in Eq. (4), the values of the DOS are important for accurate
cross-sections.
The cross-section differential in energy loss E is obtained

by integrating Eq. (4) over Q,

sðE; vÞ ¼ sRðE; vÞ
Z

Qmin

Ef ðE;KÞ
dQ

Q
(5)

with Qmin�E2=2mv2 [45]. The dependence on particle speed
v enters via Qmin in addition to its appearance in sRðE; vÞ.
In our current understanding, this approach to the
calculation of sðE; vÞ is a close approximation to reality.
The relativistic expression is described in Refs. [18,34]. A
detailed study of f ðE;KÞ for all shells of solid silicon and
aluminum has been made [18,46]. Checks have been made
that f ðE; 0Þ agrees with optical data [18]. Here sðE; bÞ
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calculated with the relativistic version of Eq. (5) for
minimum ionizing particles [34] is shown by the solid line
in Fig. 5. B–F calculations are not available for gases, but
see Section 2.4 and Appendix A.

2.3. Fermi virtual photon (FVP) cross-section

The GOS of Fig. 4 has been approximated [4,10,32,47]
by replacing f ðE;KÞ for QoE by the DOS f ðE; 0Þ and by
placing a delta function at Q ¼ E [10]. This approach is
here named the FVP method. It is also known under the
names photo absorption ionization (PAI) model and the
Weizsäcker–Williams approximation.
The differential CCS in the non-relativistic approxima-

tion is given by Ref. [10]

sðE; vÞ ¼ sRðE; vÞ Ef ðE; 0Þ lnð2mv2=EÞ

�

þ

Z E

0

f ðE0; 0ÞdE0
�

ð6Þ

where for E4EM , sðE; vÞ ¼ 0.
This model has the advantage that it is only necessary to

know the DOS for the absorber, or, equivalently, the
imaginary part of the inverse of the complex dielectric
function Imð�1=�Þ. Data for � can be extracted from a
variety of optical measurements [48,49]. In addition,
Imð�1=�Þ can be obtained from electron energy loss
measurements [50]. A detailed description of the relativistic
PAI model is given e.g. in Refs. [10,16]. The relativistic
cross-section is given here in the form of Eq. (28) in
Ref. [10], except that sðE; bÞ is written instead of ds=dE:

sðE; bÞ ¼
a

b2p

sgðEÞ
EZ

ln½ð1� b2�1Þ
2
þ b4�22�

�1=2

þ
a

b2p

1

N_c
b2 �

�1
j�j2

� �
Y

þ
a

b2p

sgðEÞ
EZ

ln
2mc2b2

E

� �

þ
a

b2p

1

E2

Z E

0

sgðE0Þ
Z

dE0 ð7Þ

with sgðEÞ ¼ f ðE; 0Þ � 1:098� 10�16 cm2 eV [51], sgðEÞ�
ðE=NÞ�2ðEÞ, and tan Y ¼ �2b

2=ð1� �1b
2
Þ. For gases, �2 and

�1 � 1 are proportional to the gas pressure p, therefore
from Eq. (7) we must expect that the straggling function for
a segment of length x1p1 will differ from that of a segment
of length x2p2 even if x1p1 ¼ x2p2 (see Fig. 16).
The cross-section calculated with Eq. (7) for Si is given

by the dashed line in Fig. 5. For P10 it is given by the solid
line in Fig. 6,5 for Ne in Fig. J.2. Calculations have also
been made for several other gases, but are not given here.
Optical data used are described in Appendix C.

2.4. Calculation and comparison of cross-sections

For the calculation of CCS it is not practical to calculate
f ðE;KÞ or sgðEÞ ab initio for each use. I have used
numerical tables for these functions [26], rather than using
e.g. a polynomial approximation to the photo absorption
cross-sections [53], also see Appendix C. For the optical
absorption coefficients sgðEÞ used in Eq. (7) it must be
noted that the lowest excitation energy for Ar is 11.6 eV
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Fig. 6. Inelastic collision cross-section sðE; bgÞ for single collisions in P10

gas by ionizing particles with bg ¼ 3:6, calculated with FVP theory: solid

line. The Rutherford cross-section Eq. (1) is given by the dash-dotted line.

The dotted line represents the cumulative probability density function

FðEÞ of Eq. (7), see Fig. 9. For bg ¼ 3:6 the functions extend to

Emax�13MeV, see Eq. (1). The moments are M0 ¼ 30 collisions/cm and

M1 ¼ 2:1keV=cm. The ionization energy for Ar is EI ¼ 15:8 eV [52], for

the L-shell it is 250 eV. Functions for Ne are given in Appendix J.

Table 1

Integral properties of CCS for Si calculated with Bethe–Fano (B–F) and

FVP algorithms

bg St M1 Dp=x

B–F FVP B–F FVP B–F FVP

0.316 30.325 32.780 2443.72 2465.31 1677.93 1722.92

0.398 21.150 22.781 1731.66 1745.57 1104.90 1135.68

0.501 15.066 16.177 1250.93 1260.18 744.60 765.95

0.631 11.056 11.840 928.70 935.08 520.73 536.51

0.794 8.433 9.010 716.37 720.98 381.51 394.03

1.000 6.729 7.175 578.29 581.79 294.54 304.89

1.259 5.632 5.996 490.84 493.65 240.34 249.25

1.585 4.932 5.245 437.34 439.72 207.15 215.02

1.995 4.492 4.771 406.59 408.70 187.39 194.60

2.512 4.218 4.476 390.95 392.89 176.30 183.06

3.162 4.051 4.296 385.29 387.12 170.70 177.16

3.981 3.952 4.189 386.12 387.89 168.59 174.81

5.012 3.895 4.127 391.08 392.80 168.54 174.63

6.310 3.865 4.094 398.54 400.24 169.62 175.60

7.943 3.849 4.076 407.39 409.07 171.19 177.10

10.000 3.842 4.068 416.91 418.58 172.80 178.66

12.589 3.839 4.064 426.63 428.29 174.26 180.06

15.849 3.839 4.063 436.30 437.96 175.45 181.24

19.953 3.839 4.063 445.79 447.44 176.36 182.14

25.119 3.840 4.063 455.03 456.68 177.04 182.79

31.623 3.840 4.064 463.97 465.63 177.53 183.28

39.811 3.841 4.064 472.61 474.27 177.86 183.61

50.119 3.842 4.065 480.93 482.58 178.09 183.83

63.096 3.842 4.065 488.90 490.55 178.22 183.95

79.433 3.842 4.065 496.52 498.17 178.32 184.06

100.000 3.842 4.066 503.77 505.42 178.38 184.10

125.893 3.843 4.066 510.66 512.31 178.43 184.15

158.489 3.843 4.066 517.20 518.84 178.44 184.17

199.526 3.843 4.066 523.40 525.05 178.47 184.18

251.189 3.843 4.066 529.29 530.94 178.48 184.18

316.228 3.843 4.066 534.91 536.56 178.48 184.21

398.107 3.843 4.066 540.28 541.92 178.48 184.22

501.187 3.843 4.066 545.43 547.08 178.48 184.22

630.958 3.843 4.066 550.40 552.05 178.48 184.22

794.329 3.843 4.066 555.21 556.86 178.48 184.22

1000.00 3.843 4.066 559.89 561.54 178.48 184.22

St ¼M0½collisions=mm�, M1½eV=mm� for heavy particles, Dp in eV for

x ¼ 8mm. B–F presumably is more accurate. Numerical values can be

found in Ref. [26].

The minimum values for St are at bg�18, for M1 at bg�3:2, for Dp at

bg�5. The relativistic rise for St is 0.1%, for M1 it is 45%, for Dp it is 6%.

The difference between B–F and FVP is �6% for St, 0.3–0.9% for M1

and �3% for Dp.
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and the ionization energy is 15.94 eV. For methane, these
values are 8.5 and 12.6 eV [52]. In Ar the collisions with
11:6oEo15:94 eV lead to excited states which can produce
secondary ionization; see Section 9. If we want to compare
calculations of sðE; bÞ with experimental stopping powers
dE=dx; see Section 3, we must include all energy losses
because they are included in the standard measurements of
dE=dx.

For this study, differential CCS sðE; bÞ have been
calculated with FVP for Ne, Ar and P10; for Si both the
B–F and the FVP method were used. These functions for
ionizing particles with bg ¼ 4 in Si are shown in Fig. 5.
Numerical tables are available in Ref. [26]. The Rutherford
cross-section is given by the analytic form, Eq. (1) and is
shown by the horizontal line in Fig. 5. An example from a
binary encounter algorithm is included. The shape of this
function is quite different.6 The FVP result for Si agrees
reasonably well with the B–F result even though it differs
by as much as 50% at some energy losses E.

The moments Stð¼M0Þ and M1 (Section 3) and the
most probable values Dp for straggling functions f ðDÞ
(Section 5) for a Si-absorber of thickness x ¼ 8mm
calculated with both methods are listed in Table 1. The
differences in St are 6–8%, in M1 less than 1% and in Dp

around 3%. These differences change little with particle
speed.

The ratio M1=Dp is not given in the table. It increases
from 1.46 to 3.14 with bg, while St=Dp is almost constant
for bg40:5. St and Dp reach asymptotic values to within
�0:1% for bg450. The minimum values for St are near
bg ¼ 16, for M1 at bg ¼ 3:2, and for Dp at bg ¼ 5.
6The parameters of the function can of course be chosen to get

agreement e.g. for the moments, Eq. (13), see Ref. [35].
Straggling functions calculated with both methods are
compared in Appendix A.
I expect that similar differences exist between B–F and

FVP for Ar and P10, but since the absolute differences

between the results for B–F and FVP will enter as
systematic errors into the TPC calibration (Section 14)
only the dependence on particle speed of these differences

will be important in PID.
Therefore, I believe that the FVP method will be

adequate for present purposes, at least for light elements.
Data for f ðE; 0Þ are available, Appendix C, so that
calculations can be made for many substances.
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Table 2

Integral properties of CCS, Eq. (13), calculated with the FVP algorithm

for P10 and the ALICE TPC Ne gas ðr ¼ 0:91mg=cm3Þ

bg P10 Ne

Dp w M0 M1 M0 M1

0.316 22.0926 11.4916 211.0726 15.1286 91.8949 9.9703

0.398 14.6338 8.1277 146.5664 10.7146 64.0487 7.0517

0.501 9.9505 5.8737 103.9873 7.7376 45.6034 5.0810

0.631 7.0166 4.3998 76.0672 5.7440 33.4737 3.7696

0.794 5.1720 3.4753 57.9161 4.4322 25.5713 2.9050

1.000 4.0128 2.9035 46.2566 3.5811 20.4887 2.3466

1.259 3.2927 2.5456 38.8999 3.0442 17.2819 1.9936

1.585 2.8565 2.3229 34.3884 2.7197 15.3192 1.7796

1.995 2.6043 2.1897 31.7545 2.5369 14.1800 1.6590

2.512 2.4717 2.1173 30.3570 2.4494 13.5846 1.6002

3.162 2.4170 2.0853 29.7722 2.4253 13.3474 1.5829

3.981 2.4133 2.0800 29.7206 2.4432 13.3459 1.5930

5.012 2.4428 2.0919 30.0180 2.4890 13.4992 1.6211

6.310 2.4941 2.1147 30.5430 2.5531 13.7539 1.6612

7.943 2.5593 2.1443 31.2156 2.6291 14.0747 1.7090

10.000 2.6337 2.1779 31.9825 2.7127 14.4387 1.7618

12.589 2.7137 2.2140 32.8078 2.8011 14.8305 1.8178

15.849 2.7970 2.2513 33.6658 2.8923 15.2399 1.8757

19.953 2.8820 2.2892 34.5369 2.9847 15.6598 1.9347

25.119 2.9674 2.3271 35.4067 3.0772 16.0853 1.9941

31.623 3.0523 2.3649 36.2903 3.1693 16.5121 2.0535

39.811 3.1370 2.4024 37.2469 3.2607 16.9365 2.1125

50.119 3.2162 2.4394 38.0550 3.3485 17.3547 2.1706

63.096 3.2888 2.4758 38.6576 3.4321 17.7706 2.2276

79.433 3.3556 2.5116 39.0968 3.5115 18.1605 2.2828

100.000 3.4178 2.5468 39.4162 3.5874 18.5054 2.3353

125.893 3.4761 2.5813 39.6515 3.6600 18.7926 2.3845

158.489 3.5312 2.6150 39.8283 3.7296 19.0191 2.4301

199.526 3.5832 2.6477 39.9648 3.7963 19.1915 2.4722

251.189 3.6322 2.6793 40.0725 3.8601 19.3194 2.5108

316.228 3.6776 2.7094 40.1590 3.9209 19.4125 2.5464

398.107 3.7186 2.7374 40.2288 3.9784 19.4794 2.5792

501.187 3.7547 2.7630 40.2850 4.0325 19.5271 2.6098

630.957 3.7853 2.7859 40.3296 4.0830 19.5610 2.6383

794.328 3.8101 2.8055 40.3634 4.1298 19.5852 2.6651

1000.000 3.8292 2.8219 40.3885 4.1731 19.6024 2.6904

Dp and FWHM w given in keV for x ¼ 2 cm, St ¼M0 in collisions/cm,

M1 in keV/cm. Numerical values can be found in Ref. [26].
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Fig. 7. The mean free path length l, Eq. (9), as function of bg for P10 gas

at 1 atm and 20 1C (Z ¼ 17:2, A ¼ 37:5575 and r ¼ 1:5616mg=cm3).
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Several tests should be made for any such calculation:
the sum rule for optical data (Eq. (16)) should be fulfilled,
the I-value I (Eq. (17)) should be compared to tabulated
data [39,40] and M1 should agree with established values of
dE=dx [39,40]. My calculations until April 2003 were made
for Ar only. Later calculations were made for P10. The
differences between Ar and P10 are not large and are given
for straggling functions in Appendix B.

3. Integral functions of collision cross-sections (CCS)

Integrals over the differential cross-section sðE; bÞ are
needed in the Monte Carlo calculations of straggling
functions. They can be used for comparisons with
measurements of stopping powers which provide one
reality check of the calculations. They also show the rarity
of large energy losses.

3.1. Total cross-sections and mean free paths

The macroscopic (total) CCS is defined as the number of
collisions per cm

StðbgÞ 	 N

Z
sðE; bgÞdE (8)

where N is the number of atoms per cm3. It determines the
average number mc ¼ xSt of collisions in a segment of
length x.

Values of St ¼M0 for Si are given in Table 1, for P10
gas and Ne in Table 2. For Si, Ne and Ar it may be noted
that the values of M1 agree to about 1% with the data for
muons in Ref. [38].

The inverse of St is the mean free path between collisions

l 	 1=St (9)

and is used to calculate the distance between collisions in a
Monte Carlo calculation: x ¼ �l 
 ln rr where 0orro1 is
a random number. The dependence of l on bg is given in
Fig. 7. An approximation for the gas used in the ALICE
TPC (currently 85% Ne, 10% CO2 and 5% N2) is made by
using the CCS for Ne with a gas density r ¼ 0:00091 g=cm3

for the CERN altitude. A better approximation can be made
by including optical data for N2 and CO2 from Ref. [52].

3.2. Cumulative probability density function FðEÞ

For the Monte Carlo calculations described in Fig. 3, the
stochastic energy loss E for single collisions is selected from
the cumulative p.d.f. (also called cumulative distribution
function)

FðE; bgÞ ¼
Z E

sðE0; bgÞdE0
�Z 1

sðE0; bgÞdE0. (10)

Examples of FðE;bgÞ for Si are given in Fig. 8. The
dependence of these functions on bg is not large. For P10
gas, Figs. 6, 9 and 10, the dependence is even less.
Numerical tables can be found in Ref. [26]. This small
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for L2 electrons is 100 eV, for K electrons it is 1840 eV. Details for
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Ref. [26].
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1:0pbgp7:9 the difference between the functions is no more than the
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Fig. 10. Probabilities UðEÞ ¼ 1� FðEÞ for single collisions in P10 gas in

which the energy loss exceeds a value E for different bg in P10 gas.
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dependence of FðEÞ on bg can simplify Monte Carlo
calculations involving single collisions. For gases, to a
reasonable approximation, a single function FðEÞ can be
used for all speeds.
The equivalent functions F ðDÞ for energy losses D for

track segments are given in Section 5.2. They are used for
Monte Carlo calculations for energy losses along tracks.7

The complementary function UðEÞ ¼ 1� FðEÞ for P10
gas is given in Fig. 10. As an example for a track of total
length t ¼ 120 cm in STAR, the average total number of
collisions for bg ¼ 3:16 is mc ¼ tSt ¼ 120� 30 ¼ 3600
(Table 2). The number of collisions exceeding E1 ¼

10 keV is m1 ¼ Uð104; 3:16Þ �mc ¼ 1:4; Uð104; 3:16Þ ¼
�0:0004 is shown by the vertical and horizontal lines in
Fig. 10. For Si, Fig. 8, the energy loss for more than 90%
of all collisions is below 200 eV.
The macroscopic cross-section (collisions/cm) for energy

losses exceeding a value Er is

StðEr; bgÞ 	 N

Z Emax

Er

sðE; bgÞdE. (11)

It is equal to UðErÞ � StðbgÞ. If sðE;bgÞ from FVP is not
available, a 10% estimate of StðErÞ for large energy losses,
approximately 10pErðkeVÞ5Emax, can be made with the
approximation calculated with the Rutherford cross-
section, Eq. (1). Neglecting the term b2E=Emax it is

RSt ðErÞ�153
rZ

b2A

1

Er
¼

y

b2ErðkeVÞ
(12)

in units of 1/cm, Er in keV, and with y ¼ 0:064 for Ne,
y ¼ 0:114 for Ar and y ¼ 178 for Si. For example, for b�1
and Er ¼ 10 keV in Ar, StðErÞ ¼ 0:011=cm, and, on the
average, only one collision with E410 keV will occur on
a track of length t ¼ 90 cm. (See Section 9, also see Fig. 9
or 10).

3.3. Moments of collision cross-sections, stopping power and

sum rules

It is useful to consider the moments of sðEÞ. Here they
are defined by Refs. [18,28,54]

MnðbÞ 	 N

Z
EnsðE; bÞdE. (13)

A sum over excited states is included in the integral. In
general, sðEÞ will have finite values over a certain range of
values of E and will be zero elsewhere, thus no limits need
to be defined for the integral.8 If the collisions are
statistically independent, the moments are related to
experimentally observed quantities.
The moment M0 is the total CCS St (Section 3.1). M0 is

the most important parameter for the calculation of
7Monte Carlo calculations are described in Section 4.4.
8The Rutherford cross-section is an exception. For M1, the limits Emax,

Eq. (1), and Emin�I2=Emax are usually used. For M0 no plausible lower

limit is available, see Section 4.5, but Eq. (15) might be of use.
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straggling functions. Its magnitude is determined almost
completely by energy losses Eo1000 eV, as shown in
Figs. 8–10. Theories for M0 can be found in Refs. [28,36,45].
The moment M1 is usually called the stopping power
�dT=dx, where T is the kinetic energy of particles. It can
be calculated with the Betha–Bloch equation, in Ref. [1,
Eq. (27.1)].9

The moments are obtained as an incidental result of the
calculation of sðEÞ in Sections 2.2 and 2.3. M0 and M1 for
P10 are given in Figs. 24 and 25. M1 agrees to 1% with the
ionization stopping power found in Ref. [38]. Note that in
Ref. [38] other contributions to dE=dx appear for bg4100,
see Appendix I. The mean energy loss hDi in an absorber of
thickness x is hDi ¼ xdT=dx. Values are given in Figs. 13,
14, G.1 and G.2, where it is seen that hDi, and the higher
moments, are not useful in the current context [54,57,58].
The partial (restricted) stopping power Sr is given by

SrðE; bÞ 	 N

Z E

E0sðE0; bÞdE0. (14)

The mean energy loss per collision given by

hEi ¼M1=M0 (15)

varies slowly with particle speed for bgo100. It might be
useful for estimates of general features of straggling
functions for absorbers where M1 is known.10 A useful
quantity in the calculation of CCS is the moment of the
DOS f ðE; 0Þ

S0 ¼

Z
f ðE; 0ÞdE (16)

which usually is called the Thomas–Reiche–Kuhn sum rule
[45]. It should equal the atomic number of the absorber and
can be used as one of the checks for the reliability of the
computer programs. Equally useful is the mean logarithmic
excitation energy I defined by Ref. [28]

log I ¼

Z
f ðE; 0Þ logE dE. (17)

It should agree with tabulated values [39,40]. Values of I

have been calculated for some materials [59,60] but
originally were derived from experimental measurements
of dE=dx [55,61,62].

4. Calculation of straggling (‘‘Landau’’) functions

Energy loss distribution functions f ðD; x;bgÞ (also called
energy loss spectra) are usually called straggling functions,
and the expression ‘‘Landau function’’ here refers specifi-
cally to the function derived from the Rutherford cross-
section [2,17,18], see Fig. 1. In particle physics, the name
‘‘Landau function’’ is used generically to refer to all
straggling functions. For a good understanding of strag-
9Eq. (27.1) in Ref. [1] is an approximation for M1 valid for large speeds,

say b40:2. For bo0:2 a complete theory is given in Refs. [38,40,46,55,56].
10For P10, Table 2, hEi ¼ 85 eV� 10% for 1obgo200, for Ne

hEi ¼ 125 eV� 10%, for liquid water hEi ¼ 65 eV� 10%.
gling functions it is useful to consider separately the
distributions of the number of collisions in a segment x

(Section 4.1), and the energy loss spectra for multiple
collisions (Section 4.2). These are the energy loss spectra of
particles which have made exactly n collisions in a segment.
For very thin absorbers the Poisson distribution dominates
the shape of the straggling function, Fig. 2 and Ref. [5].
Methods to calculate straggling functions are described in
Sections 4.3–4.5.

4.1. Poisson distribution

An important feature for the understanding of straggling
functions is the Poisson distribution giving the distribution
of the number of collisions in a segment x [16,18]

PðnÞ ¼
mn

c

n!
e�mc (18)

where PðnÞ gives the fraction of particles suffering n

collisions, and mc ¼ xSt ¼ xM0 ¼ x=l is the average
number of collisions for all particles.
The mean value for PðnÞ is mc, and the standard

deviation is s ¼
ffiffiffiffiffiffi
mc
p

, with a relative width s=mc ¼

1=
ffiffiffiffiffiffi
mc
p

. Note that the large difference in the FWHM
between straggling functions and the Landau function in
Figs. 1 and 13 is in part due to the difference in mc; see
Section 4.5.

4.2. Energy loss spectra for multiple collisions

The spectra for multiple collisions can be calculated by
convolution. The n-fold convolution of the single collision
spectrum sðEÞ is obtained by iteration

sðDÞ�n ¼
Z D

0

sðEÞ 
 s�ðn�1ÞðD� EÞdE with

sðDÞ�0 ¼ dðDÞ and sðDÞ�1 ¼ sðEÞ. ð19Þ

Here, the particle speed v is implicit as a parameter.
Examples of convolution spectra of Eq. (19) for P10 are
given in Fig. 11. Note the large reduction of the 12 eV spike
for n ¼ 2, and its complete disappearance for n ¼ 3. The
spectra for Si are given in Fig. 12.

4.3. Analytic calculation of straggling functions f ðD; x; bgÞ
for segments

Accurate straggling functions can only be obtained with
the use of the CCS described in Sections 2.2, 2.3 and
Appendix J. A convenient and accurate method to
calculate f ðD; x;bgÞ is with convolutions [5,10,16,18], with
mc ¼ xStðvÞ

f ðD; x; vÞ ¼
X1
n¼0

mn
ce
�mc

n!
sðD; vÞ�n. (20)

A more practical and faster method is described in Ref. [18].
It has been used for the calculations described here. There
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Fig. 12. Same as Fig. 11, but for solid Si, and for n up to 5. The plasmon

peak at 17 eV appears in each spectrum at 17n eV, and its FWHM is

proportional to n. The structure at �2 eV appears at 2þ 17ðn� 1Þ eV, but

diminishes with increasing n. For n ¼ 6 (not shown) the plasmon peak (at
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12Monte Carlo calculations (Section 4.4 and [63]), with sufficient

statistics [26], as well as Laplace transform methods with sðE; vÞ (Section
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are no simple analytic functions which represent straggling
functions. Calculations with the analytic methods are fast.
For the study of the performance of detectors many
straggling functions will be needed. While they can be
calculated quickly11 it may be more efficient to store
straggling functions as numerical tables on a computer.
This is the approach currently used for the STAR TPC:
straggling functions for 0:1obgo1000 and many segment
lengths x are stored [67].

An alternative approach is the method of scaling based
on the similarities of straggling functions as discussed in
Section 8. A modification useful for some calculations was
11With a 2GHz CPU, the calculation of a straggling function for one

segment takes 0.5 s.
described by Williams [4]. The cumulative function
F ðD; x; vÞ defined in Section 5.2 is used for applications.12

4.4. Monte Carlo calculation of straggling functions

An actual simulation of the traversal of a particle through
a segment of length x can be done with a Monte Carlo
calculation, as shown in Fig. 3. In Monte Carlo calcula-
tions, the interactions occurring during the passage of the
particles through matter are simulated one at a time,
collision by collision, and include secondary collisions by
the d rays [29]. A particle j travels random distances xi

between successive collisions, calculated by selecting a
random number rr and determining the distance to the next
collision from the mean free path l given by Eq. (9)

xi ¼ �l ln rr ¼ �ðln rrÞ=StðbgÞ. (21)

The energy loss Ei is selected with a second random
number from the integrated collision spectrum of Eq. (10)
or Figs. 8 and 9. This process is repeated until

P
xi exceeds

the segment length x. The total energy loss Dj of the
particle is Dj ¼

P
i Ei. To get Ei practically, the inverse

function EðF; bgÞ of FðE; bgÞ is calculated with cubic spline
interpolation [26]. The straggling function f ðDÞ is obtained
by binning the Dj. The method suggested for the ALICE
TPC in Ref. [23, Section 7] is described in Appendix J and
in Ref. [26]. The calculation of straggling functions for
tracks is described in Section 6.

4.5. Landau–Vavilov calculation of straggling functions and

modifications

This section concerns the reasons for the difference
between the Landau function13 and the functions calcu-
lated here. In particular, the difference in the number of
collisions mc leading to the broadening of f ðDÞ seen in
Fig. 1 is discussed (also see Ref. [18, Appendix H]). In the
Landau–Vavilov calculations [5,17,18,37] Laplace trans-
forms were used to solve the transport equation for the
Rutherford cross-section, Eq. (1). In order to get the
correct non-relativistic asymptotic stopping power M1,
Landau used the conventional values Emin ¼ I2=2mv2 and
Emax ¼ 2mv2 [28] to calculate M1, Eq. (13).
Neglecting the term b2E=Emax in Eq. (1) and setting

z ¼ 1, we get for M1

M1 ¼
k

b2
r

Z

A
ln

Emax

Emin
¼

k

b2
r

Z

A
2 ln

2mv2

I
(22)

where I is defined in Eq. (17), and M1 equals the Bethe
result [44] without shell-, Barkas- and Bloch-corrections.
4.5 and [5,17,37]) have been shown to give results identical to the

convolutions [26].
13The Vavilov straggling functions [5,37] were also derived from Eq. (1).

For the thin absorbers described here they differ little from the Landau

functions.
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16With the notation used in this paper, the stopping power must be

called dT=dx, where T is the kinetic energy of the particles. Instead I use

the expression M1, Eq. (13). The expression dE=dx is used wherever

reference is made to the common use of the Bethe–Bloch expression.

Comments about the uses of the symbol dE=dx for energy deposition,

ionization, ADC output etc. are made in the Introduction.
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For the CCS we get14

RM0 ¼
k

b2
r

Z

A

1

Emin
�

1

Emax

� �
�

k

b2
r

Z

A

2mc2b2

I2

¼ kr
Z

A

2mc2

I2
. ð23Þ

Thus RM0 does not depend on v. Values for Si are

RM0 ¼ 6� 106 collisions=cm, for Ar 3600 collisions/cm.
They are much larger than the values of M0 given in
Tables 1 and 2. For example, for bg ¼ 3:6 in Si,
M0 ¼ 4� 104 collisions=cm. Therefore, the relative width
s ¼ 1=

ffiffiffiffiffiffiffiffiffi
ðmcÞ

p
of the Poisson distribution, Eq. (18), for the

Rutherford cross-section result is much less than that for
the realistic cross-sections. As a consequence the Landau
function in Fig. 1 is much narrower than the straggling
function. With increasing x the differences in w diminish,
see Ref. [18, Fig. 15].

Straggling functions could be calculated with Laplace
transforms for the spectra given in Figs. 5 and 6, but the
integrations would be tricky and tedious [27,54]. The
results would be the same. In order to achieve reduced
values of M1 relating to the fact that large energy losses
cannot deposit all their energy in thin absorbers, the
maximum energy loss Emax in Eq. (22) can be replaced by
EroEmax, leading to a ‘‘restricted mean energy loss’’.
Calculations have been made with ‘‘restricted energy
transfers’’; see Ref. [1, Eq. (27.7)]. In the non-relativistic
approximation this leads to a modified Eq. (22), viz.

RM1 ¼
k

b2
r

Z

A
ln
2mv2Er

I2
(24)

where Er is the same as Tcut in Ref. [1, Eq. (27.7)].15 It is
then possible to obtain the experimental values of Dp by
choosing Er [64]. A comparison with Landau’s equation
for Dp (Eq. (36)), written in a form equivalent to Eq. (24),
i.e.

Dp=x ¼
k

b2
r

Z

A
ln
2mv21:45kx

I2
(25)

shows that Er, according to Landau [2], would have to
equal 1:45 k x, i.e. it would depend on segment length x.
For the calculation of RM0 (Eq. (23)), replacement of Emax

by Er would not remedy the problem with mc described
below Eq. (23): typical values of Emin are less than 1 eV and
the term 1=Er would be negligible in Eq. (23).

A modification of the large value of RM0 of Eq. (23) can
be achieved by ‘‘considering the influence of the quantum
mechanical resonances,’’ Blunck and Leisegang [41,65],
later studies in Ref. [5,27,42]. The discrepancy between the
Blunck and Leisegang calculation, experiment, and FVP
calculation was explained in Refs. [18,66, Fig. 11]. A short
description is given here. The inclusion of a ‘‘resonance’’
correction K2

r for M2 given by Blunck and Leisegang in
14For b240:1 the relativistic correction is very small.
15It is not clear how the density correction, Eq. (36), should be modified

in this approach.
effect results in a convolution of the Landau- (or Vavilov
[37]-) function with a Gaussian of width corresponding
to K2

r which will shift Dp and reduce the asymmetry of
the straggling function as can be seen in Refs. [5, Fig. 2,18,
Fig. 11]. From Eq. (19) it is clear that the largest possible
energy loss for a given D is E ¼ D. This will restrict the
effective value of K2

r used, see Ref. [18, Appendix G,
Fig. 11]. The inclusion of higher moments considered by
Blunck and Leisegang leads to divergences discussed in
Ref. [54].
5. Examples of straggling functions for segments

5.1. Properties of straggling functions

To define the concepts of most probable energy loss Dp

and FWHM w and to examine the concept of mean energy
loss, a function f ðD; x; bgÞ calculated with convolutions is
given in Fig. 13 for ionizing particles with bg ¼ 3:6
traversing a segment of length x ¼ 1:2 cm in Ar. The mean
energy loss is given by hDi ¼ xM1ðbÞ ¼ 3044 eV ðM1ðbÞ is
the Bethe–Bloch function, in Ref. [1, Eq. (27.1)]16); it is
about twice Dp, also see Table 2. The mean energy loss
calculated for the part of f ðDÞ shown in the figure (i.e.
for 0oDo5000 eV) is hDir ¼M1ð5000 eVÞ=F ð5000 eVÞ ¼
1723½eV�=0:9358 ¼ 1841 eV, Eqs. (26) and (27). It is 35%
larger than Dp, also see Figs. 18 and 19. For present
purposes, f ðDÞ is the same for all particles with charge �1
and the same bg.17

Functions for several x are shown in Fig. 14: the ratio of
Dp=x to the Bethe–Bloch mean energy loss hDi=x increases
with x (also see Fig. 25). For a sensible analysis of
ionization in segments, we should use the most probable
energy loss Dp and the FWHM w as the parameters
associated with f ðDÞ. Because of the change in shape of
f ðD; xÞ with x shown in Figs. G.1 and G.2, the para-
meters Dp and w have a complex dependence on x, as
shown in Fig. 15. The dependence of f ðDÞ on gas pressure
is shown in Fig. 16.18 The relation between energy
loss D, energy deposition D and ionization J is discussed
in Section 9.
Fisyak [67] has used z ¼ logðD=xÞ as the energy loss

variable. An example of f ðzÞ is shown by the solid line in
Fig. 17. The Gaussians shown in the figure are equivalent
to the Johnson functions [68] (one of several functions
discussed by Tschalär [58]). The use of tabulated reference
straggling functions with the two parameter scaling
17For E4100keV, electron spectra begin to differ from the spectra for

heavier particles, see Appendix F.
18The ‘‘density dependence’’ shown in Ref. [16, Fig. 1.20] is mostly

related to the change in effective track length exemplified for Dp in Fig. 25.
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The Landau function [2] is given by the dotted line. The cumulative

straggling function, F ðDÞ Eq. (26), is given by the dashed line. Parameters

describing f ðDÞ are the most probable energy loss Dpðx;bgÞ, i.e. the

position of the maximum of the straggling function, at 1371 eV, and the

full-width-at-half-maximum (FWHM) wðx;bgÞ ¼ 1463 eV. The para-

meters Dl and Du can be used for the scaling procedure of Section 8.

Mean energy loss hDi and hDir, Eqs. (26) and (27), are discussed in the text.
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Fig. 16. Straggling (energy loss) functions f ðDÞ for particles with

bg ¼ 100, for x ¼ 2 cm at a pressure of 5 atm: dotted line, and x ¼

10 cm at 1 atm: solid line. The shift is caused by the ‘‘density effect,’’ Eqs.

(7) and (36). Also see Refs. [69,16, Figs. 1.20 and 9.3]. The values of Dp are

20.23 and 20.9 keV (3.3% different), and w ¼ 9:728 and 9.595 keV, a

difference of �1:4%. Also see Section 7.2.
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described in Section 8 gives closer approximations to
measured functions in the TPC than these analytic
functions and therefore is used in this paper.
5.2. Cumulative straggling functions F ðD; x; bgÞ

For the Monte Carlo simulation of full particle tracks
(Section 6) the cumulative straggling functions F ðD; x;bgÞ
for segments are needed. They are obtained with

F ðD;x;bgÞ ¼
Z D

f ðD0; x;bgÞdD0 and F ð1; x;bgÞ ¼ 1.

(26)
An example is given as F ðDÞ in Fig. 13. The corresponding
expression for the mean energy loss is

M1ðD; x;bgÞ ¼
Z D

Df ðD0; x; bgÞdD0=F ðD; x;bgÞ (27)

where M1ð1; x;bgÞ is the Bethe–Bloch result x 
 dE=dx. In
a TPC there are restrictions limiting the maximum
observable energy loss in a cell: the dynamic range of the
ADCs is restricted, and the range of delta-rays may exceed
a practical cell volume. For measured spectra it will be
difficult to determine the appropriate upper limit of the
integral, and the comparison of experiment and calculation
with cumulative functions M1ðDÞ for segments may be
inaccurate.
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Fig. 19. Solid line: the straggling function f ðDÞ, (Eq. (20)), for particles

with bg ¼ 3:9 traversing x ¼ 0:75 cm of Ne. The straight part of the

function between 1.4 and 2 keV is caused by energy losses to K-shell

electrons ðIK ¼ 867 eVÞ. The mean free path for these collisions is 8 cm.

The dashed-dotted line gives the function without these collisions. The

cumulative functions F ðDÞ, (Eq. (26)): dotted line, and M1ðDÞ=M1ð1Þ,

(Eq. (27)): dashed line. M1ð1Þ ¼ 1:43 keV=cm is the Bethe–Bloch value of

x 
 dE=dx. Also see Fig J.3.

19In the measurements in a TPC the ADC output Q, equivalent to the

ionization J in each segment, is measured and recorded, see Sections 1 and

9–11. Q is the result produced by the energy loss D, as described in Section

1.1.
20In many publications Cj is designated as dE=dx. In Ref. [16] it is

called an estimator hSiZ.
21The optimum value of the ‘‘truncation fraction’’ f r is between 0.5 and

0.7 and depends on the track geometry.
22Calculations have been made for as many as 107 tracks. For each bg

this takes about 80 s with a 2GHz CPU.
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The functions f ðD; x; bgÞ, F ðD; x; bgÞ and M1ðD;x;bgÞ for
P10 gas are given in Fig. 18 and for Ne in Fig. 19. Clearly
the use of M1ðD; x;bgÞ cannot be expected to provide useful
information about the parts of f ðDÞ relevant for PID.
When only part of the segment spectra is available for the
energy loss calibration of a TPC, the use of M1ðDÞ would
produce larger errors than the use of f ðDÞ or F ðDÞ.

6. Straggling functions for particle tracks

The trajectory of a charged particle through a detector is
called a track, with a length t. In principle the distribution
in total energy loss along the track can be calculated with
the convolution method (Section 4.3). Such functions are
not useful for PID because of the long tail of large energy
losses. Therefore, tracks are divided into segments of length
x, with the number of segments equal to ns ¼ t=x and the
ionization is recorded for each segment. For each track a
compound ‘‘descriptor’’ (defined in Eq. (28)) is determined.
Frequently used descriptors are the ‘‘truncated mean’’ and
a likelihood number. Calculations of straggling functions
for particle tracks are made for energy losses only.19
6.1. Calculations of specific energy losses D=x and

descriptors C for tracks

A simulation of the energy losses along a particle track is
made with a Monte Carlo calculation similar to the one
described in Section 4.4, but rather than using energy losses
for each collision a total energy loss Di for each segment i is
selected at random from the integral straggling function
F ðD; x; bgÞ for segments, Eq. (26). For each track j the ns

values of Di are assembled into a descriptor Cj. The
primary descriptor used here is the truncated mean. To
calculate the truncated mean Cj

20 for track j, the ns

segment values Di=x are sorted according to size and a
reduced number nt ¼ f rns

21 of the smallest segment values
is summed and averaged22

Cj ¼ ð1=ntÞ
Xnt

1

Di

x
. (28)



ARTICLE IN PRESS

0.05

0.04

0.03

0.02

0.01

0.00

f(
C

)

1.0 1.2 1.4

C(keV/cm)

1.25

1.00

0.75

0.50

0.25

0.00

f(C) M2(C)

M1(C)

M
1(

C
),

 M
2(

C
)
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The change of segment lengths x due to the curvature of
the tracks, see Appendix D, is assumed to be negligible or
averaged.23 It is a disadvantage of the truncated mean that
some information about the tracks is disregarded. On the
other hand distortions in the registration of large energy
losses will be unimportant. A great advantage is that no
calculated straggling functions for segments are needed for
the determination of C from experimental data.

The likelihood descriptor z is obtained by calculating the
maximum value of the likelihood function [10, Eq. (45)]

LjðzÞ ¼
Yns
i¼1

f ðDi=z; x; bgÞ (29)

where f ðDi; x;bgÞ is the energy loss straggling function for a
single segment for a selected bg [10]. The one-parameter
scaling of Section 8.1 (Fig. 29) is implied here by the use of
the factor z. In practice the logarithm of Eq. (29) is used

lnLjðzÞ ¼
X

ln f ðDi=z; x; bgÞ. (30)

There are disadvantages to the likelihood method:
(1)
23

Di d

use

Eq.
24

25
Straggling functions f ðD; x;bgÞ for segments must be
known;
(2)
 in a TPC large energy deposition values may be
different from large energy losses, see Fig. 42; this
might be remedied by replacing energy loss spectra
f ðD; x;bgÞ in Eq. (30) by energy deposition spectra
gðD; x; bgÞ;24
(3)
 in Eq. (29) one-parameter scaling of the straggling
functions is used, which does not take into account
the change in shape implicit in Fig. 29 and explicit in
Fig. 30.25
Fig. 32 suggests that the determination of LðzÞ with two-
parameters a and b might be a better method

lnLjða; bÞ ¼
X

ln f ððDi � aÞ=b; x; bgÞ. (31)

The likelihood method will not be considered further.
For a large number of tracks the truncated mean values

Cj are binned and accumulated into a pdf or straggling
function for tracks f ðC; bg; tÞ as shown in Fig. 20 for a
STAR TPC ‘‘reference track’’ consisting of 12 inner
segments with x ¼ 12mm and 25 outer segments with
x ¼ 20mm. This pdf has only a short tail of large energy
losses and the moments Mn, Eq. (13), specifically Eqs. (32)
and (33) reach asymptotic values quickly and thus are
useful.
Conceptually it would be preferable to use two-parameter scaling for

escribed in Section 8.2, Fig. 33. I have not tried to do this so far. The

of Di=DpðxÞ (i.e. one-parameter scaling) did not change the resolution,

(41) (Section 13.2).

The delta-ray escape would also have to be included.

This might cause problems in ALICE-TPC.
For n tracks the moments are defined by26

M1 ¼ hCi ¼
Xn
j¼1

Cj

n
, (32)

M2 �M2
1 ¼ s2 ¼

Xn
j¼1

C2
j

n
� hCi2. (33)

The calculated straggling function for the reference
track, the corresponding cumulative functions and a best-
fit Gaussian are shown in Fig. 20. Other examples are given
in Figs. 37–39 and 43–47. The relation between energy
losses, energy deposition, measured ionization and ADC
output Q in the TPC is discussed in Sections 1, 9, 10 and
Appendix D. The corresponding functions for tracks are
not calculated here because they depend on the geometry of
the tracks inside the TPC and on corrections which are not
well known.

6.2. Dependence of truncated mean values on track lengths

and number of segments

For a PID analysis with truncated mean values, there
will be a near periodic fluctuation of the values of hCi with
the number of segments ns caused by the rounding of f rns

to an integer. Its period depends on the truncation fraction
f r. An example is shown in Fig. 21 for tracks in STAR-
TPC composed of 12 inner and 10–32 outer segments, for
bg ¼ 3:6 and f r ¼ 0:7. The s of Eq. (33) is also given. The
overall trend of hCi increasing with ns depends on track
composition. It is shown for bg ¼ 0:5; 3:6 and 15 in Fig. 22.
26
hCi will be called an average value to avoid confusion with the

truncated mean value C.
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The trend is the opposite for tracks consisting of outer
segments only, x ¼ 2 cm, shown in Fig. 23. The values are
normalized at the highest ns.

From Fig. 21 we see that hCi has an inherent uncertainty
of about �1% on top of the overall trend seen in Fig. 22.
For the longer tracks hCi is almost constant and an average
value can be used rather than the exact value for a given t.
For Fig. 22, for 50ptp80 cm the values of hCi deviate by
only �0:3% from the value hCiðt0 ¼ 62 cmÞ ¼ 1:158. For
Fig. 23 with hCiðt0 ¼ 50 cmÞ ¼ 1:193 the same is the case
for 40ptp70 cm. In general the change of hCi with track
length for t420 cm is a few %, but is about 5% for
10oto20 cm. The change of s with t can be represented by

sðtÞ ¼ s0=ts (34)
where 0:45oso0:55. For Figs. 21 and 22 s�0:49, for
Fig. 23 s�0:53. Values of hCi and s for several track
lengths and particle speeds are given in Table 3. The largest
difference between two values of hCi is 10% at bg ¼ 3:6 for
t ¼ 62 cm and t ¼ 103:3 cm.
7. Dependences of Dp; hCi;st and w on bg and gas pressure

7.1. Landau and Bethe–Bloch functions

It has been known for a long time and can be seen in
Figs. 1,2,13 and 14 that the mean energy loss hDi ¼ xM1 is
not a suitable quantity to describe straggling functions for
thin absorbers. Thus the Bethe–Bloch expression giving M1

(e.g. [1, Eq. (27.1)]) is not appropriate for the description of
energy loss in thin absorbers. Attempts have been made to
‘‘parameterize’’ this function, e.g. with Eq. (24), such as to
produce Dp. Landau [17] did point out that the most
probable energy loss is the appropriate parameter. Based
on the use of the Rutherford cross-section, Eq. (1), he gave
an equation for the most probable energy loss

LDp ¼ x log
x
�0
þ 0:37

� �
(35)

where x ¼ x 
 k=b2, Eq. (1), �0 ¼ I2=ð2mc2b2g2Þ, I is the
logarithmic mean excitation energy of the absorber
(Eq. (17) and [40]) and �0 is the Emin of Eq. (22). For
present purposes this can be written [18,70,71] as

LDp ðx; bÞ ¼ x ln 2mc2b2g2 � ln I þ ln
x
I

�

þ0:2000� b2 � dðbÞ
�

ð36Þ

where dðbÞ represents the density effect correction.
This expression contains the segment length x in the

logarithmic term, thus LDpðbgÞ=x depends on x, which
qualitatively explains the behavior seen in Fig. 14. For
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Table 3

Parameters for the STAR TPC tracks with 10 ðt ¼ 20 cmÞ, 25 ðt ¼ 50 cmÞ outer segments, and with 10 inner segments and 25 outer segments (x ¼ 1:2 and

2 cm for t ¼ 62 cm, x ¼ 2 and 3.33 cm for t ¼ 103:3 cm). Units for hCi and s are keV/cm

t 20 cm 50 cm 62 cm 103.3 cm

bg hCi s hCi s hCi s hCi s

0.5 5.183 0.5352 5.108 0.3190 4.996 0.2726 5.321 0.2532

3.6 1.214 0.1686 1.193 0.1019 1.158 0.0886 1.274 0.0805

15 1.383 0.1800 1.360 0.1092 1.323 0.0830 1.452 0.0857

/ c
m

]

4
P10 gas

M0
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bg4500 in Si Eq. (36) is valid to �1% for x480mm, see
Ref. [18, Table V], but wL ¼ 4x [2] is too small for xo1 cm
[18, Fig. 15]. Eq. (36) is not practical to use because it
requires a separate calculation of dðbÞ.
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Fig. 24. The dependence of Dp=x (Bichsel functions) on bg for segments of

several lengths x (Table 2). Segment lengths x are marked at right. The

long-dashed line gives the Bethe macroscopic CCS M0=10 (collisions/cm),

the solid line gives the Bethe dE=dx ¼M1ðbgÞ (Eq. (13)).
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Fig. 25. Solid line: the dependence of the Bethe M1ðbgÞ ¼ dE=dx on bg,
Eq. (13). Dotted and short dashed lines: Dp=x for segments of length

x ¼ 2 cm and x ¼ 64 cm in P10. Long dashed and dash dotted lines:

M0ðbgÞ for P10 and Ne. All functions are normalized to the function Dp=x

for x ¼ 2 cm. The difference in M1 for P10 and Ne is small.
7.2. Bichsel functions

The Landau function LDpðbgÞ is an approximation which
does not include factors related to atomic structure, such
as seen in Figs. 5, 6 and G.2. A more realistic dependence
of Dp on x and bg must be obtained with the FVP or
the B–F cross-sections. Such calculations have been
made and results are given here, also see Ref. [26]. Note
that the density effect dðbgÞ is calculated implicitly in
Eq. (7). Functions Dpðbg; xÞ for single segments of Si
have been given in Ref. [1, Fig. 27.7]. Functions for
single segments with several lengths x in P10 are given in
Fig. 24. The same functions scaled to 1.00 at bg�3:5
are given in Fig. 25. A decrease of the relativistic rise of
Dp=x with increasing segment length x is seen. I have not
found a simple explanation for this effect. It is similar
to the measured decrease found with increasing gas
pressure [16, Fig. 1.20] (some of the decrease is due to
the effect shown in Fig. 16). Other examples can be found
in Refs. [71,72].

For tracks, the functions calculated are for average
values hCðbg; t; f rÞi of the spectra, Eq. (32), where f r is the
truncation fraction. Examples for P10 are given in Fig. 26
and in Table 5. The variations of hCi with t at a given
particle speed are described in Section 6.2.

The influence of the atomic structure on the dependence
on particle speed can be seen in comparisons with Landau
functions. They are shown for Ar in Fig. 27 and for Si in
Fig. 28. The analytic expression F gðvÞ given as Eq. (9.5) in
Ref. [16] has five parameters which will be enough to fit any
of the functions given here (see Eq. J.1).

Note the large change in the ‘‘relativistic rise’’ of StðbgÞ
with density:
�
 For Si, StðbgÞ is constant to 0.1% for bg416 (the
minimum);

�
 for P10 the relativistic rise is about 36% from bg�4 to
10,000;

�
 for Ne it is about 47% for the same range of bg (Table 2
and Fig. 25).
8. Scaling of straggling functions

As mentioned in Section 4.3 the similarity of straggling
functions can be used to reduce the number of tabulated
functions needed for a given purpose such as the PID
proposed in Section 13.3. This can be done with scaling
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reference track (see Fig. 22, Section 6.2). More details on the variation

with track length are given in Section 6.2.
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which is explored in this section. For straggling functions
calculated with the Rutherford spectrum it was shown by
Landau [17] that a single function fðlÞ [2] can represent all
functions f LðD; b;xÞ with the relation

l ¼ D=x� aLðb; xÞ specifically aLðb; xÞ ¼ ln x=�0 þ 0:423

(37)

where x and �0 are defined below Eq. (35) and the peak of
fðlÞ is at lp ¼ �0:222. As seen in Appendix G, straggling
functions for segments evolve with segment length from
complex forms into unimodal smooth functions, also see
[5]. For P10 this occurs at approximately 15mm ðmc�45Þ,
Fig. G.2. For x415mm, straggling functions for increas-
ing x are similar in shape. For a given particle speed this
follows from the similarity of the multiple collision spectra
seen in Figs. 11 and 12 and the similarity for large mc of the
Poisson distributions Eqs. (18) and (20). Similarity can also
be expected for different particle speeds because of the
similarity of the single CCS seen in Figs. 8 and 9. For the
comparison of experimental data for segments with
calculations, scaling can reduce the number of tables
needed. The principle is to use a few tables of ‘‘reference
functions’’ for suitable bg and x, then scale abscissas and
ordinates for other bg and x.
Scaling may be useful for simulations for curved tracks.

For studies exploring the scaling relations the ab initio
calculations of straggling functions must be used. One- and
two-parameter scaling are compared in this section. One-
parameter scaling is not a suitable approximation in
principle, Eq. (37). It is shown here because it has been
used heretofore, e.g. for the maximum likelihood calcula-
tions, Eq. (29).
Scaling for tracks will give better approximations than

for segments. In the examples shown in Figs. 36–41 the
abscissas for different functions are scaled to that of a
single reference function, shown by the solid line. for the
STAR TPC the ‘‘reference track’’ is for bg ¼ 3:6, and
consists of 12 inner segments with x ¼ 12mm and 25 outer
segments with x ¼ 20mm for a track length t ¼ 64:4 cm,
see Fig. 20. To show the similarities in shape clearly, the
ordinate scale is chosen such that the peaks are at the same
ordinate.

8.1. One-parameter scaling

Obtaining straggling functions for tracks, f ðC; t;bgÞ,
from a reference straggling function f ðC; t; ðbg0ÞÞ, is
implemented by multiplying the scale of the independent
variable C by a factor bðbgÞ.
For one-parameter scaling of tracks with fixed t, the

ratio of the mean values can be used: bðbgÞ ¼ hCðbgÞi=
hCððbgÞ0Þi, Table 5. Examples are shown for tracks with
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Fig. 29. One-parameter scaling for straggling functions f ðCÞ for particles

with different speeds traversing tracks with t ¼ 32� 2 cm of P10. The solid

line is for bg ¼ 3:6, the dashed line for bg ¼ 0:5, the dashed-dotted line for

bg ¼ 1, the dotted line for bg ¼ 15. The functions have been scaled to

coincide at the peak. Abscissa values C are for bg ¼ 3:6. Values for hCi are
in Table 5. The scaling factor bðbgÞ is defined in the text.
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Fig. 30. One-parameter scaling for straggling functions f ðDÞ for pc ¼

500MeV pions and kaons traversing x ¼ 7:5mm of Ne. The abscissa for

the kaon-function has been scaled so that its peak coincides with the pion-

peak. The shapes differ considerably, mainly due to the difference in the

mean numbers of collisions, Eq. (20), mcðpÞ ¼ 8, mcðKÞ ¼ 12, also see

Appendix G.
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of the cumulative functions F ðD; bgÞ for segments, Fig. 13, for different

particle speeds, see text. For two-parameter scaling the lines are
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32 segments of x ¼ 2 cm in Fig. 29. The functions are
different in shape because the scaled FWHM w are
different. Thus the use of one-parameter scaling would
lead to errors.

The differences are less for ðbgÞ4ðbgÞ0�3:6, and the
use of the maximum likelihood calculations, Eq. (30),
in e.g. NA49 was not as compromised as it is for STAR-
TPC.

A second example is the comparison for segments of
x ¼ 7:5mm in neon in Fig. 30. The shapes are quite
different due to the difference in mc, Appendix G. It would
be difficult to experimentally measure the shapes of these
functions accurately [73].27 On the other hand, for tracks
with x ¼ 7:5mm segments I have found no serious
problems for PID calculations with truncated means, but
have not made calculations with the maximum likelihood
approach [74].
approximated by straight lines D2 ¼ aþ b 
 D1. The abscissa D1 is for a

reference function with bg ¼ 3:7. Solid line: bg ¼ 1:43, dotted line:

bg ¼ 4:3, dashed line: bg ¼ 1:0.
8.2. Two-parameter scaling for segments

The next approximation is two-parameter scaling. In
order to see how good this approximation can be, the
following procedure is used. For a given x consider two
cumulative straggling functions F1ðD; x; ½bg�1Þ and
F2ðD; x; ½bg�2Þ. Find the values D1 and D2 for which
F1ðD1; x; ½bg�1Þ and F2ðD2; x; ½bg�2Þ are equal, and make
the graph of D2 versus D1, called a ‘‘scaling relation’’.
Examples for x ¼ 2 cm in Ar are shown in Fig. 31. The
lines seen can be approximated by straight lines
D2 ¼ aþ b 
 D1. Two-parameters, a and b, are needed. For
TPC calibrations with segments (Sections 11 and 14) the
most important part of the straggling functions is in the
region D‘oDoDu (Fig. 13) and the straight line can be
27For the innermost section of ALICE-TPC this must be kept in mind.
chosen through these two points (which define FWHM).
Then b is the ratio of the FWHM, b ¼ w2=w1.

28

A comparison of straggling functions with different bg
for x ¼ 2 cm in P10 scaled with this linear relation is shown
in Fig. 32, with details given in Table 4. The same scaling
method can be used for the dependence on segment length.
A comparison for bg ¼ 4:3 is given in Fig. 33. Examples of
the dependence on bg for Si-detectors are shown for
thickness x ¼ 300mm, Fig. 34 and x ¼ 8mm, Fig. 35.
Evidently two-parameter scaling of segments is useful for
track simulations if the truncated mean is used but
probably should not be used for likelihood simulations
(Section 6.1).
28For tracks, points farther apart might be more suitable (Figs. 37 and 38).
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Fig. 32. Two-parameter scaled straggling functions f ðDÞ for segment

length x ¼ 2 cm in P10 gas. Solid line: bg ¼ 3:7, dash-dotted line: bg ¼ 1:2
and dotted line: bg ¼ 0:7. Ordinate and abscissa scales are for bg ¼ 3:7.
The abscissae for other bg are DðbgÞ ¼ aðbgÞ þ bðbgÞ 
 Dð3:7Þ. The

cumulative function F ðD; 3:7Þ is also shown. The value F ðDÞ ¼ 0:7 which

is used to calculate the truncated mean for tracks is reached at D�3:8: the
differences between the functions f ðDÞ for D43:8 keV are not important,

see Table 4.

Table 4

Parameters D‘;w;Dp, f ðDpÞ of the segment straggling functions f ðD; bgÞ for
x ¼ 2 cm (calculated with Eq. (20)) shown in Fig. 32

bg D‘ w b a Dp f ðDpÞ

3.7 1.5925 2.0798 1.0 0 2.4100 0.3862

2.2 1.6916 2.1530 1.0352 0.043 2.5360 0.3700

1.2 2.3869 2.6026 1.2514 0.3941 3.4149 0.2984

0.7 4.5415 3.9403 1.8945 1.5245 6.0788 0.1929

The scaling factors are calculated with b ¼ wðbgÞ=wð3:7Þ,
a ¼ D‘ðbgÞ � b 
 D‘ð3:7Þ. The scaled values Dp ¼ aþ b 
 2:410 calculated

with scaling will differ slightly from the values in the table because of the

curvature of the lines in Fig. 31. The scaled values f ðDpð3:7Þ=bðbgÞ differ
by up to 6% from those in the table.
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Fig. 34. Two-parameter scaled straggling functions f ðDÞ and F ðDÞ for
x ¼ 300mm Si for bg ¼ 10: solid line, bg ¼ 1: dashed line. Functions for

1obgo10 lie between the lines shown. No amplifier noise is included. The

abscissa scale is for bg ¼ 10.
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Fig. 33. Scaled straggling functions for P10 for particles with bg ¼ 4:3 for

several segment lengths x. Two-parameter scaling is used so that D‘ and Du

coincide (see Fig. 13). Solid line: x ¼ 2 cm, dotted line: 4 cm, dashed line:

1.2 cm. The function for x ¼ 8 cm agrees within line width with that for

4 cm. See description given for Fig. 32. The variations in shape are due to

the evolution of f ðDÞ shown in Appendix G.
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dotted line: 0.7.
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8.3. Two-parameter scaling for tracks

For straggling functions obtained with the truncated
mean for a track the scaling relation for f ðC2; b2; t2Þ
relative to f ðC1; b1; t1Þ is

C2ðb2; t2Þ ¼ aðb2; t2Þ þ bðb2; t2Þ 
 C1ðb1; t1Þ. (38)

The approximation made with two-parameter scaling can
be assessed from the plot of the values C1 and C2 obtained
for equal values from F ðC2; b2; t2Þ ¼ F ðC1; b1; t1Þ. Such
functions are shown in Fig. 36 for b2 ¼ b1, t1 ¼ 64:4 cm
(the STAR reference track) and for t2 ¼ 38:4; 50:4; 74:4 cm.
The values of a and b were calculated for F1;2 ¼ 0:1 and
F1;2 ¼ 0:9 rather than the FWHM values. The correspond-
ing straggling functions f ðC2; 3:6; t2Þ scaled to
f ðC; 3:6; 64:4 cmÞ are shown in Figs. 37 and 38. Close
agreement is seen. The scaling with particle speed for a
fixed track length t ¼ 64 cm is given by the functions
f ðC2; 15; 64Þ and f ðC1; 0:5; 64Þ shown in Fig. 39.
The scaling coefficients for all speeds for t ¼ 40 cm and

t ¼ 62 cm are given in Table 5. Only one reference function,
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Fig. 37. Straggling functions for tracks of different lengths in P10 gas for

bg ¼ 3:6 scaled with two parameters to the reference function t ¼ 64:4 cm,

which is shown by the solid line. Functions for track lengths t ¼ 74:4 cm
and t ¼ 103:3 cm agree with this function within the linewidth. Tracks

with t ¼ 38:4 cm are represented by the dotted line. The truncation factor

is f r ¼ 0:6, see Table 5.
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Fig. 38. Same as Fig. 37, but with logarithmic ordinate. Solid line:

reference function ðt ¼ 64:4 cmÞ; dotted line: t ¼ 50:4 cm, dashed line:

t ¼ 38:4 cm. The functions for t ¼ 74:4 cm and t ¼ 103:3 cm differ from

the reference function by at most a linewidth. The differences in the tails

are the residuals of the effects described in Appendix G.
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Fig. 39. Straggling function f ðCÞ for P10 for track length t ¼ 64 cm (outer

segments only) and two particle speeds, solid line: bg ¼ 15, dashed line:

bg ¼ 0:5. Two-parameter scaling is used. The reference track as well as all

functions for 0:5obgo15 lie between the two lines.
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f ðC; 3:6; 64:4Þ, is needed to produce good approximations
for a wide range of t and bg. For short tracks consisting of
outer segments only and for bgo1, scaling to the reference
track does not give good results. This is evident from
the scaling relation shown in Fig. 40 and for the f ðCÞ in
Fig. 41. For short tracks and small bg different reference
functions are needed.

8.4. Practical implementation

Because of differences in parameters and shapes of
scaled functions seen in Figs. 30, 32, 33, 35, G.1 and G.2
scaling for segments must be used judiciously. For fairly
long tracks the differences are smaller, Figs. 21–23, 34,
37–39, and if an uncertainty of �1% for hCi and s is
acceptable, common scaling coefficients a and b can be
used for a range of track lengths t, as outlined in Section
6.2, based on Figs. 21–23.
For STAR-TPC to scale to the single reference track

f ðC; 64:4 cm;bg ¼ 3:6Þ such coefficients are given in Table
5 for tracks with t ¼ 40 cm (20 outer segments with
x ¼ 2 cm) and t ¼ 62 cm (10 inner segments and 25 outer
segments). The parameters Cr, a and b in the tables are
then valid for 30ptp60 cm and 50ptp80 cm. For s the
approximation with Eq. (34) in Section 6.2 can be used.
For short tracks, Fig. 41, scaling must be used with
caution. We see from Fig. 29 that one-parameter scaling
for segments should not be used. Two-parameter scaling
for segments, Figs. 32 and 33, may be adequate for some
applications (e.g. track calculations with the use of
truncated means), but for accurate calculations the original
functions should be used.
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Table 5

Mean values hCi of truncated mean track descriptors C, f r ¼ 0:6, their standard deviations s and scaling coefficients a and b for tracks of length

t ¼ 20� 2 cm (left 4 cols., Fig. 23) and t ¼ ð10� 1:2þ 25� 2Þ cm (right 4 cols., Fig. 22) in P10 gas as function of particle speed bg

bg t ¼ 40 cm t ¼ 62 cm

hCi s a b hCi s a b

0.400 7.4618 0.4911 1.0790 5.4988 7.2927 0.3688 2.4176 4.1969

0.440 6.3363 0.4246 0.7535 4.8085 6.1860 0.3200 1.9194 3.6732

0.484 5.4010 0.3739 0.5002 4.2222 5.2699 0.2844 1.5270 3.2230

0.532 4.6299 0.3304 0.3060 3.7252 4.5134 0.2519 1.2127 2.8426

0.586 3.9915 0.2947 0.1561 3.3051 3.8898 0.2226 0.9586 2.5251

0.644 3.4664 0.2615 0.0446 2.9489 3.3754 0.1982 0.7585 2.2542

0.709 3.0319 0.2361 �0.0372 2.6455 2.9510 0.1794 0.6036 2.0227

0.779 2.6753 0.2139 �0.1048 2.3965 2.6024 0.1624 0.4726 1.8355

0.857 2.3817 0.1954 �0.1571 2.1892 2.3154 0.1486 0.3658 1.6807

0.943 2.1416 0.1797 �0.1900 2.0105 2.0800 0.1371 0.2848 1.5479

1.037 1.9443 0.1672 �0.2242 1.8702 1.8877 0.1276 0.2179 1.4400

1.141 1.7831 0.1561 �0.2452 1.7498 1.7300 0.1196 0.1650 1.3497

1.255 1.6517 0.1473 �0.2612 1.6500 1.6018 0.1128 0.1237 1.2754

1.381 1.5451 0.1400 �0.2765 1.5716 1.4979 0.1075 0.0886 1.2160

1.519 1.4596 0.1340 �0.2861 1.5059 1.4143 0.1031 0.0647 1.1646

1.671 1.3907 0.1290 �0.2883 1.4489 1.3470 0.0993 0.0461 1.1228

1.838 1.3359 0.1254 �0.2973 1.4097 1.2939 0.0963 0.0265 1.0941

2.022 1.2933 0.1222 �0.2999 1.3750 1.2521 0.0940 0.0213 1.0624

2.224 1.2608 0.1198 �0.3000 1.3472 1.2202 0.0923 0.0088 1.0459

2.446 1.2360 0.1181 �0.3019 1.3276 1.1963 0.0909 0.0070 1.0267

2.691 1.2185 0.1167 �0.3029 1.3131 1.1792 0.0900 0.0010 1.0173

2.960 1.2066 0.1155 �0.3003 1.3007 1.1678 0.0892 0.0000 1.0084

3.256 1.1999 0.1151 �0.2990 1.2941 1.1610 0.0886 0.0016 1.0012

3.582 1.1967 0.1146 �0.2928 1.2856 1.1580 0.0884 0.0014 0.9989

3.940 1.1970 0.1144 �0.2919 1.2851 1.1586 0.0885 0.0009 0.9997

4.334 1.2002 0.1144 �0.2894 1.2859 1.1618 0.0885 0.0045 0.9994

4.767 1.2057 0.1147 �0.2895 1.2904 1.1675 0.0886 0.0070 1.0020

5.244 1.2135 0.1151 �0.2861 1.2944 1.1748 0.0888 0.0090 1.0066

Higher bg
5.000 1.2094 0.1147 �0.2856 1.2906 1.1708 0.0888 0.0098 1.0025

6.050 1.2279 0.1157 �0.2809 1.3022 1.1891 0.0895 0.0183 1.0108

7.321 1.2512 0.1169 �0.2713 1.3140 1.2123 0.0904 0.0274 1.0232

8.858 1.2786 0.1183 �0.2633 1.3307 1.2390 0.0916 0.0365 1.0380

10.718 1.3081 0.1199 �0.2540 1.3479 1.2681 0.0928 0.0514 1.0504

12.969 1.3396 0.1215 �0.2452 1.3676 1.2989 0.0941 0.0652 1.0650

15.692 1.3717 0.1231 �0.2328 1.3845 1.3308 0.0955 0.0813 1.0783

18.987 1.4048 0.1250 �0.2251 1.4064 1.3633 0.0969 0.0917 1.0975

22.975 1.4379 0.1267 �0.2156 1.4266 1.3960 0.0983 0.1076 1.1117

27.800 1.4714 0.1284 �0.2055 1.4466 1.4286 0.0997 0.1187 1.1303

33.637 1.5045 0.1305 �0.1970 1.4674 1.4612 0.1012 0.1322 1.1465

40.701 1.5376 0.1320 �0.1897 1.4900 1.4937 0.1025 0.1471 1.1617

49.249 1.5683 0.1338 �0.1787 1.5066 1.5241 0.1040 0.1581 1.1785

59.591 1.5969 0.1355 �0.1718 1.5255 1.5523 0.1054 0.1696 1.1929

72.105 1.6239 0.1370 �0.1720 1.5486 1.5784 0.1067 0.1765 1.2091

87.247 1.6487 0.1387 �0.1635 1.5628 1.6028 0.1081 0.1853 1.2227

105.569 1.6719 0.1407 �0.1639 1.5831 1.6258 0.1094 0.1908 1.2378

127.738 1.6944 0.1422 �0.1661 1.6046 1.6476 0.1107 0.1954 1.2526

154.563 1.7161 0.1437 �0.1623 1.6197 1.6685 0.1120 0.2012 1.2654

187.022 1.7361 0.1455 �0.1664 1.6401 1.6885 0.1133 0.2029 1.2810

226.296 1.7558 0.1472 �0.1663 1.6571 1.7075 0.1145 0.2044 1.2960

273.818 1.7742 0.1484 �0.1659 1.6729 1.7255 0.1157 0.2092 1.3075

331.320 1.7919 0.1501 �0.1713 1.6926 1.7423 0.1168 0.2095 1.3215

400.898 1.8077 0.1514 �0.1655 1.7011 1.7578 0.1179 0.2104 1.3344

485.086 1.8221 0.1528 �0.1746 1.7213 1.7719 0.1189 0.2114 1.3454

586.954 1.8350 0.1540 �0.1756 1.7329 1.7845 0.1199 0.2079 1.3593

710.215 1.8461 0.1552 �0.1852 1.7512 1.7953 0.1208 0.2083 1.3681

859.360 1.8557 0.1565 �0.1893 1.7631 1.8044 0.1216 0.2090 1.3755

1039.825 1.8635 0.1572 �0.1924 1.7724 1.8118 0.1223 0.2067 1.3839

1258.189 1.8699 0.1576 �0.1962 1.7807 1.8178 0.1228 0.2043 1.3910

1522.408 1.8750 0.1585 �0.1962 1.7857 1.8227 0.1233 0.2056 1.3943

Values for hCi;s and a are in keV/cm. The scaling parameters are in relation to the reference track t ¼ 64:4 cm ð12� 12mmþ 25� 20mmÞ and bg ¼ 3:6.
The variation of C due to the Monte Carlo calculation is of the order of �0:005 for a and b, �0:001 for hCi and s. Therefore, linear interpolation between

adjacent values should be used. For both t the coefficient b is within �1% equal to the ratio s/sr where sr ¼ 0:0885keV=cm. See Section 8.4 for practical

use.
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Fig. 41. Two-parameter-scaled straggling functions for P10 for one track

length t ¼ 20 cm for two particle speeds relative to the reference track

(bg ¼ 3:6, t ¼ 64:4 cm): solid line. Dashed line: bg ¼ 0:5, dotted line:

bg ¼ 15. Evidently different reference functions are needed for short

tracks.

29Particles with lifetimes of 1 ns or less which are produced in the

primary heavy ion collisions will not reach the TPC. Most of the particles

observed in the TPC will be ‘‘stable’’ (e, m, p, K ; p; d; t; . . .).
30To simplify the understanding of the process the ionization J is

discussed rather than the observed quantity Q, the ADC output (Section

1.1).
31The production of bremsstrahlung and other effects are discussed in

Appendix I.
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The implementation of scaling consists of reading a
reference table [26] of Cr, f ðCrÞ and F ðCrÞ (which is for
bg ¼ 3:6), select another value of bg and read aðbgÞ and
bðbgÞ from Table 5. The values of C for this bg are
CðbgÞ ¼ aðbgÞ þ bðbgÞ � Cr. In the new table Cr is replaced
by CðbgÞ, and f ðCrÞ and F ðCrÞ remain the same.

The functions for arbitrary (or selected) values of CðbgÞ
can be calculated with e.g. a cubic spline interpolation [75,
p. 86].

9. Energy loss, energy deposition and ionization

It must be understood that in each stage of the
conversion of energy loss D into the ADC output Q,
described in Section 1, a change in shape of the p.d.f.s and
therefore also in the most probable values Dp and FWHM
w will occur. These changes are described for TPCs in
Sections 9 and 10. A more detailed description has been
given by Lapique and Piuz [79]. For Si detectors they are
described in Ref. [14].
In the geometry of the STAR TPC [11,12] the z-direction

is defined by the central axis of the TPC which is also the
direction of travel of the heavy ions. Reaction products are
emitted in all directions, Fig. 3 in Ref. [12] and traverse a
variety of track lengths.29 The full trajectory of a particle
with pc41:5GeV emitted perpendicularly to the z-direc-
tion from the collision point at the center of the TPC to the
outer wall of the TPC has a length of about 2m. The
distance traversed in the TPC gas is about 1.5m. The
length of the observable ionization volume consists of 13
inner segments with x ¼ 12mm and 32 outer segments
with x ¼ 20mm for a total length of about t ¼ 80 cm [11,
Fig. 4]. For present PID purposes the track length is defined
as the summed length of the track segments from which the
ionization is collected. Depending on magnetic field B,
particle momentum p and angle with respect to the z-
direction the track length t can be much longer than 80 cm.
Ions and electrons are separated in the gas by an electric

field in the z-direction. The ions move slowly, but the
electrons are transported to the proportional counters at
the pad planes within less than 40ms. During the transport
of the electrons through the gas (as much as 2m in STAR
TPC) diffusion will introduce a displacement from the
straight trajectory along the electric field lines. The transit
time of the electrons is measured and gives the z coordinate
of the initial location of electrons associated with a
segment. The ionization J30 from a track segment is
summed over the widths of several pads in each pad row,
see Ref. [11, Fig. 4]. In order to determine the energy

deposition D we must define a volume V in which the
energy losses are collected. Such volumes, called cells in
Ref. [16], are defined next. The area of the pads in one pad
row covered by J from one track and the length
corresponding to the spread in arrival times of J at the
pads form an ‘‘observation volume V’’ around the track.
The length of V along the track defines the ‘‘track
segment’’.
For the following calculations we consider the volume V

surrounding a track segment to be a right cylinder with an
axis defined by the particle track, a projected length of the
axis in the x–y plane corresponding to the height of the pad
rows and in the z-direction corresponding to the spread in
arrival time at the pads. For collisions inside of V there are
three collision products which can deposit energy outside
of V. They are K-shell X-rays, delta-rays with ranges
exceeding the size of V and bremsstrahlung.31
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To consider the escape of X-rays we use the following
information. Only K-shell excitations of Ar are important.
The mean free path of X-rays with energy just below the K-
shell ionization energy EI ¼ 3:203 keV is approximately
4 cm in Ar at 1 atm [76]. The number of collisions, Eqs.
(10)–(12), at bg ¼ 3:6 for energy losses exceeding 3.2 keV is
0.036/cm ðl ¼ 28 cmÞ. In 80% of the collisions an Auger
electron with energy below 3 keV is produced [77,78], so
that the mean free path for X-ray production is 140 cm.
For Ne, the value is approximately 800 cm.32

The effect can be simulated with a Monte Carlo
calculation as shown in Fig. 3. As a simplification it is
assumed that all collisions with E43:2 keV are K-shell
excitations. It is then assumed that 80% will produce an
Auger electron (which will deposit its energy locally) and
that 20% will produce an X-ray which escapes from the cell
V. Two spectra are obtained simultaneously with the
Monte Carlo calculation: One with all the energy losses
(equivalent to the convolution calculation), f ðDÞ, the other
for the energy deposition for Eo3:2 keV, gðDÞ. The percent
difference of gðDÞ=f ðDÞ is given in Fig. 42, together with
f ðDÞ and gðDÞ. Thus the X-ray escape usually can be
neglected for truncated mean calculations.

The importance of d ray escape depends on the method
of evaluation of their ionization.33 For the truncated mean

value along a track, the largest energy loss included in f ðCÞ

can be obtained from Fig. 38 where Cmax ¼ 1:6 keV=cm. If
we assume in a primitive first approximation that a single

collision produced this energy loss in a segment of x ¼ 2 cm
its magnitude would be E ¼ 3:2 keV. The range of an
electron with this energy is about 0.2mm, Appendix E.
Therefore, for the evaluation of the truncated mean, a
primary ionization cell has a diameter of less than 0.4mm
which is much less than the extent of lateral diffusion. For
likelihood evaluations larger cells will occur.34

Another estimate of the magnitude of delta-ray escape
can be made from the probability of large energy losses
along a track. For a particle with bg ¼ 3:6 to produce a
delta-ray with E410 keV we get from Eq. (12) or Fig. 10 a
mean free path of 80 cm. On the average only one collision
per track will occur. The range for 10 keV electrons is
1.4mm, and in the 0.5 T magnetic field, the initial radius of
curvature is rc ¼ 0:7mm, Eq. (D.1). In effect the cell for
one segment of the track might then be greater than 2mm
in diameter, all others would be thinner.35 Usually the
enlargement of the cell size due to the diffusion of the
electrons will exceed the initial cell sizes [80]. It is left to the
32The variance of the counts in one ADC bin usually exceeds the

number of X-ray escapes per bin.
33Calculations of delta-ray escape have been made but are so far

unpublished.
34In an early study of likelihood analysis I found a reduction in overlap

if one or two large energy losses were excluded.
35The restricted energy loss for Ero10keV, Eq. (24), is only 80% of

dE=dx given by the Bethe–Bloch theory. On the average the 20% residual

energy loss will be produced by one collision with E410 keV per track.
reader to consider this effect on the detection, spatial
resolution and PID of the particles and their tracks.
The energy deposition by the fast particles leads to

ionization in the detector. The ionization process is
complex and only some information about it is given here
[16,81]. A collision of a fast particle in a gas will produce an
excitation (with a probability of about 20% in P10, see
FðEÞ in Fig. 6) or an ionization giving an electron–ion pair.
If the kinetic energy K ¼ E � EI (where EI is the ionization
energy of the gas) of the secondary electron (delta-ray)
exceeds EI, further electron–ion pairs will be produced
[16,79,82].36

Thus for gases, the ionization is produced by several
processes
�

3

1.4
3

nec
ionization by primary collisions, producing x 
 St 


ðFðEmaxÞ � FðEIÞÞ (Eq. (10)) ion pairs in a segment x,

�
 secondary ionization by the d rays with energies
exceeding the ionization energy EI of the atoms or
molecules,

�
 tertiary ionization by collisions of atoms and molecules
in excited states, Penning ionization etc.

Essentially there is no theory37 giving the relation
between energy deposition D and ionization J. An example
of the Penning effect in P10 is the ionization of a methane
molecule (ionization energy EI ¼ 12:6 eV) by Ar atoms in
excited states. In Figs. 6 or 9, 23% of the collisions have
energy losses less than the ionization energy of Ar
ðEIðArÞ ¼ 15:94 eVÞ, and 14% have losses between
EIðCH4Þ and EIðArÞ. Therefore, for the calculations used
6This happens for only 20–30% of all collisions [16, Figs. 9, 10 or Table

].
7Simulations can be made with Monte Carlo calculations but the

essary cross-sections may be unreliable or unavailable.
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here, all excitations are included in the calculation of CCS.
A more detailed description can be found in Ref. [81].

In order to calculate the number J of ion pairs produced
by the energy deposition D the approximation J ¼

D=W ðTÞ is used where W ðTÞ is the average energy needed
to produce an electron–ion pair by a particle with kinetic
energy T, usually measured experimentally [31]. We assume

that W ðTÞ is independent of T and particle type.38 As a
guess a variation of �2% might be used for the dependence
on bg, Figs. 56 and 57. An effect which must be considered
is that a discrete number of ion pairs is produced in each
segment [73]. Consider the smallest segments in ALICE
[24], Fig. 30: energy losses Do100 eV will produce only 0–4
ion pairs. The proportional counter and the ADC will
disguise this discreteness and may not register such small
values of J.

Similar processes occur in solids: an electron hole pair is
created by the primary collision and the secondary
electrons and holes can produce further ionizations.
Detailed descriptions of the process can be found in Refs.
[14,83]. The average energy for the creation of an electron
hole pair is also called W here (� elsewhere). It is about 2%
less for alpha particles than for protons with energies of a
few MeV. From Table IX in Ref. [18] it appears that this
difference might still exist at energies of several hundred
MeV. It is unexplained.39
10. Conversion of ionization into pulse-height

The stages from the production of ionization J in a TPC
to its conversion into pulse-height Q are described in
Section 1.1. More details can be found in Refs. [13,16, 1,
Section 28.7]. Information for STAR is given in Refs.
[11–13], for ALEPH in Ref. [85], for ALICE in Ref. [24].
Modifications of the ionization cloud40 during its transport
to the pad plane are caused by the loss of electrons due to
attachment to gas contaminants (O2, H2O). This electron
loss is corrected in the measurements [12,13,87]. Changes in
shape are caused by diffusion during the transport to the
pad plane. Diffusion should be taken into account in the
calculation of spectra: electrons initially belonging to one
segment of the track can drift into a neighboring segment
[74,80]. This and related problems have been studied for
the STAR TPC but no quantitative data are available [67].
Calculations have been made for the ALICE test TPC [74].
The effects have not been included in the calculations
38Insufficient data are available to calculate the dependence of W ðTÞ on

T. Customarily it is neglected. For the ionization by delta-rays of energy E

the value W is energy dependent [82], but the spectrum of low energy

electrons depends little on bg, Figs. 8 and 10, and we can expect that the W

for the total ionization should depend little on bg.
39It should be assumed that ionization products from surrounding

structures (e.g. SiO2 surface layers) will diffuse into the measurement

volume of the detector [84].
40In some papers the ionization cloud is called a ‘‘cluster’’. In others, a

cluster designates the ion pairs produced in a single collision, see Fig. 3,

and Section 1.2.4 in Ref. [16].
described here. For Si details of these effects are described
in Ref. [14].
A broadening of GðJÞ is due to the Fano fluctuations and

the variance of the gas multiplication factor (‘‘anode gas
gain,’’ [11, Table 3,16, Section 9.7]).41 For present purposes
we assume that these effects result in a Gaussian with a
width sQ given by Ref. [22]

sQ
Q

� �2

¼
Bn

J
(39)

where J is the number of ion pairs produced by one particle
traversing the gas and 0:5oBno1:0 a parameter defined in
Ref. [22]. This Gaussian is much narrower than f ðDÞ, see
Fig. D.1. About the conversion to pulse height I shall
assume here that there is a simple relation

J ¼ rþ s 
Q (40)

where Q is the channel number resulting from the linear

conversion of the analog signal of the multi-wire-propor-
tional counter (MWPC) into a digital value in an ADC,
and r is a ‘‘pedestal’’. During STAR-TPC data taking this
is frequently checked with ‘‘pedestal calibrations’’. One
aspect of the spacial dependence of the coefficients relating
J and Q is determined with the ‘‘laser calibration’’ [86]. At
STAR-TPC the problems of stability of electronics, loss of
drifting electrons, variable gas pressure, gas contamination
etc. are measured periodically. Several aspects are de-
scribed in Tang’s dissertation [87]. The quality of these
corrections can be seen in Fig. D.2.
11. Calibration and diagnostics of detectors

The energy calibration of a TPC is the assignment of an
energy deposition value D to a measured ADC value Q,
Sections 1.1, 10. The cleanest way to do this is with mono-
energetic radiation from radioactive sources [11,88]. It
would be desirable to use several sources with energies up
to say 20 keV to check the linearity of the gas amplification,
Appendix H. It may be more practical to ‘‘self-calibrate’’
the TPC by using the ionization produced by the particles
during the experiments. The calibration can be made by
using measurements of ionization spectra for segments or
for truncated mean values for tracks and comparing them
with calculated spectra (Section 14). From Figs. 13, 18 and
19 it is evident that for segments the mean energy loss and
its variance are not suitable for this purpose. The only
distinct features for a calibration for the segments are Dp

and w, but the use of the cumulative functions F ðDÞ could
also be tried. Practical evaluations are described in Section
14. For tracks the truncated mean values and the variances
are acceptable for a first approximation because the
straggling functions have only short tails, Fig. 20, but
41For a scintillation detector a broadening is introduced by the electron

multiplication. For a solid state detector the preamplifier will introduce a

broadening of GðJÞ due to electronic noise [14,18].
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problems seen in Figs. 58 and 59 must be taken into
account.

For Si detectors the calibration based on the W -value for
photons [27] resulted in experimental straggling functions
for which the average absolute values of Dp and w for many
detectors agreed with calculations based on the B–F theory
(Section 2.2) to �0:2%, with uncertainties of �2% for
individual measurements [18], also see Ref. [14].

For Ar, Ne and P10 I do not know of any independent
measurements of W for relativistic particles. Also, the
difference between the B–F and FVP calculations (Appen-
dix A) for most probable energy losses Dp is not known, see
Table 1. In addition, the uncertainty of the gas multi-
plication factor is not well known. A calibration must be
based on a combined factor for these parameters. It is
important to determine the gas amplification factor as a
function of the magnitude of J. It should not be assumed

that the ADC output Q is proportional to the ionization J

over a wide range of J, see Appendix H. I have enough
confidence in the theory presented here that I want to
suggest that the differences found between measurements
and calculations could be used as diagnostic tools to
determine problems in our understanding of the processes
in the TPC. Some differences will be caused by the effects
described in Sections 9 and 10, others seen in Section 14 are
unexplained.
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Fig. 43. Monte Carlo calculation of straggling functions f ðC; p; t;MÞ for
pc ¼ 0:6GeV particles along tracks of length t ¼ 78:4 cm (12 inner

segments with x ¼ 12mm, 32 outer segments with x ¼ 20mm of the

STAR TPC). The truncation factor is 0.6, so that 26 segments are used to

calculate the truncated mean energy losses C. The solid line shows the

combined spectrum for 106 pions and 50,000 kaons and electrons. The

separate functions are shown for 106 pions (short dashes, bg ¼ 4:3), 50,000
kaons (dashed line, bg ¼ 1:215), 5000 kaons (dotted line) and the same
12. Compounded spectra in TPC

Tracks in a TPC are made mainly by ‘‘stable particles’’,
i.e. particles with lifetimes exceeding 1 ns, such as electrons,
muons, pions, kaons, protons, deuterons and tritons [12,
Fig. 3]. Measurements for these tracks (Section 1.1) give
the ADC output Qi per segment xi of a track of length
t ¼

P
xi by a particle with momentum p. For each track

the descriptor Cj (Section 6.1) is derived. In current
literature the data Cj for many tracks are presented in
the form of a scatter-plot of ‘‘dE/dx’’ versus transverse

momentum pT, e.g. [11, Fig. 11, p. 676, 1, Fig. 28.5, p. 262,
69].42 The coordinate system of these scatter-plots gives a
distorted impression of reality for purposes of PID. Firstly,
the descriptor Cj representing the ionization measured
along the tracks is a finite quantity,43 not an infinitesimal
energy dE and is observed over a finite track length t. The
abscissa for the graphs should be the momentum p and not
pT: the transverse momentum pT of a particle can be
produced by particles with momenta as high as 1:6pT. This
increase in p may change hCi considerably (Table 5).

The ordinate for segments should be Q=x, but, as was
shown in Figs. 14 and 24, Q=x depends on x and graphs of
Q=x (or dE=dx) versus p should be made for small ranges
of x. Alternatively, two-parameter scaling (Section 8.2)
42The quantity dE=dx given in the usual scatter plots is the quantity Ci

defined in Eq. (28).
43It is advisable to calibrate Q with realistic simulations of D or C rather

than with the ‘‘Bethe–Bloch dE/dx’’ [67].
could be used. For tracks the ordinate should be C, Eq.
(28), and an increase in t may increase hCi by several %,
Figs. 21–23, 26. This can also be seen from a comparison of
Figs. 43–45: it appears inadvisable to consider broad bands
of momenta or track lengths for PID. For a comparison
between experiment and calculation x, t and p should be
measured along the actual trajectory of the particles and
for the calculations the corrections described in Sections 9
and 10 should be made. For curved tracks the segment
lengths will change along the track. No calculations have
been made for this effect. For the rest of this Section I
describe calculated examples of TPC data and therefore
shall use the truncated mean C for tracks as the
‘‘observable’’ quantity. The modifications incurred in the
conversion of D into Q (energy deposition and other
corrections outlined in Sections 9 and 10) are not made in
the calculations given here [11–13,67,74].
In order to give the reader an impression of the complexity

of PID, Monte Carlo simulations (Section 6.1) to obtain Cj

for 106 tracks have been made for pc ¼ 0:6, 0.7, 2 and
10GeV for the stable particles (except muons) defined above.
From Cj the straggling functions f ðC; t; pc;MÞ are accumu-
lated: Figs. 43–47. Monte Carlo fluctuations are seen in the
tails. For pc ¼ 0:6 and 0.7GeV a pion spectrum for 106

particles is shown, and two kaon and electron spectra are
shown for 50,000 and 5000 particles each. Spectra for pc ¼

2GeV are shown in Fig. 46 and for pc ¼ 10GeV in Fig. 47.
Here, arbitrary fractions of particles are given in order to
show clearly the location of the spectra. Readers are invited
to contemplate these figures to consider their own approach
number of electrons (dash-dotted and dash-double-dotted lines,

bg ¼ 1174). The binning in constructing the spectra is done with bins of

1 daeV ¼ 10 eV. Protons and heavier particles have C42:3keV=cm. The

vertical lines at 1.32 and 2.03 keV/cm are used for PID described in

Section 13.5. For kaons, s�0:115keV.
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Fig. 46. Equivalent to Fig. 43 but for pc ¼ 2GeV. The spectra for protons
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overlap of the functions, arbitrary numbers of particles are used.
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to PID. In particular I suggest that the overlap (Section 13.2)
will give a clearer indication of particle separation than the
use of standard deviations, Eqs. (33) and (41) and Table 5.
13. Particle identification PID with TPC measurements

13.1. Principles

PID means a determination of the number of particles of
each mass from experimental spectra of the type shown in
Figs. 43–47. PID is based on the fact that the momentum
of a particle of mass M is given by pc ¼Mc2bg, while
ionization depends on bg only. Momentum and ionization
of particles along their tracks are measured to determine
their mass M.
I am describing approaches to PID which are based on the

concept that the ADC output Q is calibrated with calculated
values such as Dp for segments or hCi for tracks. I expect
that calculated spectra Figs. 43–45 will closely resemble
measured spectra. This should be confirmed, see Section 14.
The effect of the corrections described in Sections 9–11

on the Dp and w for segments and hCi and s for tracks are
not included here. In a first approximation these correc-
tions are symmetric in shape, and we can anticipate that
they will cause only small shifts in converting Dp into Qp

and hCi into the corresponding ADC output Qt. An
increase of a few percent might occur for w of segments and
for s for tracks, [74], Appendix H.
13.2. Resolution, separation power and overlap

For tracks, the truncated mean value hCi and its
variance s, Eqs. (32) and (33) are used for PID in recent
papers. As a measure related to PID, the concepts
‘‘resolution’’ and ‘‘separation power’’ have been defined.
A description based on experimental data has been given
by Tang [87]. Resolution is defined as the ratio

rs ¼
s
hCi

. (41)
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Some values are shown in Figs. 21–23 and can be
calculated from the data in Section 6.2 and in Table 5. A
resolution function is also given in Fig. 49.

The separation power D for particles A and B with
momentum p is defined by [10,64,87]

D ¼
hCiA � hCiB

sA;B
. (42)

In practice sA and sB so far have been assumed to be the
same [87] or sB is used [64]. This is a coarse approximation.
For a track with t ¼ 62 cm, in Table 5, for pc ¼ 600MeV
pions and kaons we have hCip ¼ 1:161 keV=cm,
hCiK ¼ 1:639 keV=cm, sp ¼ 0:0885 keV=cm and sK ¼
0:115 keV=cm which differ by 30%. D can be calculated
with the data in Table 5.

I believe that the ‘‘overlap’’ of straggling functions gives
a more informative description about PID than the
separation power of Eq. (42). The overlap is defined by
the area which is joint to two adjoining straggling
functions, e.g. the roughly triangular area between C ¼

1:32 and C ¼ 1:53 and the p and K dashed curves in Fig.
43. (It would also include some electrons if their number
were more than 5000.) Clearly the overlap depends on the
relative number of particles.

The overlap cannot be derived directly from the
experimental function, but it can be obtained from
compounded spectra calculated with the numbers of
particles derived with the methods described in Sections
13.3 and 13.4. Details and examples are given in Refs.
[89,90]. A value of the number of particles in the overlap
region can be obtained from Fig. 48 which shows the
cumulative functions F ðCÞ for K and 1� F ðCÞ for p,
Eq. (26). The number of particles for which no mass
assignment can be made is given by the crossover points
A or B. A program calculating these functions is avail-
able [26]. Overlaps are shown in Fig. 49. They have
been calculated for tracks with 12 inner segments and
with the number of outer segments given in the abscissa.
The resolution rs calculated with Eq. (41) is shown by the
solid line. Examples of PID given below are based on
the use of truncated mean values C for tracks. For
calculations with the likelihood method, similar results
will be obtained with smaller overlaps.44 If there is an
overlap of the functions f ðC; p; t;MÞ, such as the pion,
kaon and electron functions in Fig. 43, the cumulative
functions F ðC; p; tÞ may be more suitable for PID. Such
functions are given in Figs. 50–53. Cumulative figures
corresponding to Figs. 46 and 47 might be useful for p–e
assignments.
Fig. 50. Cumulative spectra F ðC; p; t; f rÞ of spectra for pc ¼ 800MeV for

pions (dashed-dotted line) and two fractions of kaons: f k ¼ 3%, dotted

line, f k ¼ 10%, dashed line. The cross-over points of the kaon lines with

the pion line shifts to the left. The cross-over points Ccðf rÞ of the

horizontal lines from the left with the sum-p.d.f.s gives the number of

kaons. This information is used in Section 13.4 for PID. The solid lines are

the sum spectra for pions and kaons.

44For experimental data, because of the problems outlined in Sections

6.2, 9–10 and Appendix D it is yet to be studied whether the overlaps will

be smaller. I have made calculations with the likelihood method but do

not have enough detail to give them here.
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Fig. 53. Same as Fig. 52 for pc ¼ 700MeV. For pions and electrons the

straggling functions are practically unchanged, but the kaon function

shifts position. This is expected from Table 5.
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Fig. 51. The cross-over points Cc as a function of the fraction f k of kaons

in pion–kaon cumulative spectra F ðC; p; t; f rÞ for pc ¼ 600MeV and

pc ¼ 800MeV. For the calculations of Cc the sum of the particles must be

constant.
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13.3. Particle identification

In many publications experimental compounded spectra,
Figs. 43–47, have been fitted with multi-Gaussian fit
functions [87].45 It is not clear how many fitting parameters
are used for this procedure. I am suggesting that such fits
with calculated functions given here (and tabulated in Ref.
[26]) would reduce the need for fitting parameters: Since
momentum p is known, the values of bg for all candidate
particles can be determined and the corresponding values
of hCi can be found in Table 5. Calculated functions f ðCÞ

for each particle can be obtained readily by scaling the
reference function of Figs. 37–39. The scaling parameters a

and b are selected from Table 5, and the straggling function
for each particle is scaled from the reference function. Figs.
22 and 23 may be used to fine tune hCi for track length,
and an uncertainty can be assigned from Fig. 21. No fitting
parameters should be needed for hCi. The primary value of
s is also selected from Table 5 and adjusted for track length
with the data in Figs. 21–23. Because of the effects
described in Section 10 and Appendix D these values
might need a best fit search over a range between s and
1:1s. The final search for fit parameters is made for the
number of particles of each type. A preliminary estimate of
these numbers could be obtained by fitting spectra to the
left and right of the vertical lines in Figs. 43–45 or 50–53.
Problems with the scaling method will be encountered in

the tails for the situation shown in Fig. 38, or for very short
tracks, Fig. 41. To obtain the overlap numbers cumulative
functions can be constructed according to Fig. 48 by using
scaling of Fig. 38.

13.4. PID with cumulative straggling functions

PID can be made with the cumulative spectra shown in
Figs. 50–53. For spectra where some parts of F ðCÞ are
approximately constant, particle numbers can be read
directly: in Fig. 52, for C�1:5 keV=cm, the number of
kaons plus electrons (full line) is about 15% of the total
number of particles. For more reliable determinations, a
calculation based on the use of the crossover points Cc

shown in Fig. 50 can be made. The calculation is easy to
understand for two particles. The values Cc must be
calculated as a function of the fraction f K of kaons. Two
examples are shown in Fig. 50. Cc is the abscissa of the
intersection of the horizontal line giving the fraction f K of
kaons (dotted and dashed lines) with the sum-spectra, solid
lines. Examples of Ccðf KÞ for various fractions f K of kaons
are given in Fig. 51 for pc ¼ 600 and 800MeV.
The fraction of kaons is found in successive approxima-

tions. Select a plausible value C1 (this will be easier if a
calculated function F ðC; pÞ is superposed on the measured
straggling functions), and find from the solid line
(representing now the experimental straggling function) in
the figure the experimental value 1f k ¼ F ðC1Þ=F ðCaÞ where
45This is the case for most STAR and NA49 publications.
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46This was confirmed in preliminary evaluations of experimental data

with ROOT [91].
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Ca is the value below which F ðCoCaÞ is constant. Next
read the value C2 ¼ Ccð1f kÞ from Fig. 51 and find

2f k ¼ F ðC2Þ=F ðCaÞ. Iterate until nf k is constant.
Evidently the procedure will be more complex for more

than two particles. I have successfully calculated this for
700MeV/c pions, kaons and electrons, Fig. 52 and 53.
There are two cross-over points, which are a function of
the two fractions f k and f e, and tables must be calculated
for Ccðf k; f eÞ and Ccðf k; f eÞ. This may not work if the
number of kaons is less than the number of electrons.

Once the fractions of particles have been found, graphs
of the type of Fig. 52, 53 for all particles can be drawn and
the ‘‘purity’’ [87] can be read from the graph. The use of
scaled straggling functions for this purpose will be some-
what more reliable than ‘‘multi-Gaussian fitting’’ described
in [87], see the Gaussian fit in Fig. 20.

13.5. Exclusive assignment of particle masses

If the fractions of particles in an experiment have been
determined, Fig. 43 can be calculated, and particle types
can be assigned to given tracks according to their value of
Cj . Take the solid line, i.e. the sum-p.d.f. of Fig. 43 (106

pions and 50,000 kaons and electrons each). For
Cjo1:32 keV=cm, all particles will be pions, for
Cj42:02 keV=cm, all particles will be electrons, and for
1:32oCjo2:02 keV=cm we cannot uniquely assign a mass
to the track, but we can read the numbers of each particle
from Fig. 52, see purity [87]. Alternatively the procedure in
Fig. 48 could be used.

14. Comparison of experiments and theory

In order to assess the performance of a detector, to
calibrate it (Section 11), and to check our understanding of
the theory, we compare experimental measurements with
calculations. For the ALICE test TPC a detailed study has
been made by Christiansen [74]. For the STAR TPC I have
made some comparisons which I describe next. In the
initial calibrations of the STAR TPC in the year 2000 the
complexity of the problems described e.g. in Figs. 14, 17,
19, 21, 24, 29 was not fully appreciated, and the calibration
was based on the use of the ‘‘Bethe–Bloch dE=dx’’ [67]. I
present in this section experimental data which I compare
with calculations. The comparisons should be considered
as tentative results which show reasonable agreement
between experiment and calculation but should also be
considered as a guide to more detailed and accurate studies
especially to assess the effects described in Section 10 [74].

A set of ionization measurements for segments made
with STAR in Running Period 1 (2001) was provided by
Yuri Fisyak [67], as was another set for both segments and
tracks made in Running Period 4 (2003). From these data
experimental straggling functions hðQx; x; pÞ for segments
over bands of momenta p� 6% and segment lengths x�

3% were extracted. The functions for tracks were hðCx; t; pÞ
where the track lengths were 70otðcmÞo76 and the width
of the momentum band was 50MeV/c. CxðtÞ is the
measured truncated mean value of the ADC output for a
track of length t. These functions correspond to thin
vertical slices of a scatter plot similar to Fig. 11, p. 676 in
Ref. [11]. Energy loss straggling functions for segments,
f ðD; x; pÞ, and for tracks, f ðC; t; pÞ, were calculated for
pions with the central values of the experimental band of p

and segment-lengths x or track lengths t. The experimental
values of Q and Cx were given in keV/cm, based on a
calibration with the Bethe–Bloch values, so they differ
from the theoretical Dp and C by a factor which
corresponds to the difference between hDi and Dp shown
in Figs. 13 and 14 or Dp=x and M0 in Table 2. Since in the
experimental spectra shown here the majority of particles
was pions, I compare them with calculations for pions
only. Other particles usually will fall in the tails of the
spectra.
For segments it is evident from Figs. 18 and 19 that the

use of mean values for the segment spectra can lead to
inconsistent results, depending on the length of the spectra
and the contribution from various particles.46 For tracks,
spectra of truncated mean values and RMS widths will
cause fewer problems, see Fig. 20. For the first set
of comparisons for segments [92] an individual straggling
function was calculated for each experimentally mea-
sured function. The functions were compared graphically,
Figs. 54 and 55.
For later comparisons the similarity in shape of the

spectra seen in Figs. 32 and 37–39 was used: for
comparisons for all bg and a given x or t a single calculated
spectrum for bg ¼ 3:8 was scaled with the search para-
meters a; b and the peak value of hðQ; x; pÞ or of hðC; t; pÞ,
Appendix D. A three parameter least squares fit to
experimental data was made with this spectrum. From
the differences between experimental and calculated strag-
gling functions seen in Sections 14.1 and 14.2 and Fig. F.1
in Appendix D it appears inadvisable to make the fit
calculation for the full measured functions with calculated
functions including pions only. Therefore, the comparisons
were made for the central part of the measured hðQx; x; pÞ
or hðCx; t; pÞ. A compounded function calculated for two or
more particles would require too many parameters to give
a reliable test of the theory. Comparisons were made
without the corrections described in Sections 9 and 10.
These corrections cause small changes in Dp and hCi.
Possibly they could explain some of the differences seen in
Figs. 54–60.

14.1. Comparisons for segments

A first comparison for data from the STAR 2000 run
was given in Ref. [92]. The experimental data were
available through the ROOT program. A fit with the
parametrized ‘‘Landau function’’ provided in ROOT did
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Fig. 57. Experimental data from Lehraus: circles. The solid line gives the

FVP calculations of hCiðbgÞ for tracks in P10 and is equivalent to the

functions given in Fig. 26. Only one free parameter is needed, the

normalization to 1.0 at minimum ionization. Compare to Fig. 10 in Ref.

[10] and Fig. 2 in Ref. [64]. A dependence of W ðTÞ on bg cannot be

excluded. The total collision cross-section StðbgÞ is also shown, it is the

quantity needed for MC calculations, Section 4.4, also see Fig. 25. The

difference is important for the method described in Appendix J.
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not result in good agreement with experimental data as can
be expected from Fig. D.3. Similarly, fits over the whole
spectrum did not agree well with calculated spectra.
Therefore the approach described above was used.47An
example for x ¼ 1:284� 0:04 cm, pc ¼ 417� 25MeV is
given in Fig. 54. The measured function hðQx; x; pcÞ is
shown by the circles. The solid line represents a calculated
straggling function f ðD; x; pcÞ for pions in P10 gas. For the
dotted line the calculation includes the fluctuations given
47In my STAR Notes [92], until now, the quantity Q has been called J=x

and the mean truncated value for one track was called hJ=xi. It is now

called C.
by Eq. (39) with a magnitude suggested in Ref. [22], for the
dashed line this magnitude is 2.5 times as large. The other
effects described in Section 10 may also contribute to the
differences. They should be explored further. The dashed-
dotted line is a calculated spectrum for electrons with 5%
of the number of pions. The difference between experiment
and calculation for D42:8 keV appears to be at least
in part due to electrons. As evident from the figure
the difference for Do0:8 keV could be due in part to the
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Fano- and gas-multiplication fluctuations and in part to
other effects described in Section 10.48

A comparison for x ¼ 2:12 cm and pc ¼ 525� 6%MeV
is given in Fig. 55. There is no deviation for small values of
Q. Comparisons were made for x ¼ 2:12� 0:06 cm and for
many particle speeds. Results are shown in Fig. 56. The
experimental most probable values QpðbgÞ and FWHM
wðbgÞ obtained for these data are compared to values
described in Section 7.2. They are normalized to calculated
values at bg ¼ 3:7. The RMS deviation between experiment
and calculation is �1% for 1:2obgo9:5 and �1:6% for w.
No explanation has been found so far for the deviations for
48Inner pads are 3� 12mm. In general more than one pad will collect

the ionization (Section 9). If the ionization on a marginal pad is below the

threshold for the ADC, the total signal Q will be too small. It might be

interesting to simulate this effect.
bg49:5. For x ¼ 3 cm segments, the RMS deviation
between experimental and theoretical values for
1:2obgo9:5 is only �0:5%, for x ¼ 4 cm segments, for
4:2obgo9:5 this deviation is �0:6%. We conclude that the
calculated functions Dpðx; bgÞ agree with measurements to
1% or better for 2pxðcmÞp4 and for 1:2obgo9:5, while
the Bethe–Bloch dE=dx function, normalized at bg ¼ 3:7 is
about 10% lower at bg ¼ 1.

14.2. Comparisons for tracks

The geometry of older TPCs, consisting of fairly
homogeneous segment lengths, permits an easy comparison
with theory. This results in the good agreement of the data
given by Lehraus et al. [93] with the present FVP
calculations, shown in Fig. 57. No free parameters are
used in these calculations except that the ionization at
minimum is set equal to 1.0. The average deviation between
experiment and calculation is ð�0:3� 0:5Þ%, similar to
what was found for Si [18]. The systematic deviation of 3%
between B–F and FVP appearing in Table 1 does not
appear because of the normalization at minimum ioniza-
tion. The function StðbgÞ needed for the calculation of f ðDÞ
is also given.
The cylindrical geometry of the STAR TPC makes the

analysis of experimental data for tracks more complex
because track lengths depend on the angle of the track
relative to the centerline. This is evident from the slanted
track in Fig. 26. Comparisons for tracks of length t ¼

73:2 cm are made for pc ¼ 325MeV in Fig. 58 and for pc ¼

650MeV in Fig. 59. In Fig. 58 the data for C43 keV do
not agree with the spectrum for electrons and thus cannot
be assigned a definite mass. For kaons the most probable
value for hD=xi is about 7 keV, and no energy deposition
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by kaons would appear on the graph. A similar situation
occurs for Fig. 59. Experimental values for C42:9 keV
could be kaons, but we would expect them to peak at
3.3 keV. A more detailed study is needed to explore these
discrepancies. In Fig. 60 the experimental average values
hCi are shown as a function of pion momentum p. The
corrections described in Section 10 are not included in the
calculations.

15. Conclusions and recommendations

The complexity of the energy loss spectra for single
collisions is shown in Figs. 5, 6, and J.2. The consequences
of these complexities persist for practically all the functions
derived here and can be seen in Figs. 14, 15, 30, 41, C.2,
and D.3. It is therefore not advisable to simplify the spectra
as shown e.g. in Fig. J.2.

For straggling functions for thin absorbers, Eq. (20), it is
instructive to consider the Poisson distribution and the
convoluted CCS separately, Figs. 2 and G.1, also Ref. [5].

Because of the complexity of the evolution of straggling
spectra f ðD; x;bgÞ, with increasing x (Figs. G.1 and G.2)
there are no simple analytic functions to represent them.
Even for the representative parameters Dp, w and hCi the
functional dependence on bg is complicated, Fig. 15, 21–28.
The shape of straggling functions for segments is deter-
mined in part by the Poisson distribution, Eq. (18). Since
this function depends greatly on St, while the B–F stopping
power is given by M1, we must expect the dependence of Dp

on bg that is seen in Figs. 15, 24, 25 and J.1. It will be useful
to remember these properties if calculations are made with
GEANT [63]. For segments, over limited ranges of x and
bg, two-parameter scaling can be used to relate, within
limits, the functions, Figs. 31–35.

For tracks the straggling spectra f ðC; t;bgÞ for the
truncated mean C show smaller variations, Figs. 21–23,
26 and two-parameter scaling can be used over larger
ranges of t and bg, Figs. 36–39, but see Figs. 40 and 41.
Even for long tracks a Gaussian is not a good approxima-
tion for the straggling function, as shown in Fig. 20.

It appears advisable to calibrate the energy deposition in
detectors with the quantities calculated here, i.e. Dp;w or
hCi and s. Correction factors such as diffusion overlap for
segments, variations of multiplication factors of propor-
tional counters etc. can then be determined from the
experimental data.

In the comparison of experiments and calculations the
multiplication factor (or anode gas gain) of the propor-
tional counters is an unknown parameter, with an
unknown variance. The other effects described in Section
10 are expected to influence the peak values Dp or hCi little,
but may change w by 10% or more. The variances of these
effects are unknown. The effects can be determined with
measurements of the type shown in Section 14 and in
Appendix H.

I suggest that the calculations presented, after correc-
tions for the effects described in Section 10, agree with
measurements to about 1%. Thus the results of the theory
described here should be taken seriously. If differences
between measurements and calculations appear, explana-
tions should be found.
The difference between the B–F and the FVP theories for

Zo20 are small enough that it probably is not worthwhile
to implement B–F for the present applications. This might
be different for Kr.
It is therefore recommended that further measurements

of ionization in TPCs be compared and calibrated with
data calculated with FVP. Depending on the application,
tabulated straggling functions such as those shown in
Figs. 32–35 and 37–39 can be used [26]. Two-parameter
scaling reduces the need for such tables. For the dependence
on particle speed, functions such as those shown in
Figs. 24–26 should be used rather than the ‘‘Bethe–Bloch
dE=dx’’ M1ðbgÞ and ‘‘restricted energy loss functions’’
(Eq. (24)). In particular it must be noted that the function
StðbgÞ should be used for calculations of f ðDÞ, Appendix J.
The calculations can serve as a diagnostic tool to assess

and improve the performance of the TPC. Consider e.g.
that no explanation for the part of the spectra for
Q42:9 keV in Figs. 58 and 59 have been found so far.
For PID, the concept of overlap will produce more

descriptive information than the concepts ‘‘resolution’’ and
‘‘separation power’’. It is conjectured that only the tails of
experimental straggling functions are distorted by the
process of collection of the ionization clouds in the TPC,
Sections 9 and 10. This may make the use of the maximum
likelihood determination of track parameters unreliable. I
have not yet applied the PID procedures suggested in
Section 13 to any TPC. I hope that they will be useful in
practice. The use of broad momentum bands implied e.g. in
considering simultaneously all tracks with a given trans-
verse momentum pT may increase the overlaps (or decrease
the resolution). It is advisable to use two-parameter scaling
for each track.
The use of scaling, shown in Figs. 32–39 and Table 5,

will simplify the computing effort. It will be necessary to
explore the dependence of the overlap or resolution on
track length and the number of track segments. Most of the
energy loss calculations have an uncertainty of less than
1%. The uncertainties of the conversions made in the
various stages going from D to Q are not well established.
Programs and tables used for the production of the

contents of this paper are available from the author, and in
Ref. [26].
For thin segments, e.g. 7.5mm Ne, Fig. 30, it must be

kept in mind that the smallest energy depositions will
produce only a few ion pairs.
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Table B.1

Comparison of most probable energy losses Dp and FWHM w and their

ratios rp ¼ DpðArÞ=DpðP10Þ and rw for segments x ¼ 12mm

bg DpðArÞ DpðP10Þ rp wðArÞ wðP10Þ rw

0.422 7.9487 7.4933 1.0608 4.9064 4.7023 1.0434

0.596 4.5785 4.3032 1.0640 3.1780 3.0752 1.0334

0.841 2.8778 2.6903 1.0697 2.3190 2.2527 1.0294

1.189 2.0323 1.8870 1.0770 1.8624 1.8085 1.0298

1.679 1.6306 1.5042 1.0840 1.6300 1.5845 1.0287

2.371 1.4603 1.3378 1.0916 1.5300 1.4855 1.0300

3.350 1.4104 1.2882 1.0949 1.5004 1.4558 1.0306

4.732 1.4255 1.3018 1.0950 1.5072 1.4646 1.0291

6.683 1.4742 1.3492 1.0926 1.5326 1.4928 1.0267

9.441 1.5399 1.4135 1.0894 1.5677 1.5297 1.0248

13.335 1.6139 1.4855 1.0864 1.6079 1.5701 1.0241

18.836 1.6919 1.5603 1.0843 1.6507 1.6119 1.0241

26.607 1.7708 1.6354 1.0828 1.6945 1.6541 1.0244

37.584 1.8485 1.7103 1.0808 1.7382 1.6964 1.0246

53.088 1.9204 1.7804 1.0786 1.7812 1.7384 1.0246

The gas densities used are rðArÞ ¼ 1:6607mg=cm3, rðP10Þ ¼
1:5616mg=cm3, with a ratio of 1.0635. The values of rp are slightly larger

than the ratio of the gas densities, while rw is smaller.

Table B.2

Comparison of average values hCi of truncated mean energy losses CA for

Ar and CP for P10, Eq. (32) and the s, Eq. (33), for tracks with t ¼ 78:4 cm

bg hCiA hCiP rp sA sP rs

1.146 1.8659 1.8104 1.0307 0.0634 0.0623 1.0177

1.433 1.5883 1.5411 1.0306 0.0657 0.0646 1.0170

1.720 1.4449 1.4020 1.0306 0.0669 0.0658 1.0167

2.006 1.3653 1.3246 1.0307 0.0683 0.0671 1.0179

2.293 1.3177 1.2782 1.0309 0.0686 0.0675 1.0163

2.866 1.2741 1.2357 1.0311 0.0689 0.0677 1.0177

3.582 1.2615 1.2231 1.0314 0.0692 0.0680 1.0176

4.299 1.2648 1.2259 1.0317 0.0689 0.0677 1.0177

6.449 1.3029 1.2622 1.0322 0.0675 0.0664 1.0166

7.165 1.3169 1.2755 1.0325 0.0677 0.0666 1.0165

The ratios r of the two values are given. Both rp and rw are smaller than
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Appendix A. Comparison of B–F and FVP theories

Only for Si there are enough data about the generalized
oscillator strengths needed in B–F theory. Straggling
functions for Si were calculated with BF and FVP CCS
described in Sections 2.2 and 2.3 with the convolution
method (Section 4.3). An example of such calculations is
given in Fig. A.1. The difference in Dp is �4%, in w it is
1.2%. The difference in St is 6%, in M1 (‘‘dE/dx’’) only
0.5%, see Table 1.

I anticipate that similar differences will occur for
calculations with both methods for Ne and Ar, but they
might be bigger for Kr and Xe. For a detector filled with
Ne, Ar or P10 gas the current understanding of gas
multiplication is probably not accurate enough to discern
differences similar to those seen in Fig. A.1, also see
Appendix J.

Appendix B. Comparisons of straggling functions for Ar and

P10

Until April 2003 all my calculations were made for Ar.
Since then they have been made for P10. Comparisons of
functions for segments x ¼ 1:2 cm for the two gases are
given in Table B.1. A constant factor relating the functions
will be irrelevant because it will disappear in the calibration
of the TPC in terms of absolute energy losses or
depositions, but the dependence on bg will remain.
Variations in the factors r exceed the 1% level desired for
this study.
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Fig. A.1. Straggling functions f ðDÞ for particles with bg ¼ 4 traversing

x ¼ 8mm of Si. The dotted line is calculated with the Bethe–Fano theory

of Section 2.2, the solid line with FVP (Section 2.3). The values of the most

probable energy losses are BDp ¼ 1:349keV and FDp ¼ 1:398keV, of the
FWHM Bw ¼ 1:396keV and F w ¼ 1:380keV.

the ratio of the gas densities.
Comparisons for 78.4 cm tracks are given in Table B.2.
Variations in r are less than 1%. The differences in the r

between Tables B.1 and B.2 are related to the truncations
for C. There is no obvious method to derive one from the
other.
An explanation for the systematic trends in rp and w in

the tables could probably be found from the trends seen in
Appendix G: the Poisson coefficient mc, Eq. (18), changes
with bg.

Appendix C. Sources of optical absorption data for Ne, Ar,

CH4, P10 and solids

The photoionization cross-section [95] commonly used
for FVP for Ar is given in Ref. [16, Fig. 1.4 ] and by
the solid line in Fig. C.1 (‘‘old data set’’). New data



ARTICLE IN PRESS

1.0

0.8

0.6

0.4

0.2

0.0

f(
∆)

0 500

∆(eV)

1000 1500 2000
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x ¼ 6mm segment. The functions are matched at Dp. Values of Dp are

0.416 and 0.392 keV, values of w are 0.844 and 0.772 keV. The differences

(�6% and �9%) are much larger than those for St and M1.
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Fig. C.3. Same as Fig. C.2, but for x ¼ 12mm. Values of Dp are 1.416 and

1.342keV, for w they are 1.499 and 1.526 keV. The increase in w is related

to the changes in shape seen in Fig. G.2.
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Fig. C.1. Comparison of photo absorption cross-sections for Ar. The

photon energy is represented by the angular frequency o. Solid line from

Marr and West [95], � from Chan et al. [96], � from Samson and Stolte

[97]. Structures below 200 eV are due to the M-shell, the L-shell excitation

begins at 250 eV, the K-shell excitation begins at 3.2 keV [52].
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from [52,97] are shown by the symbols. Calculations of
straggling functions have been made with the old data
set and a new set which is a composite of the new
data [26]. The changes in dE=dx ¼M1 for the two sets are
small: for 2GeV protons the values are M1 ¼

1:5405MeVcm2=g for the old set, 1.5166MeV cm2/g for
the new set. They can be compared to dE=dx ¼

1:521MeVcm2=g from ICRU-49 [40]. The values of St

differ by 3.5%. For the straggling functions shown in
Figs. C.2 and C.3 the differences in Dp are 6% and in w

they are 9% and 2%.
Data for Ne and methane were obtained from the same

sources. The optical data for _oo100 eV are important for
thin absorbers, thus X-ray data tables [76] may not be
sufficiently accurate. Data for solids may be found in Refs.
[49,94]. Data tables [26] of df =dE are used rather than the
polynomials described e.g. in Ref. [53].
Appendix D. Corrections to calculations and data analysis

The inclusion of the Fano and multiplication fluctua-
tions described in Section 10 results in a broadening of the
straggling functions f ðDÞ. An example with the largest
contribution ðBn ¼ 1:0Þ given by Eq. (39) is shown in
Fig. D.1.
The value and validity of the data analysis given in

Section 14 depends on the variance of the corrections
described in Section 10 and discussed in detail in Ref. [87].
An evaluation of a large data set for tracks measured
during STAR Running Period 4 (2004) for 48 ‘‘runs’’
(usually lasting a few hours) is given in Fig. D.2. The
truncated mean Cx for each track (60oto76 cm, momen-
tum p) was used. In each run of the order of 300 tracks for
each p were measured. The average value hCxi for each p

and each run was calculated (this was obtained from the
result box of the ROOT graph). In Fig. D.2 these values
are shown as a function of the run number. The various
symbols correspond to data taken for the pc given on the
right side. The RMS values of hCxi averaged for each
momentum are ð0:7� 0:2Þ%. Some of the fluctuations may
be due to the truncation fluctuations seen in Fig. 21.
For a track in a magnetic field the curvature must be

considered in assigning segment lengths. The radius of
curvature RðmÞ for a particle track with momentum
pcðGeVÞ is given by

R ¼ 3:34pc=B (D.1)

where B is measured in Tesla. The deflection for a track of
length t is YðradÞ ¼ t=R. For STAR the first pad-row is at
a radial distance of 0.6m from the center of the TPC. With
B ¼ 0:5 Tesla the segment lengths along a track with t ¼

0:8m will change by 20% or more for pco0:2GeV. This
problem must be studied for the data evaluation. As a
corrective measure, scaling for segment lengths according
to angle might be used.
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Fig. D.3. The solid line is the straggling function f ðDÞ of Fig. 1, the dotted
line is a ‘‘Landau function’’ [2] scaled to have the same width w as f ðDÞ and
to coincide at D‘. Clearly the attempt to ‘‘fit’’ experimental straggling

functions with a Landau function will be an unreliable approximation.
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Fig. D.1. Straggling functions with and without Fano and multiplication

fluctuations. The solid line is the energy loss spectrum, the dotted line

includes the fluctuations. The functions are normalized to the same peak-

height. FWHM w increases by about 5.

Table E.1

Practical ranges R (cm for gases, mm for Si) of electrons with kinetic

energy T in P10 gas, Si and Ne

TðkeVÞ RðP10Þ Rc RðNeÞ RðSiÞ

0.1 0.0002 – 0.0003 0.004

0.2 0.0004 – 0.0007 0.008

0.4 0.0010 – 0.0017 0.015

0.7 0.0018 – 0.0030 0.030

1.0 0.0031 – 0.0053 0.04

2.0 0.01 – 0.017 0.10

4.0 0.03 – 0.05 0.24

7.0 0.08 – 0.13 0.55

10 0.14 0.25 0.24 0.96

20 0.42 0.83 0.9 3.0

40 1.5 2.74 2.6 10

70 4.0 7.20 6.7 27

100 7.3 13.1 12 50

200 22 40.4 38 160

400 63 115 112 450

700 136 244 248 960

1000 215 381 396 1520

The density, r ¼ 1:56mg=cm3 for the P10 mixture (90% Ar, 10% CH4),

for Ne r ¼ 0:91mg=cm3 at 740 torr and 293K is used. Ranges Rc

calculated with CSDA for P10 are also given [39]. For E450 keV, effective

ranges were calculated with the algorithm given in Ref. [99]. For

Eo10keV, experimental effective ranges measured for nitrogen [98,100]

were assumed to be the same for argon (with an uncertainty of 10%).

Between 10 and 50 keV, calculated ranges [99] were reduced smoothly to

the experimental value at 10 keV. The uncertainty of R is about 20%.
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In the primary analysis of STAR data with ROOT [91]
there were two analytic algorithms which I used to get fits
to straggling functions for segments: ‘‘Landau function’’
and ‘‘polynomials’’. The Landau function never gave a
close fit to experimental data, as anticipated from Fig. D.3,
but the five parameter polynomials gave a good fit to the
upper half of hðQÞ, i.e. the part of the spectrum which did
not include the tails. The ‘‘Mean’’ and ‘‘RMS’’ given in the
result box exceeded the most probable value Dp and
FWHM w by up to 25%, depending on the value of x and
the largest Q (¼ ‘‘dE=dx’’ in ROOT) included in the spectra,
see Figs. 18 and 19.

Appendix E. Electron ranges and energy deposition in Ar,

P10 and Si

The energy deposition by low energy electrons is a
complex process [98]. Even for mono-energetic parallel
beams of electrons ðTo50 keVÞ the energy deposition
extends over a spherical volume tangent to the point of
entrance into the absorber. The diameter of the sphere is of
the order of the ‘‘practical range,’’ considerably smaller
than the path-length (‘‘continuous-slowing-down-approx-
imation’’ or CSDA range) calculated with the stopping
power. Table E.1 gives practical and CSDA ranges [39].
A useful reference is [99].



ARTICLE IN PRESS

1.0

0.8

0.6

0.4

0.2

f(
∆)

0.0
10 20 30 100 200 500 1000 2000

∆(eV)

d

c

1mm

e

2  mm

4  mm3  mm

5  mm

Fig. G.1. Straggling functions for singly charged particles with bg ¼ 4:48
traversing segments of length x ¼ 1–5mm in Ar. The total single collision

cross-section is 30 collisions/cm. The functions are normalized to 1.0 at the

most probable value. The broad peak at 17 eV is due to single collisions,

see Fig. 11. For two collisions it broadens and shifts to about 43 eV,

marked c, and for n ¼ 3 it can be seen at d. It may be noted that the peak

at 11.7 eV (if the function is normalized to unit area) is exactly

proportional to m�mc
c , as expected from Eq. (20). Energy losses to L-

shell electrons of Ar, at 250 eV in Fig. 6, appear at e, for x ¼ 1mm they

have an amplitude of 0.04. The d-function at D ¼ 0, n ¼ 0, Eq. (20), is not

shown. For x ¼ 1mm, it would be e�mc ¼ 0:05. For x42mm peak c has
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Appendix F. Collision cross-sections for electrons and heavy

ions

Some particle physicists believe that because there is a
difference in the stopping power S ¼ dT=dx for electrons
and protons [39,40] there should also be a difference in the
straggling functions. For example, for minimum ionizing
particles, bg ¼ 3:6, in P10 gas, we have for pions [40], the
kinetic energy T ¼ 382MeV, Emax ¼ 12:9MeV and
dT=dx ¼ 2:431MeV=cm, for electrons [39], T ¼ 1:4MeV,
Emax ¼ 0:7MeV and dT=dx ¼ 2:202MeV=cm. The expla-
nation for the difference in dT=dx is mostly that the single
collision spectrum for pions extends to 13MeV, that for
electrons only to 0.7MeV.

The single collision spectra are compared in Fig. F.1.
For Eo300 keV, the difference between the spectra is less
than 2%. At E ¼ 0:7MeV, the electron cross-section
exceeds the one for pions by a factor of 1.7. The straggling
functions for heavy particles and electrons with the same
speed in the same segment x will be the same until D
exceeds Emax of the electrons or until multiple scattering
becomes important for electrons. The major reason for this
similarity is that the M0ðbgÞ ¼ St are the same.
disappeared, peak d is the dominant contribution and defines the most

probable energy loss Dp. The buildup for peak e at 440 to 640 eV is the

contribution from L-shell collisions. It appears roughly at 250 eV plus Dp.

The total cross-section for collisions with E4250 eV is only 1.7 collisions/

cm, thus the amplitude of the peak e is roughly proportional to x. The

Bethe–Bloch mean energy loss is 250 eV/mm.
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Appendix G. Straggling functions for very thin absorbers

The structure of the single collision spectra, Figs. 5 and
6, will remain apparent in multiple collisions, as can be seen
in Section 4.2, Figs. 11 and 12, and, and in straggling
functions for thin absorbers, Figs. 2 and G.1. In straggling
spectra (Eq. (20), Section 4.3), where the multiple collision
spectra are weighted by the Poisson distribution, the
prominent features in sðEÞ, Figs. 2 and G.1, will only
disappear for mc420 for narrow structures such as the
plasmon peak at 17 eV for Si, mc410 for the broader peak
in Ar and P10. The L-shell peak, e in Figs. G.1 and G.2 is
always convoluted with the M-shell peaks, thus shifted to D
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Fig. F.1. Ratio of single collision cross-sections for electrons and pions,

with bg ¼ 3:6 in P10. Differences are: dT=dxðpÞ ¼ 2:431keV=cm,

dT=dxðeÞ ¼ 2:202keV=cm, St ¼ 29:6911 and 29.6908 collisions/cm. At

E ¼ 10 keV, sðE; eÞ=sðE;pÞ � 1:0 ¼ �0:3%, at 100 keV �2%, at 670 keV

the ratio is 1.7. The function is practically the same for Si.
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Fig. G.2. Similar to Fig. G.1, but for x ¼ 4–15mm. Peak d is still

dominant for x ¼ 4 and 6mm, but peak e due to L-shell collisions

increases. It becomes the dominant feature at xX8mm, with a shift of the

most probable energy loss Dp from 400 to 850 eV, see Fig. 15. A shoulder

of peak d, for multiple collisions for Eo40 eV remains, and is just

perceptible at x ¼ 10mm. For x ¼ 15mm, the peaks have merged and the

straggling function has reached the Vavilov shape, but not its location and

FWHM. The Bethe–Bloch mean energy loss is 250� x(mm) eV.
larger than the L-shell ionization energy, EL ¼ 250 eV.
About two collisions are needed to broaden it and merge it
with the convolution of the M-shell peak d in Fig. G.2.
It would be interesting to see whether the structures can

be discerned in experimental data, but see [73]. Collisions
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with the K-shell electrons in P10 have a mean free path
lK�28 cm, but will influence the spectra very little, see Fig.
42. For Ne the presence of K-shell energy losses can be seen
in Figs. 19 and J.3. The situation for Si is similar, see Ref.
[28, Fig. 91.6]. A calculation for 1mm is shown in Fig. 2.
These effects usually cannot be measured with ionization
chambers (but see Ref. [73,81]). They have been seen with
energy loss measurements in e.g. electron microscopes
[6,94].
Appendix H. Gas multiplication

Detailed discussions of ionization amplification can be
found in Refs. [16,22]. The reader is urged to study at least
one of these books in detail. The evaluation of measure-
ments described here was made in 2002. I assumed then
that the effects of diffusion described in Section 10 were
negligible and that the effects found here were related
mainly to gas multiplication. The problem of the distortion
of GðJÞ relative to f ðDÞ by the small number of electrons
produced in x ¼ 1:284 cm segments (56 electrons at Dp) has
not been explored. Also the electrons are collected over
several pads and the signal on some may be below
threshold.

About gas multiplication two aspects may be influential
(a)
Tab

Com

mos

leng

x ðcm

1.28

2.11

3.00

4.05

The

of th

give
the proportionality of ionization J and ADC output Q,

(b)
 changes of the shape of gðJÞ into HðJ 0Þ and hðQÞ due to

the multiplication variance.
The other effects described in Section 10 may also influence
these data, and they should be considered as an inducement
for more careful studies of the effects seen in Table H.1.

The sum of these effects as determined with data from
the STAR TPC [90], is shown in Table H.1. No simple
relations are seen except that the 50% change in wx=Qp

with x is related to the narrowing of the Poisson
distribution with increasing number of collisions. The
10% change in Qp=Dp and in rw with x could be caused by
a non-proportionality of J and Q. Studies of these effects
for ALICE test TPC have been made by Christiansen at
ALICE [74].
le H.1

parison at bg ¼ 3:6 of most probable ADC output Qp to calculated

t probable energy loss Dp and FWHM wx and w for several segment

ths

Þ Qp=x Dp=x Qp=Dp wx=Qp w=Dp rwð%Þ

4 1.849 1.190 1.554 1.050 1.024 2.5

7 1.912 1.305 1.465 0.804 0.804 0.0

4 1.996 1.369 1.458 0.760 0.694 9.5

5 2.014 1.417 1.421 0.686 0.625 9.8

ratio Qp=Dp is greater than 1.0 because of the choice of the calibration

e TPC with the BB dE=dx. The ratio rw ¼ ðwx=QpÞ=ðw=DpÞ is also

n. It should be constant.
Appendix I. Bremsstrahlung

For thin detectors bremsstrahlung will rarely be seen.
This is shown here on the basis of the description given by
Evans [78]. The differential cross-section for production of
Bremsstrahlung of energy E by electrons with kinetic
energy T is given by

dsrad ¼ ar20BZ2 T þm0c2

T
ðdE=EÞ cm2=nucleus. (I.1)

Using the approximation B ¼ 18 results in 2:0� 10�24

ðdE=EÞ cm2/nucleus for Si or dsrad ¼ 0:10 ðdE=EÞ=cm, for
Ar dsrad�10�4ðdE=EÞ=cm. For Si the moments are
M0ðEuÞ ¼ 0:10 
 lnðEu=E‘Þ=cm where Eu is an upper energy
under consideration, or if the full spectrum is to be
considered, Eu ¼ T . The lower limit E l could be chosen e.g.
as 1.1 eV (the bandgap of Si), in which case M0

ð1000MeVÞ�2=cm. For M1 we get M1ðEuÞ ¼ 0:102 
 ðEu

�E‘ÞMeV=cm, and for Eu ¼ 1000MeV, M1ð1000MeVÞ ¼
102MeV=cm, which is close to the value of 105MeV/cm
given in Ref. [39]. Note that the mean energy loss per
photon is 100MeV=2 ¼ 50MeV. Clearly, in the usual
300mm Si detectors ðDp�80 keVÞ, the probability of the
production of any Bremsstrahlung photon is on the
average only 0.06. For the production of photons with
energy within the practical extent of f ðDÞ ð60o
EðkeVÞo120, Fig. 34) it is 0.002. For small arrays of Si
detectors, the ‘‘radiative stopping power’’ is a meaningless
quantity, even if it is 20 times the electronic stopping
power.
Pair production and photo nuclear loss which also

contribute to dE=dx at bg4500 are described in Ref. [38].
For large arrays of Si detectors, e.g. GLAST, the effects
must be considered.

Appendix J. ALICE TPC Monte Carlo method

In creating a program to calculate straggling functions
for segments (Section 4.3 or 4.4), two functions are needed:
�
 the function describing the number of collisions per unit
track length, such as StðbgÞ ¼M0ðbgÞ shown in Figs. 24
and 25,

�
 the differential single collision cross-section sðbgÞ shown
in Figs. 5 and 6.

If approximations for these functions are chosen for
simulations, the results should be compared with the results
obtained with the above functions in order to assess the
effect of the approximations.
As an example examine the procedure suggested for the

Monte Carlo calculation of straggling functions for the
ALICE TPC, described in Ref. [23, Section 7.2.1.1]. For
the first function StðbgÞ two pieces of information are
given: the first by Fig. 7.1 of [23], which corresponds to the
Poisson distribution of Eq. (18) in Section 4.1. Its mean is
given as mc=x ¼ St�15 collisions=cm at bg�3:6. The
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second piece is supposed to represent StðbgÞ=Stð3:6Þ and is
given in Fig. 7.2 in Ref. [23]. It is approximated by the
function [16]

f ðbgÞ ¼
P1

bP4
P2 � bP4 � ln P3 þ

1

ðbgÞP5

� �	 

(J.1)

called the ‘‘Bethe–Bloch curve’’ in Ref. [23] with the value
1.0 at bg�3:6. It is given in Fig. J.1 and is the same function
as that shown in Fig. 57. It differs conceptually from
StðbgÞ because Eq. (J.1) was determined from experi-
mental measurements of average values hCi for tracks. It
also differs from the Bethe–Bloch function M1ðbgÞ ¼
dE=dxðbgÞ.

In Ref. [23] the differential single collision cross-section
is approximated by a modified Rutherford cross-section
(Eq. (1)): the function kE�2 is replaced by kE�2:2 and k is
chosen to make the integral StðbgÞ ¼

R
kE�2:2 dE�15=cm

equal to the value given for Fig. 7.1 of [23]. This function is
compared to the sðEÞ calculated with FVP theory (Eq. (7))
for Ne in Fig. J.2.

Monte Carlo calculations of straggling functions with
the model of Ref. [23] are compared to the analytic
calculation with sðEÞ in Fig. J.3. The differences seen are
explained by the differences in the CCS. Predominant is the
excess of sðEÞ over the approximation function for
30oEðeVÞo300 resulting in the shift to greater D of the
analytic function. In addition the K-shell energy losses
between 1.7 and 2.4 keV do not appear in the MC
calculation, also see Fig. 19.

No major changes are needed for the simulations with
AliRoot Monte Carlo with the proposed model:
Fig. J.3. Straggling functions for particles with bg ¼ 3:6 traversing Ne

�

segments with x ¼ 7:5mm. Solid line: analytic FVP calculation,

St ¼ 13:2 collisions=cm. Monte Carlo calculation with the ALICE TPC

algorithm, with the CCS of Fig. J.2, St ¼ 15=cm. The function is shown by

1.8

1.6

1.4
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1.0

Fig
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fun

fun

(Eq

bgo
line

St½
The function f ðbgÞ, Eq. (J.1), should be replaced by
St½Ne� of Fig. J.1 [26], for which an analytic function
could readily be made.
�. Even though the St are practically the same, the MC calculation has a

smaller Dp. The difference in the shape of the curves corresponds to the

difference in the CCS seen in Fig. J.2.

100 101 102 103 104

M1
L[P10]

Σt[Ne]

Σt[P10]

��

. J.1. The dependence on bg of StðvÞ in Ne and P10 gas. The

he–Bloch functions M1ðvÞ are also given (dotted line for Ne). The

ction given by Eq. (J.1) is given by the solid line labeled L[P10]. All

ctions are normalized to 1.0 at minimum ionization. The function RM0

. (23)) for the Rutherford type cross-section is a horizontal line 1.0. For

3 they will follow the functions shown, then they will be horizontal

s at 1.0. The FVP dE=dx ¼M1 differ little for the two gases, but

Ne� reaches saturation at a higher value than St½P10�.
�
 For the energy losses in single collisions use the inverted

energy loss spectrum for 10 values of bg in Ref. [26].

A single analytic expression for these functions would
result in errors of the order of 10% in FWHM.
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