Extended Kalman Filter

JLC CDC Group
May 23, 2003

Statement

 ofthe Problem

System Evolution

\boldsymbol{f}_{k-1}

Process Noise

$$
\boldsymbol{w}_{k-1}
$$

Measurement (k)
Measurement ($k-1$) \boldsymbol{m}_{k-1}

Estimate of the state
\boldsymbol{a}_{k}

\square System Equation (Equation of Motion)

$$
\boldsymbol{a}_{k, t}=\boldsymbol{f}_{k-1}\left(\boldsymbol{a}_{k-1, t}\right)+\boldsymbol{w}_{k-1}
$$

process noise from
$(k-1)$ to (k)
true state vector at (k)
true state vector at (k)
Assume that process noise is random and unbiased

- Measurement Equation

$$
\boldsymbol{m}_{k}=\boldsymbol{h}_{k}\left(\boldsymbol{a}_{k, t}\right)+\boldsymbol{\epsilon}_{k}
$$

measurement noise true measurement vector at $(k-1)$
measurement vector at (k)
Assume that measurement noise is random and unbiased

$$
\begin{cases}\left\langle\epsilon_{k}\right\rangle & =0 \\ \left\langle\epsilon_{k} \epsilon_{k}^{T}\right\rangle & \equiv V_{k} \equiv G_{k}^{-1}\end{cases}
$$

Example 1 : Ballistic Missile (Original Application)

$$
\boldsymbol{a}_{k}=\binom{\boldsymbol{x}}{\boldsymbol{p}}_{k}
$$

Position and momentum at (k)
Random turbulence between $(k-1)$ and (k)
\boldsymbol{m}_{k}
position and velocity measured with a radar at (k)
ϵ_{k}

Measurement error of radar

Example 2 : Tracking in HEP Experiments

Helix parameter vector at (k)

Multiple scattering between $(k-1)$ and (k)

ϵ_{k}
random detector noise

Notation
$\boldsymbol{a}_{k}^{i} \quad$: extimate of $\boldsymbol{a}_{k, t}$ using measurements up to (i)

$$
\left(\boldsymbol{a}_{k}^{k} \equiv \boldsymbol{a}_{k} \text { for simplicity of notation }\right)
$$

C_{k}^{i} : covariance matrix for \boldsymbol{a}_{k}^{i}

$$
\boldsymbol{C}_{k}^{i} \equiv\left\langle\left(\boldsymbol{a}_{k}^{i}-\boldsymbol{a}_{k, t}\right)\left(\boldsymbol{a}_{k}^{i}-\boldsymbol{a}_{k, t}\right)^{T}\right\rangle
$$

\boldsymbol{r}_{k}^{i} : residual

$$
\boldsymbol{r}_{k}^{i} \equiv \boldsymbol{m}_{k}-\boldsymbol{h}_{k}\left(\boldsymbol{a}_{k}^{i}\right)
$$

\boldsymbol{R}_{k}^{i} : covariance matrix for \boldsymbol{r}_{k}^{i}

$$
\boldsymbol{R}_{k}^{i} \equiv\left\langle\boldsymbol{r}_{k}^{i} \boldsymbol{r}_{k}^{i T}\right\rangle
$$

- What We Need = Recurrence Formulae

Machineary to do:
(i) Prediction

$$
\left\{\boldsymbol{m}_{k^{\prime}} ; k^{\prime} \leq k\right\} \mapsto \boldsymbol{a}_{k^{\prime \prime}>k} \quad: \text { future }
$$

(ii) Filtering

$$
\left\{\boldsymbol{m}_{k^{\prime}} ; \boldsymbol{k}^{\prime} \leq k\right\} \mapsto \boldsymbol{a}_{k^{\prime \prime}=k} \quad: \text { present }
$$

(iii) Smoothing

$$
\left\{\boldsymbol{m}_{k^{\prime}} ; \boldsymbol{k}^{\prime} \leq k\right\} \mapsto \boldsymbol{a}_{k^{\prime \prime}<\boldsymbol{l}} \quad: \text { past }
$$

Prediction

$$
\left\{\boldsymbol{m}_{k^{\prime}} ; k^{\prime} \leq k\right\} \mapsto \boldsymbol{a}_{k^{\prime \prime}>k} \quad: \text { future }
$$

- State Vector

$$
\boldsymbol{a}_{k}^{k-1}=\boldsymbol{f}_{k-1}\left(\boldsymbol{a}_{k-1}\right)
$$

Extrapolation Error

- Covariance Matrix

Process Noise

$$
\begin{array}{r}
C_{k}^{k-1}=F_{k-1} C_{k-1} F_{k-1}^{T}+Q_{k-1} \\
\boldsymbol{F}_{k-1} \equiv\left(\frac{\partial \boldsymbol{f}_{k-1}}{\partial \boldsymbol{a}_{k-1}}\right)
\end{array}
$$

\square Residual

$$
\boldsymbol{r}_{k}^{k-1} \equiv \boldsymbol{m}_{k}-\boldsymbol{h}_{k}\left(\boldsymbol{a}_{k}^{k-1}\right)
$$

- Covariance Matrix

Extrapolation Error

$$
\begin{array}{l:l}
\boldsymbol{R}_{k}^{k-1}=V_{k}+H C_{k}^{k-1} H_{k}^{T} \\
\text { Measurement } & H_{k} \equiv\left(\frac{\partial \boldsymbol{h}_{k}}{\partial \boldsymbol{a}_{k}^{k-1}}\right)
\end{array}
$$

Filtering

$$
\left\{\boldsymbol{m}_{k^{\prime}} ; k^{\prime} \leq k\right\} \mapsto \boldsymbol{a}_{k^{\prime \prime}=k} \quad: \text { present }
$$

- State Vector

New Pull

$$
a_{k}=a_{k}^{k-1}+K_{k}\left(m_{k}-h_{k}\left(a_{k}^{k-1}\right)\right)
$$

Kalman Gain Matrix

$$
\begin{aligned}
\boldsymbol{K}_{k} & \equiv \boldsymbol{C}_{k}^{k-1} \boldsymbol{H}_{k}^{T}\left(\boldsymbol{V}_{k}+\boldsymbol{H}_{k} C_{k}^{k-1} \boldsymbol{H}_{k}^{T}\right)^{-1} \\
& =C_{k}^{k-1} \boldsymbol{H}_{k}^{T}\left(\boldsymbol{R}_{k}^{k-1}\right)^{-1}
\end{aligned}
$$

already calculated in the prediction step

- Covariance Matrix

$$
C_{k}=\left(1-K_{k} H_{k}\right) C_{k}^{k-1}
$$

Equivalent but different Way: Weighted Mean Method

$$
\begin{aligned}
& \boldsymbol{C}_{k}=\left[\left(C_{k}^{k-1}\right)^{-1}+\boldsymbol{H}_{k}^{T} \boldsymbol{G}_{k} \boldsymbol{H}_{k}\right]^{-1} \\
& \boldsymbol{K}_{k}=\boldsymbol{C}_{k} \boldsymbol{H}_{k}^{T} \boldsymbol{G}_{k}
\end{aligned}
$$

Improvement from New Measurement at (k) and measurement vector

\square Residual

$$
\begin{aligned}
\boldsymbol{r}_{k} & \equiv \boldsymbol{m}_{k}-\boldsymbol{h}_{k}\left(\boldsymbol{a}_{k}\right) \\
& =\left(\mathbf{1}-\boldsymbol{H}_{k} \boldsymbol{K}_{k}\right) \boldsymbol{r}_{k}^{k-1}
\end{aligned}
$$

- Covariance Matrix

$$
\begin{aligned}
\boldsymbol{R}_{k} & =\left(\mathbf{1}-\boldsymbol{H}_{k} \boldsymbol{K}_{k}\right) \boldsymbol{V} \\
& =\boldsymbol{V}_{k}-\boldsymbol{H}_{k} \boldsymbol{C}_{k} \boldsymbol{H}_{k}^{T}
\end{aligned}
$$

Measurement
Noise
Gain due to Information from previous measurements

- Chi Square Increment

$$
\begin{aligned}
\chi_{+}^{2} & =\boldsymbol{r}_{k}^{T} \boldsymbol{R}_{k}^{-1} \boldsymbol{r}_{k} \\
& =\boldsymbol{r}_{k}^{T} \boldsymbol{G}_{k} \boldsymbol{r}_{k}+\left(\boldsymbol{a}_{k}-\boldsymbol{a}_{k}^{k-1}\right)^{T}\left(\boldsymbol{C}_{k}^{k-1}\right)^{-1}\left(\boldsymbol{a}_{k}-\boldsymbol{a}_{k}^{k-1}\right)
\end{aligned}
$$

Smoothing

$$
\left\{\boldsymbol{m}_{k^{\prime}} ; k^{\prime} \leq k\right\} \mapsto \boldsymbol{a}_{k^{\prime \prime}<k} \quad: \text { past }
$$

- State Vector

$$
\boldsymbol{a}_{k}^{n}=\boldsymbol{a}_{k}+\boldsymbol{A}_{k}\left(a_{k+1}^{n}-a_{k+1}^{k}\right)
$$

Smoothing Matrix

$$
\boldsymbol{A}_{k} \equiv C_{k} F_{k}^{T}\left(C_{k+1}^{k}\right)^{-1}
$$ already calculated in the prediction step already calculated in the prediction step already calculated in the filtering step

It is instructive to compare filtering and smoothing formulae

New Pull

Smoothing

$$
\begin{aligned}
& \boldsymbol{A}_{k}=\boldsymbol{C}_{k} \boldsymbol{F}_{k}^{T}\left(C_{k+1}^{k}\right)^{-1} \\
& \boldsymbol{a}_{k}^{n}=\boldsymbol{a}_{k}+\boldsymbol{A}_{k}\left(\boldsymbol{a}_{k+1}^{n}-\boldsymbol{a}_{k+1}^{k}\right)
\end{aligned}
$$

- Covariance Matrix

Improvement from Measurements at $(k+1 \sim n)$

 negative definite

$$
C_{k}^{n}=C_{k}+A_{k}\left(C_{k+1}^{n}-C_{k+1}^{k}\right) A_{k}^{T}
$$

already calculated in the prediction step
already calculated in the filtering step

\square Residual

$$
\begin{aligned}
\boldsymbol{r}_{k}^{n} & \equiv \boldsymbol{m}_{k}-\boldsymbol{h}_{k}\left(\boldsymbol{a}_{k}^{n}\right) \\
& =\boldsymbol{r}_{k}-\boldsymbol{H}_{k}\left(\boldsymbol{a}_{k}^{n}-\boldsymbol{a}_{k}\right)
\end{aligned}
$$

- Covariance Matrix

$$
\begin{aligned}
& \begin{aligned}
\boldsymbol{R}_{k}^{n} & =\boldsymbol{R}_{k}-\boldsymbol{H}_{k} \boldsymbol{A}_{k}\left(\boldsymbol{C}_{k+1}^{n}-\boldsymbol{C}_{k+1}^{k}\right) \boldsymbol{A}_{k}^{T} \boldsymbol{H}_{k}^{T} \\
& =\boldsymbol{V}_{k}-\boldsymbol{H}_{k} \boldsymbol{C}_{k}^{n} \boldsymbol{H}_{k}^{T}
\end{aligned} \\
& \begin{array}{c}
\text { Measurement } \\
\text { Noise }
\end{array}
\end{aligned}
$$

Gain due to Information from other measurements

Inverse Kalman Filter

Machineary to eliminate measurement (k)

- State Vector

Pull we want to eliminate

$$
\boldsymbol{a}_{k}^{n *}=\boldsymbol{a}_{k}^{n}+\boldsymbol{K}_{k}^{n *}\left(\boldsymbol{m}_{k}-\boldsymbol{h}_{k}\left(\boldsymbol{a}_{k}^{n}\right)\right)
$$

Kalman Inverse Gain Matrix

already calculated in the prediction step

already calculated in the smoothing step

- Covariance Matrix for state vector

$$
\begin{aligned}
C_{k}^{n *} & =\left(1-\boldsymbol{K}_{k}^{n *} \boldsymbol{H}_{k}\right) C_{k}^{n} \\
& =\left[\begin{array}{ll}
\left(C_{k}^{m}\right)^{-1} & H_{k}^{T} G_{k} H_{k}
\end{array}\right]^{-1} \\
& \quad \begin{array}{ll}
\text { already calculated in } \\
\text { the prediction step }
\end{array}
\end{aligned}
$$ already calculated in the smoothing step

- Covariance Matrix for residual

$$
\boldsymbol{R}_{k}^{n *}=V_{k}+\boldsymbol{H}_{k} C_{k}^{n *} \boldsymbol{H}_{k}^{T}
$$

Summary

- Typical Procedure for Tracking

outermost
innermost
$(1) \rightarrow(2) \rightarrow \cdots \rightarrow(k-1) \rightarrow(k) \rightarrow \cdots(n)$
filtering $\boldsymbol{a}_{2}^{1} \quad \boldsymbol{a}_{k-1}^{k-2} \quad \boldsymbol{a}_{k}^{k-1} \quad \boldsymbol{a}_{n}$
$\begin{array}{ll}a_{1} & a_{2}\end{array}$
$a_{k-1} \quad a_{k}$
prediction
$(1) \cdots \leftarrow(k) \leftarrow(k+1) \leftarrow \cdots \leftarrow(n-1) \leftarrow(n)$
$a_{1}^{n} \cdots<a_{k}^{n} a_{k+1}^{n} \longleftarrow a_{n-1}^{n} \longleftarrow a_{n}$ smoothing \boldsymbol{a}_{n}^{n}

- Extrapolation

$$
a_{n} \underset{\text { prediction }}{\longrightarrow} a_{n+1}^{n}=a_{I P} \quad a_{0}^{n}=a_{\text {cal }} \underset{\text { prediction }}{ } a_{1}^{n}
$$

- Alignment, Resolution Study, etc.

Need to eliminate point (k)
(1) $\cdots \cdots \cdots \cdot(k-1)$
(k)
$(k+1) \cdots \cdots \cdots \cdot(n)$
\rrbracket Inverse Kalman Filter
$\boldsymbol{a}_{k}^{n *}$ Reference Track Param.
』
$\boldsymbol{h}_{k}\left(\boldsymbol{a}_{k}^{n *}\right)$ Expected Hit Position
$\boldsymbol{r}_{k}^{n *}=\boldsymbol{m}_{k}-\boldsymbol{h}_{k}\left(\boldsymbol{a}_{k}^{n *}\right)$ Residual to Look At

