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CEPC detector should be similar



ILC Experiments 
View events as viewing Feynman diagrams
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Jet invariant mass → W/Z/t/h ID → pμ

→ angular analysis → sμ

Particle Flow Analysis

Missing momentum → neutrinos

Hermeticity

Thin and high resolution vertexing

High resolution tracking
high granularity calorimetry

down to O(10mrad) or better

Reconstruct events in terms of (q, l, gb, hb)

both ECAL and HCAL inside the 
solenoidSelect Feynman diagrams with polarized beams

Beam polarization plays an essential role !

To these processes, only left-handed electrons and 
right-handed positrons contribute !

If you have a wrong combination, cross section is zero.
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Pol (e -0.8 -0.8 0
Pol (e +0.3 0 0
(σ/σ 1.8x1.3=2.34 1.8x1.0=1.8 1

Beam polarization acts as luminosity doubler !
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ILD

• Large R with TPC tracker 
– 32 countries, 151 institutions, ~700 members 
– Most members from Asia and Europe  
– B=3.5T, TPC + Si trackers 
– ECal: R=1.8m

Both detector concepts are optimized for Particle 
Flow Analysis

• High B with Si strip tracker 
– 18 countries, 77 institutions, ~240 

members 
– Mostly American 
– B=5T, Si only tracker 
– ECal：R=1.27m

SiD

Detailed Baseline 
Design (TDR vol.4)
arXiv: 1306.6329



Particle Flow Analysis
How to measure jet energies precisely?

Charged Particles
Tracker’s resolution is much better than that of 
calorimeters

Neutral Particles
Use calorimetry

Remove charged particle signals in 
calorimeters

Needs 1-to-1 matching of tracks and 
calorimeter clusters

Needs ultra-high 
granularity calorimeter

6

Use tracking 
devices

PFA
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What we want to know

Two 4-vectors:  
	 	 pμ = (E/c, p) 
	 	 xμ = (ct, x) 
for every particle produced

Primary purpose of tracking 
	 = to measure p for charged particles
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Momentum Measurements
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Radius: r      → Transverse Momentum: pT

s

r: radius

r-s

l/2 (l: lever arm)

Track

λ
pT

pL

p

Dip angle: λ → Longitudinal Momentum: pL

pL = pT tan�

A charged particle follows a helix 
in uniform magnetic field

B-field

r

Radius from sagitta

Helical Track

pT [GeV/c] = 0.3 ·B[T] · r[m]

r2 = (l/2)2 + (r � s)2
Sagitta: s

2rs = (l/2)2 + s2 ' l2/4

r ' l2/(8s)

(s ⌧ l)

pT = (1/↵)Br

 :=
1

pT
'

✓
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�pT

p2T
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✓
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Gluckstern Formula
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�2
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�MS
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�2
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�MS



'
✓
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Bl

◆s
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✓
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�
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= spatial resolution in the r-� plane per point

n = the number of sampling points

↵ = 333.56 (cm · T ·GeV

�1
)

C = 0.0141 (GeV)

(X/X0) = thickness measured in radiation length units

l = lever arm length (cm)

B = magnetic field (T)

Multiple 
scattering

Detector 
resolution

n equally spaced sampling 
points for tracking

�tan� '

s
⇣�z

l

⌘2
✓
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n

◆
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�
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✓
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p = pt
p

1 + tan2 �
λ

Total momentum:

Dip angle: λ

Transverse momentum: pT

pT

pL

 := 1/pT

p

lever arm length
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Two Options
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High B, excellent σx 
but small n

ILD

SiD

Large l, 
large n 
but moderate σx

Low material 
budget (gas)

Reasonably low material budget  
 (5 layers of Si)

Pictorial tracking

TPC

Si



ILD
HCAL

ECAL

TPC

tth @ 500 GeV
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Performance Goals
Momentum Resolution: σ(1/pt) = 2x10-5 (GeV-1)  
	 	 	    >200 sampling points along a track with a spatial resolution  
	 	 	    better than σrφ~100 μm over the full drift length of >2m  
	 	 	    in B=3.5T (recoil mass, H→μ+μ-).


High Efficiency:	 	    2-track separation better than ~2mm to assure essentially     
	 	 	    100% tracking efficiency for PFA in jetty events. 
	 	 	    High tracking efficiency also requires minimization of dead 	 	
	    spaces near the boundaries of readout modules.


Minimum material: 	    for PFA calorimeters behind, also to facilitate extrapolation to  
	 	 	    the inner Si tracker and the vertex detector

12

Recoil Mass Measurement H→μ+μ- Particle Flow Analysis

1-to-1 track- 
cluster matching 
for exact Ech 
subtraction 



What is Time Projection Chamber?

Cathode  
(central membrane)

Field Cage 
(producing uniform E-field)

End Plane 
(Readout Modules)

E-field

B-field

E-field

Z

r

0: IP

rΦ 
projection

Z from 
drift time

Ionization 
of gas 
molecules



LC-TPC

Micro Pattern Gas Detector 
readout TPC provides pictorial 
3D tracking by ~200 space points 
with σrφ~100 μm and two-hit 
separation of ~2mm

LC-TPC  (ILD)

International Large Detector

ILD DBD Completed on March, 2013 

ILD : optimized for  
Particle Flow Analysis

Highly efficient tracking in a 
jetty environment is an 
essential ingredient for PFA Large Prototype 

being tested at DESY

LP1

TPC

Vertex resolution              2-7 times better 
Momentum resolution       10 times better 
Jet energy resolution         2 times better

Performance Goals  
as compared to LHC detectors

3.6m

4.7m
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Why MPGD Readout?
We need high (>3 T) B field 
to confine e+e- pair BG from 
beam-beam interactions, 
then ExB is too big for 
conventional MWPC readout 
2mm 2-track separation is 
difficult with MWPC readout 
Thick frames are 
unavoidable for MWPC 
readout

15

Micro-Pattern Gas Detectors

Drift distance [mm]
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°|<30e, |°|<4qMWPC, TDR, 4.0T, |

m]µ  11.9 [±=   290 0m],  cmm / µ  28.6 [±= 6.23 effN/DC

 z2
effN/DC + 2

0m = 2m

=   10  /  n.d.f.=    52r

ExB spreads seed electrons along the 
sense wires, then avalanche fluctuation 
limits the spatial resolution!

De-clustering

Micromegas GEM InGrid TimePix

Pre-LCTPC group incl. the FJ teams excluded MWPC together 
with a small protoypte TPC!
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I. Analog (Pad) TPC:  	Subject to the gas gain fluctuation in the gas  
	 	 	 	 	 amplification. Need to spread the avalanche 
	 	 	 	 	 charge for charge centroid. 

(1) Multi layer GEM with the standard pad (~1x5mm2) readout :  
		 	 	 (charge spread by diffusion) 

Asian (KEK-Saga-Tsinghua) Module, DESY module   

(2) Micromrgas with the resistive-anode  (pad: ~3x7mm2) readout : 
Saclay-Carleton Module


II. Digital (Pixel) TPC:	Free from the gas gain fluctuation. Expect  
	 	 	 	 	 20-30% improvement of position resolution  
	 	 	 	 	 in the case of digital readout.  
	 	 	 	 	 No angular pad effect. 
	 	 	 	 	 Theoretically the best but not yet ready for full  
	 	 	 	 	 implementation of a module. 

(3) InGrid Micromegas mesh on Timepix chips (pixel: ~50x50μm2) 
NIKHEF-Saclay Module,  Bonn-module	 	

After the initial stage of R&D with many small TPC prototypes, we are left with 
three options of MPGD TPC readout technologies for ILC, being tested at the 
Large prototype  (LP) TPC at DESY. 

MPGD Options

Asian GEM module

MM (resistive anode)

InGrid+Timepix



K.Fujii @ FKPPL/TYL 2013, June, 2013

Can house up-to 7 modules

Asian GEM  
Modules

Asian GEM  
Module

Pad plane PCB 
from China

PCMAG from KEK 
modified by Toshiba  
under the framework 
of DESY-KEK 
collaboration in 
JFY2011 to allow 
Liq.He-less operation

5GeV electron beam

GM cryo-coolers

Large Prototype test beam

Being used for test 
beam experiments 
since June 2012

Saclay Micromegas 
module with 1st prototype  

of compact electronics

Large Prototype

Saclay-Carleton  
MM modules
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Basic Operational 
Principle of  

MPGD Readout TPC
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Basic Physics Behind 
Operation of TPC  

!

Part I 
!
!

-- Fundamental Processes in the TPC --

Keisuke Fujii  
!

iSTEP 2014, IHEP Beijing, Aug. 2014



Purpose
I will focus on very basic principles, trying to prepare 
you, students, for more advanced topics containing more 
practical and technical aspects. 
!
Emphasis will be put on concepts and philosophy, and 
hence practical examples will be minimum, for them take 
a look at excellent text books such as 
!
           V.Palldino & B.Sadoulet 1974: LBL-3013          
           F.Sauli 1977: CERN 77-09          
           W.Blum & L.Rolandi 1993, 2008         



Fundamental Processes

Amplification Gap

Readout Pads

Beam

Drift Volume Drift and Diffusion

Amplification and
          further Diffusion

Pad Response

Ionizations

Coordinate
x

      Liberation of Electrons



Subjects to be Covered
Liberation of electrons by ionization (dE/dx) 

Classical theory of electron transportation in a chamber 
gas and its applications 

Behaviors of electrons in E and B fields 

Transport coefficients: Vd, Cd 

Gas amplification 

Creation of signals 

Coordinate measurement 

Positive ion effects



Liberation of Electrons
Through Ionization of Gas Molecules  

By a Fast Moving Charged Particle

This part will be brief, though it is a deep subject.



Ionizing Collisions
Various Ionization Mechanisms

A charged particle going through a chamber 
gas ionizes gas molecules along its path and 
leaves a track of ionization. This is called 
primary ionization. The ionizing collisions are 
statistically independent, and hence the  
number of such collisions obeys the Poisson 
distribution:

Primary Direct Ionization

P (n; n̄) =
n̄n

n!
e�n̄

where the average number of collisions is 
given by the thickness (   ) of the medium and 
the mean free path (   ) as

n̄ = L/�

L
�

The mean free path is of course related to 
the cross section per electron in the gas and 
the electron density in the gas.

N⇥I � = 1

The probability distribution for the free 
flight path (  ) is then given byl

f(l;�)dl = P (0; l/�) P (1; dl/�) = e�l/� dl

�

The average number of ionizing collisions per 
1cm is about 28 for a minimum ionizing 
particle passing through an Ar gas at 1atm.  
This corresponds to an ionization cross 
section of 

Secondary Ionization
The electrons kicked out from molecules, if 
energetic enough, will further ionize gas 
molecules. Some of the gas molecules might 
be excited to some intermediate state that 
can lead to further ionizations through a 

⇤I(Ar) ⇤ 10�18 [cm2] ⇥ ⇥R2
Ar � ZAr �2

QED



process like of a length “L” is given by

Average Energy for Ionization

A⇥B � AB+ e�

where A* is an excited molecule and B is a 
molecule with an ionization potential that is 
lower than the excitation energy of A*. 
A* is often a metastable excited state of a 
noble gas used as the main gas component 
(e.g. Ar) and B is often a quencher added to 
stabilize the gas amplification process. 
A* can also be an optical excitation with a 
long life time. 

A� = metastable � Penning E�ect
A� = optical excitation � Jesse E�ect

Only a certain fraction of the energy loss by 
the fast charged particle is used for 
ionization. We define “W” as the average 
energy required for the creation of a single 
ionization electron. Then the average number 
of ionization electrons along a track

�nI⇥ =
�

dE

dx

⇥
L

W

The “W” depends on the gas and the nature 
of the incident particle, but it is known to be 
independent of incident energy if E > a few 
keV for electrons or if E > a few MeV for 
alpha-particles. 
!
For a noble gas, “W” ranges from 46 eV for 
He to 22 eV for Xe. For Ar it is 26 eV.  
The “W” values are typically a factor of 1.5 to 
2 larger than the ionization potentials. 
!
In order to see how the average energy loss 
depends on the particle’s speed or on the 
nature of the gas, and to understand the 
distribution around the average, let us review 
next the Allison-Cobb formulation of the  
energy loss process. 



Allison-Cobb Formulation
dE/dx as a photo-absorption/ionization by a virtual photon

The energy loss of a charged particle that 
passes through a dielectric medium is due to 
the negative work done by the E-field 
created by the electrons and the nuclei of 
the molecules making up the medium:

A Charged Particle in a Dielectric

dE/dx · dx = �e

�
⇤

a

Ea

⇥
· dx

where e is the particle charge and the sum is 
over all the charges in the medium. 
Averaging the both sides over a small tube 
around the incident particle, we have

⇤dE/dx⌅ · dx = �eE · dx

with
E =

�
⇤

a

Ea

⇥

If we can determine the E-field by solving 
the Maxwell equations, we can get dE/dx

The Maxwell equations in a dielectric with a 
magnetic permeability of one (           ) read

⇤dE/dx⌅ = �eE(c�t, t) · �/�

The Maxwell equations

⌅ · B = 0

⌅⇤E = � 1
c

⇤

⇤ t
B

⌅ · D = 4�⇥

⌅⇤B =
1
c

⇤

⇤ t
D +

4�

c
j

The charge and current densities are 

⇥(x, t) = e �3(x� c�t)
j(x, t) = c� ⇥(x, t)

B = H

where        is the velocity of the charged 
particle that can be regarded as constant 
during its passage through the dielectric 
medium.

c�



In order to close the Maxwell equations we 
need a material equation for the dielectric 
medium:

which expresses the dependence of the 
electric flux density on the electric fields  at 
causally connected space-time points through 
a Green function G. 
Defining Fourier transform of f as

In the limit of            , we have

The Solution

D(x, t) = E(x, t) +
� �

0
d�

�

|�|<c�⇥
d3� G (|�| , �) E(x� �, t� �)

f̃(k,⇥) �
�

d3x dt

(2�)2
f(x, t) e�i(k·x��t)

we have
D̃(k,⇥) = �(k, ⇥) Ẽ(k,⇥)

with
�(k, ⇤) = 1 +

� ⇤

0
d⇥

�

|�|<c�⇥
d3� G (|�| , ⇥) ei(k·��⇤⇥)

The dielectric constant being independent of 
the direction of the wave vector shows the 
isotropy of the dielectric medium. Notice 
that the E- and D-fields being real implies

��(k, ⇥�) = �(k,�⇥)

� �⇥

with
�

|�|<c�⇥
d3� G (|�| , �) eik·� �

�

|�|<c�⇥
d3� G (|�| , �) = G̃(�)

�(k, ⇥)� 1 ⇤ iG̃(0)
⇥

� G̃�(0)
⇥2

+ · · · = � G̃�(0)
⇥2

+ · · ·

since only the region near          contributes.� � 0

With the scalar and vector potentials

in the Coulomb gauge

we can translate the Maxwell eqs. into

k2⇥ ⇤̃(k,⌅) = 2e �(⌅ � c� · k)

k2Ã(k,⌅) =
⇥ ⌅2

c2
Ã(k,⌅)� ⇥ ⌅k

c
⇤̃(k,⌅) + 2e� �(⌅ � c� · k)

The solution is hence given by

⇤̃(k,⌅) =
2e

⇥k2 �(⌅ � c� · k)

Ã(k,⌅) = 2e
⌅k/ck2 � �

⇥⌅2/c2 � k2 �(⌅ � c� · k)

B̃(k, ik · Ã(k,�) = 0

B̃(k,⇥) = ik ⇥ Ã(k,⇥)

Ẽ(k,⇥) =
i⇥

c
Ã(k,⇥)� ik�̃(k,⇥)



Putting them together into the energy loss 
formula after inverse Fourier transform, 
we obtain

All we need is the complex dielectric const.

The Energy Loss Formula

⇤dE/dx⌅ = �e (�/�) · E(c�t, t)

= �e

⇤
d3k d⌅

(2⇤)2
(�/�) · Ẽ(k,⌅) ei(k·c�t�⇥t)

= � 2e2

(2⇤)�2c2

⇤ +⇤

�⇤
d⌅

⇤ ⇤

|⇥|/c�
dk i (⌅k)

�
⌅2/k2c2 � �2

⇥⌅2/c2 � k2
� 1

k2⇥

⇥

⇥dE/dx⇤ = � 2e2

⇤�2

⇧ �

0
d⌅

⇧ �

⇥/c�
dk

⇤
(⌅k)

�
�2 � ⌅2

k2c2

⇥
Im

�
1

⇥⌅2 � k2c2

⇥
+

⌅

kc2
Im

�
1
⇥

⇥⌅

or with ��(k, ⇥�) = �(k,�⇥)

The 1st term in the square bracket is from 
the vector potential (transverse) and 
vanishes at beta=0 while the 2nd term is 
from the scalar potential (longitudinal) and 
stays finite at beta=0. The energy loss is 
calculable when the complex dielectric 
constant is given. The formula suggests if the 
dielectric constant is real, there will be no 
energy loss.

Allison-Cobb (PAI) Model

Allison and Cobb relate its imaginary part to 
the photo-absorption cross section of the 
medium with

� := �1 + i�2

�1(⇤)� 1 =
2
⇥

P
� ⇥

0
d⇤�

⇤� �2(⇤�)
⇤�2 � ⇤2

�2(⇤) � N

Z

� c

⇤

⇥
⇥�(⇤)

where N is the electron density of the 
medium and Z the atomic number of the 
molecule. They then get the real part of the 
dielectric constant with the Kramers-Kronig 
relation

The upper limit of the omega integral is of 
course finite in reality as constrained by 
kinematics:

� ⇤max =
2mec2 �2⇥2

1 + 2⇥ (me/m) + (me/m)2

where      is the particle mass and        the 
electron mass.

m me



The photo-absorption cross section for Ar is 
shown below.

 [eV] h
210 310 410

) [
M

b]
h(

-510

-410

-310

-210

-110

1

10

210
Ar

G.V.Marr & J.B.West (1976)

k =
�

� ⇥/c

Indeed, we have

eikx = ei(Re k+i Im k)x

= ei(Re k)x e�(Im k)x

= ei(Re k)x e�
1
2 (x/�)

which together with

implies the attenuation length “lambda” to be 
given by

1/⇥ � 2 Im k = 2 (⇤/c) Im
⇤

�
= 2 (⇤/c) Im (�1 + i�2)1/2

⇥ (⇤/c) �2

for a low density medium such as our TPC gas 
mixtures. 
On the other hand, the attenuation length is 
related to the absorption cross section for 
photons:

⇥�(⇤) =
1

(N/Z)�
leading us to

�2(⇤) � N

Z

� c

⇤

⇥
⇥�(⇤)

The cross section is roughly consistent with 
what you expect from the geometrical cross 
section of Ar:

⇥(0.18 [nm])2 � 8� �QED ⇥ 58 [Mb]
# electrons in the outermost shell



The cross section can be translated into the 
imaginary part of the dielectric const. as 
shown in the next figure.

 [eV]h
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2
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Using the Kramers-Kronig relation:

�1(⇤)� 1 =
2
⇥

P
� ⇥

0
d⇤�

⇤� �2(⇤�)
⇤�2 � ⇤2

we obtain the real part as

Ar
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1

where the region near the L-shell peak is 
zoomed up to show the resonance effect. 
!
These are, however, for real photons. The 
crucial step taken by Allison and Cobb was to 
extend this to virtual photons.



Kramers-Kronig Relation
Relation between Real and Imaginary Parts of Epsilon

The complex dielectric constant is analytic in 
the upper half omega plane as is seen from its 
definition

Analyticity of Epsilon

It is real on the imaginary axis because of

�(k, ⇤) = 1 +
� ⇤

0
d⇥

�

|�|<c�⇥
d3� G (|�| , ⇥) ei(k·��⇤⇥)

��(k, ⇥�) = �(k,�⇥)

which is also easily derived from the above 
definition of the epsilon. 
Recall also its asymptotic behavior 

with
�

|�|<c�⇥
d3� G (|�| , �) eik·� �

�

|�|<c�⇥
d3� G (|�| , �) = G̃(�)

�(k, ⇥)� 1 ⇤ iG̃(0)
⇥

� G̃�(0)
⇥2

+ · · · = � G̃�(0)
⇥2

+ · · ·

This shows that the integral of the epsilon 
over the upper semicircle vanishes. We can 
hence express the epsilon using Cauchy’s 
integral:

The 1st term must vanish because of 
causality (G=0 for tau<0) and G’s continuity.

⇥(⌅)� 1 =
1

2⇤i

⇤ +⇤

�⇤
d⌅⇥

⇥(⌅⇥)� 1
⌅⇥ � ⌅ � i(+0)

=
1

2⇤i

⇤ +⇤

�⇤
d⌅⇥

�
P

1
⌅⇥ � ⌅

+ i⇤ �(⌅⇥ � ⌅)
⇥

(⇥(⌅⇥)� 1)

=
1

2⇤i
P

⇤ +⇤

�⇤
d⌅⇥

⇥(⌅⇥)� 1
⌅⇥ � ⌅

+
1
2

(⇥(⌅)� 1)

Moving the last term of the R.H.S. to the 
L.H.S. we get

�(⇤)� 1 =
1
⇥i

P
� +⇤

�⇤
d⇤⇥

�(⇤⇥)� 1
⇤⇥ � ⇤

Taking the real parts of the both sides, 
dividing the integral path into -ve and +ve 
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We have shown that the evaluation of the 
energy loss can be reduced to that of the 
imaginary part of the epsilon. As mentioned 
above, Allison and Cobb used the photo-
absorption cross section to estimate the 
imaginary part. To show how, let us first 
introduce the general oscillator strength 
function “f” by

The Allison-Cobb Model

�2(k, ⇤) =
2⇥2Ne2

me ⇤
f(k, ⇤)

The general oscillator strength function is 
related to the dipole transition probability 
for absorption or emission of a photon. Since 
the epsilon_2 is an odd function of omega, 
the “f” is an even function of omega. 
Since the imaginary part of the epsilon is 
related to the absorption cross section we 
can hence express the oscillator function in 
terms of the cross section

Strictly speaking, the formula is valid only 
for real photons. Allison and Cobb, however, 
assume that this holds approximately for 
even virtual photons, as long as they are 
below the free electron boundary.

f(k, ⇤) =
me c
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The assumption implies that the “f” does not 
depend on “k” in the resonance region.



Allison and Cobb further assume that the 
contribution from the region above the free 
electron line can be approximated as a 
contribution entirely coming from this line. 
The assumption is equivalent to ignoring the 
momentum of bound electrons. This seems a 
rather crude approximation, but it works as 
they respect the Bethe sum rule:
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From classical point of view, the oscillator 
strength function counts the number of 
bound electrons in a molecule contributing to 
a particular oscillation mode with the 
frequency omega. The Bethe sum rule hence 
just dictates that the total number of bound 
electrons in the molecule is const. 
!
Putting these together, we arrive at 
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Now all we need to do is to put this into the 
dE/dx formula
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and carry out integrations. Since the 1st term 
in the square bracket is dominated by the 
resonance region due to the pole of the 
propagator, we can set
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⇤Z
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Since there is no k-dependence here, the k-
integral is now straightforward. As for the 
2nd term in the square bracket, since it is 
dominated by the nearly free electron region, 
and since we are dealing with a low density 
material (          ), we can set|�| � 1
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With these approximations, we can carry out 
the integrations in an elementary way 
and obtain
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The Allison-Cobb Formula

with

and the Kramers-Kronig relation
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The Differential Cross Section
We can reinterpret the average energy loss 
formula as from discrete collisions of the 
particle with a bound electron exchanging a 
virtual photon with an energy       . � �

Denoting the differential cross section for 
the particle hitting the bound electron with 
the virtual photon  by      , we can writed�
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The 1st and 2nd lines on the R.H.S. are from 
the vector potential (transverse photons) and 
the 3rd and 4th lines from the scalar 
potential (longitudinal photons).



The transverse cross section vanishes in the 
beta->0 limit, while the longitudinal cross 
section behaves as 1/beta^2.  
On the other hand, in the beta->1 limit, the 
longitudinal cross section becomes const. 
!
The 2nd term becomes important in this limit 
and is related to the emissions of Cherenkov 
photons. As a matter of fact, recalling that             
and                       
for a low density medium, we notice that  
below and above       
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which is none other than the well known  
frequency distribution of the Cherenkov 
radiation.

The Beta Dependence The rest of the cross section can be put 
together and cast into the form
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where                        and                 . The 
conditions hold over a rather wide range for a 
low density medium with                  .  
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The relativistic rise comes from the fact 
that in the beta->1 limit the virtual photon 
gets closer to the real photon pole of the 
propagator and hence acquires a longer range, 
resulting in a larger cross section. 
This rise, however, saturates where
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and reaches an asymptotic value
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The saturation due to a finite density of the 
medium is called the density effect. 
!
The saturation sets in when 
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It is worth remembering that the minimum 
occurs at around             with almost no 
dependence on the medium. 
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It should also be noted that the saturation 
depends on the photon energy. In the free 
electron region (high omega limit), we have

� = 1� 4⇥Ne2
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where the plasma frequency is given by
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In this high frequency or high E region, the 
gamma* is given by 
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The higher the energy, the larger the gamma 
at which the saturation sets in.

The Energy Transfer / Collision
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For a low E, the resonance region dominates 
and hence the 1st and the 3rd terms of

give a major contribution. The E spectrum 
hence reflects the resonance structures of 
the photo-absorption cross section.

At high E values, only a quasi-free electron 
region will be kinematically allowed, and hence 
the 4th term determines the trend.
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Recalling the relation between the cross 
section and the oscillator strength and the 
Bethe sum rule, we have
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This is the Rutherford scattering formula. 
The formula indicates that the delta-ray 
production has a long tail characterized by 1/
E^2 behavior. 
!
There is of course a kinematical limit to set 
the maximum energy transfer, but this limit 
is practically never reached since such 
energetic collisions create delta electrons 
which will make separate tracks.



The Bethe-Bloch Formula
Relation between Allison-Cobb and Bethe-Bloch

The dE/dx formula can be separated into the 
transverse and the longitudinal parts

The Decomposition to T/L Parts
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Let us now examine them separately.

The Transverse Part
⇤

dE

dx

⌅

T

=
e2

(2⇤) c2�2 i

⇧ +⇥

�⇥
d⌅ ⌅

⇧ ⇥

(⇥/c�)2
dk2

�
�2k2c2 � ⌅2

k2c2 � ⇥(⌅) ⌅2

⇥
1
k2

The transverse part is given by

Replacing the complex dielectric constant by 
the Allison-Cobb model led us to the Allison 
Cobb formula. This time we will try to carry 
out the integrations directly. We assume that 
the epsilon does not depend on k following 
Allison and Cobb. The k-integral is then 
straightforward:
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To proceed further, we will make full use of 
the analyticity of the epsilon in the upper 
half omega plane. We will try to move the 
integration path to the upper semicircle, 
since the epsilon reaches its asymptotic form 
there:
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and hence we can carry out the integration.  
There is, however, a cut on the imaginary axis 
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where we defined the integration paths as in 
the following figure:
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In the low density limit, since there exits no 
cut, this gives the total transverse 
contribution, which is entirely specified by 
the plasma frequency of the medium. 

For a high beta value, the cut shows up and 
we have
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This represents the density effect. 
Putting these together, we arrive at
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The formula corresponds to the 1st and the  
2nd terms of the Allison-Cobb formula. 

The Longitudinal Part
The longitudinal part is given by
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Slightly going off the Allison-Cobb model we 
assume that epsilon is k-independent.



We carry out the k-integration to get Recalling the kinematic relation
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We recall here that epsilon becomes real in 
the omega->0 limit. This means that for the 
epsilon to acquire an imaginary part, there 
must be photon absorption that in turn 
requires some finite amount of energy to 
excite the lowest level. There must hence be 
a lower limit to the omega range of the 
integration as well as to the k-integration 
range.  
Noting that
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where “I” is the effective binding energy.

� ⇤max =
2mec2 �2⇥2

1 + 2⇥ (me/m) + (me/m)2

we have
(�kmax)2 � 2me ��max = 2me Tmax

With these, we arrive at
⇤

dE

dx

⌅

L

=
e2

c2�2

1
2

⇥2
p ln

�
2 mec2 �2 Tmax

I2

⇥

that corresponds to the 3rd and 4th terms 
(longitudinal part ) of the Allison-Cobb 
formula.

The Bethe-Bloch Formula
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Putting the T and L parts together, we get
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The dE/dx Fluctuation
Energy loss per a finite sample thickness

Let     be a finite sample thickness and        
be the corresponding energy loss.  
What we need is a probability distribution 
function:             . The distribution must 
satisfy the following equation
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where the 1st term on the R.H.S. is the 
probability of losing       in the first      and 
then nothing happening in the next       , while 
the 2nd term on the R.H.S. gives the sum of 
the probabilities of losing             in the first  
    and       in the subsequent      . 
This leads us to the following equation
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By inverse Laplace transformation, we get 

This is a general solution. In principle we can 
numerically calculate the probability 
distribution once a concrete expression is 
given for the differential X-section (e.g. the 
Allison-Cobb). Landau analytically did the 
integral with the Rutherford scattering cross 
section. 

Landau Distribution
Let       be a characteristic energy (of the 
order of average binding energy) of atoms in 
the medium and          be the maximum energy 
transfer from the particle to an electron in 
the medium. Landau assumed that the 
integral in the exponent comes only from the 
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where we choose the lower limit of the 
integral so as to reproduce the Bethe-Bloch



In this way, we can take the bound electron 
effects approximately. 
On the other hand, the 2nd term can be 
partially integrated to give 

lnE� = ln
I2

2mec2�2⇥2
+ �2

⇧ ⇥

E1

dE
1� e�sE

E2
=

1
E1

�
1� e�sE1

⇥
+ s

⇧ ⇥

E1

dE
e�sE

E

⇥ s

⇤
1 +

⇧ ⇥

E1

dE
e�sE

E

⌅

Again using              , we have sE1 � 1
� ⇥

E1

dE
e�sE

E
=

� ⇥

sE1

dz
e�z

z

=
� 1

sE1

dz

z
+

� 1

sE1

dz
e�z � 1

z
+

� ⇥

1
dz

e�z

z

⇥
� 1

sE1

dz

z
+

� 1

0
dz

e�z � 1
z

+
� ⇥

1
dz

e�z

z

=
� 1

sE1

dz

z
� �E

where the Euler constant is 
�E � 0.577

The 2nd term now becomes
� ⇥

E1

dE
1� e�sE

E2
= s (1� �E � ln sE1)

Putting the 1st and 2nd terms together, we 
arrive at

xN

⇧ ⇤

0
dE

⇤
d⇤

dE

⌅ �
1� e�sE

⇥
= ⇥ s (1� �E � ln sE⇥)

with 
⇥ := x

2⇤Ne4

mec2 �2

Introducing a dimensionless scaling variable

⇥(⇤,�) :=
� � ⇤

�
ln �

E� + 1� �E

⇥

⇤

we finally arrive at

The universal function           attains its 
maximum of about 0.18 at

⇥(�)

� = �MPV ⇥ �0.05

It has a FWHM of about 4, suggesting that xi 
sets the scale of energy loss.

F (x,�) =
1
⇥

1
2⇤i

� +i⇥+⇥

�i⇥+⇥
du eu ln u + � u =:

1
⇥

⌅(�)



Let us now examine the approximation we 
made to derive the Landau distribution and 
clarify the region of applicability.  
Inspection of 
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The Most Probable Value (MPV) position is

� = �MPV := ⌅

�
ln

⌅

E� + 1� ⇥E + ⇤MPV

⇥

=
�

2⇧Ne4

mec2�2
x

⇥ ⇤
ln

�
4⇧Ne4⇥2x

I2

⇥
� �2 + 1� ⇥E + ⇤MPV

⌅

which shows roughly the same beta 
dependence as the Bethe-Bloch formula.

Region of Applicability

⇤(�) :=
1

2⇥i

� +i⇥+⇥

�i⇥+⇥
du eu ln u + � u

tells us that the major contribution comes 
from the region where ln u ~ 0 or u ~ 1. The 
assumption for the important “s” region

1/Emax � s� 1/E0

can hence be translated to

sE0 =
u

�
E0 �

E0

�
⇥ 1 and sEmax =

u

�
Emax �

Emax

�
⇥ 1

or equivalently
E0 � ⇤ := x

2⌅Ne4

mec2 �2
� Emax ⇥ 2mec

2�2⇥2

It says that the medium must be thick 
enough for “xi” to be much larger than the 
binding energy scale, while it must be thin 
enough to be much less than the maximum 
energy transfer per collision. 

FWHM � 4

�MPV ⇥ �0.05



Comparison with Data
Allison-Cobb (1980)

The energy loss 

# ionization 
electrons 

Average energy 
for creation of 1 
electron

� = nI W

WAr = 26 [eV]

nI(1 [cm] Ar) � 100

# primary clusters
1 [cm] of Ar

� 30

Some numbers to 
remember



Cluster Size Distribution
The number of electrons per cluster

Depending on the number of electrons made 
by 2ndary ionizations, each primary cluster 
has different number of electrons in it. Its 
distribution function is not easy to calculate  
from the 1st principle, since the number of 
electrons per cluster is typically a few and 
hence its statistical treatment as with the 
number of ionization electrons per a finite 
sampling thickness is inadequate. 
What we actually measure with a TPC is 
usually the charge collected on a pad with a 
finite size. Individual primary clusters seem 
not to be our concern. This is, however, 
certainly wrong for pixel readout. Even for 
conventional pad readout, the cluster size 
fluctuation  might be a concern, since its 
fluctuation affects the spatial resolution 

Charge Size for inclined tracks. What we need to know is 
the probability of the primary ionizing 
collision with an energy transfer “E” to yield  
“k” 2ndary electrons:              . Once this is 
known, we can calculate the cluster size 
distribution as 

P2(k;E)

Pcl(k) =
⇤

dE
1
�

�
d�

dE

⇥
P2(k;E)

This was done by Lapique and Piuz (1980) for 
a pure Ar gas. As said above, however, the 
calculation of               is a complicated 
process, since 2ndary ionizing collisions are no 
longer statistically independent. Their work 
was hence only partially successful. There is, 
however, a beautiful measurement by the 
Heidelberg group (Fischle et al 1991) that can 
be used in Monte Carlo simulations.

P2(k;E)



Cluster Size Data
The Heidelberg Group Experiment (Fischle, Heintze, and Schmidt 1991)



Cluster Size Distribution
Geometrical Size of Cluster

The delta electrons have a finite range and 
hence give a finite geometrical size to the 
primary ionization cluster.  
Since the electric field due to a relativistic 
charged particle is perpendicular to its 
trajectory, the delta electron tends to be 
kicked out in the perpendicular direction. 
If the delta ray has a finite range, it would 
result in a shift of the charge centroid in 
that direction, deteriorating the spatial 
resolution. In the case of a TPC operated in a 
high magnetic field, the delta electron is 
curled up and hence the transverse cluster 
size can hardly be affected.  
At B=0, however, the effect may be visible.  
I quote here an empirical formula by Kobetich 
and Katz (1968):

Geometrical Size

R(E) = A E

�
1� B

1 + C E

⇥

A = 5.37� 10�4 [g cm�2keV�1]

B = 0.9815

C = 3.1230� 10�3 [keV�1]

Valid for low and intermediate Z

Typical delta-ray range values in Ar (N.T.P.)
R(1 [keV]) � 30 [µm]

R(10 [keV]) � 1.5 [mm] : 0.05 % of collisions



Cluster Size Distribution
Appendix (Delta-ray Kinematics)

Let the angle between the incident particle 
direction and that of the delta-ray emission 
be    , and let the maximum kinetic energy 
transfer be         , we have

Kinematics

Emax =
2mec2 �2⇥2

1 + 2⇥ (me/m) + (me/m)2

with

This implies that 

This formula tells us that on a purely 
kinematical basis, delta-ray emission should 
approximately be perpendicular to the 
incident particle direction, as long as we are 
talking about a delta-ray with an energy 
negligible compared to the electron mass.

Emax � 2mec
2 (�⇥)2 ⇥ (�⇥)2 [MeV]

For a minimum ionizing particle (           ), we 
hence have

�⇥ � 4

cos2 � � E

2mec2 + E

cos2 � =
2mec2 + Emax

2mec2 + E

E

Emax

for a free electron at rest.

for a particle with               .m� me

�
Emax
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Fundamental Processes

Amplification Gap

Readout Pads

Beam

Drift Volume Drift and Diffusion

Amplification and
          further Diffusion

Pad Response

Ionizations

Coordinate
x

      Liberation of Electrons



Classical Theory of 
Electrons in a Gas



Why Classical Theory?
Is it OK to treat it classically instead of quantum mechanically? 

Inter-molecular Distance

V = 2.24� 104 [cm3/mol]
NA = 6.02� 1023 [mol�1]

Thermal Energies

at 0 �C, 1 atm

�
1
2
m v2

⇥
=

�
1
2
M V 2

⇥
=

3
2
KT = 0.039 [eV] ⇤�

V 2⇥ = 1.4� 10�6 c

�
⇥v2⇤ = 0.39 � 10�3 c

⌅�
V 2⇥

⇤
⇤v2⌅

⇥ 4� 10�3

RAr = 0.18 [nm] Inter-molecular distance
⇥ 20�RAr

�
MAr

�
⇥V 2⇤

= 3.6 � 10�3 [nm]

�
m

�
�v2⇥

= 0.98 [nm]

The de Broglie wave length of the electron is small enough compared to the 
inter molecular distance implying that it is much smaller than the mean free 
path. The C.O.G. motion of the electron can hence be treated classically.

V1 = (3.3 [nm])3 per molecule



Boltzmann Equation
Basic Equation Governing Electron Transportation 

We often see formulae for electron drift and diffusion as derived 
from it, so it must be useful, but itself is rarely discussed in usual 
introductory text books. 
So, what is it? 
Where does it come from? 
And how? 
!
I can only show you a rough sketch, but I hope it will make you feel a 
little bit more comfortable when you see it next time. 
For (older) pragmatic people, it might become a little bit boring, but 
maybe it’s OK even for them to recall their student time.

We will find that THE KEY WORD IS “PROJECTION”! 

“PROJECTION” is a technique to forget about unwanted 
details and make life easy! 



Phase Space
Our system of interest 

Ionization electrons drift and diffuse independently 
It suffices to consider a single electron in a gas consisting of N gas 
molecules in a chamber (note: N is a huge number).

Stage where solutions dance, we only see their shadows

sample  
point (a)

Phase Space

Solution Lines
(Xa,P a)

6(N + 1)-dim.

x = X0

p = P 0

Electron’s Sub-Space

Projection

Molecules’ 
Sub-Space

Projection = Coarsification 
              = information loss

Microscopic Picture

H =
p2

2m
+

N�

b=1

P 2
b

2Mb

+Uext(x,p)
+UmM(x,X)
+UMM(X,X �)

Causal deterministic motion by

: Lorentz force (E,B)

: elec. + mol. collision

: mol. + mol. collision

Macroscopic Picture

Stochastic probabilistic motion

A shadow trajectory



Motion of a phase space point:  
!
!
satisfies 
!
                          with

Liouville’s Theorem
Solutions flow as perfect incompressible fluid 

Hamiltonian Equation of Motion

Write its formal solution as 
!
!
then this is a 1-to-1 map because of 
the uniqueness of solution.

Time Evolution Operator

� =
�

X
P

⇥

�̄ =
�

P
�X

⇥
�̇ =

�H

��̄T

�(t) = D(t)�(0)

D(0) = 1
D(�t)D(t) = D(t� t) = D(0) = 1

D(t1)D(t2) = D(t1 + t2)

D(t) forms an Abelian group:

Liouville’s Theorem

The map preserves phase space volume.

Liouville’s Equation
�(�; t) = �(X,P ; t) State density 

function

0 =
⇥

⇥t
� +

⇥H

⇥�̄
⇥

⇥�T �

J(t) = det
�

�D(t)�
��

⇥
= 1



Proof of Liouville’s Eq.
Proof is easy enough to give here

Derivation of Liouville’s Equation

0 =
d

dt
� =

⇥H

⇥�̄
⇥

⇥�T � +
⇥

⇥t
�

d

dt
A(�; t) = �̇

�

��T A(�; t) +
�

�t
A(�; t)

=
�H

��̄
�

��T A(�; t) +
�

�t
A(�; t)

In general, for any observable A:

Since Liouville’s theorem requires that 
the state density stays unchanged, 
which implies

Proof of Liouville’s Theorem
Equation of motion says

This is actually a continuity equation in 
the full phase space of the system or 
conservation of probability:

D(dt)� = � + dt �̇ = � + dt
�H

��̄T

�D(dt)�
��

= 1 + dt
�2H

��̄T
��

resulting in

We hence have

det
⇤

�D(dt)�
��

⌅
= 1 + dt Tr

⇤
�2H

��̄T
��

⌅
+ O

�
(dt)2

⇥

= 1 + O
�
(dt)2

⇥

1
dt

(J(dt)� 1) =
1
dt

(J(dt)� J(0)) =
d

dt
J(0) = 0

d

dt
J(t) = lim

t1�t

�

�t
det

⇤�
� D(t� t1)D(t1)�

� D(t1)�

⇥ �
� D(t1)�

� �

⇥⌅

= lim
t1�t

�

�t

⇤
det

�
� D(t� t1)D(t1)�

� D(t1)�

⇥⌅
·
⇤
det

�
� D(t1)�

� �

⇥⌅

=
⇤

d

dt
J(0)

⌅
· J(t1) = 0

which leads us to

� J(t) = 1

�
d6(N+1)� �(�; t) = 1



State Density Function
All we know about the ensemble 

The bundle of solution lines forms a 
manifold consistent with constraints 
imposed upon the system such as 
conservation of total energy and chamber 
volume boundaries

Projection = Coarsification 
              = information loss

Microscopic Picture
Once an initial distribution is given, the state density function evolves 
deterministically according to Liouville’s equation.

Macroscopic Picture
Thermal equilibrium = Equal weight

But how should we fix the initial 
distribution?  
Ergodic hypothesis: 
Probability is proportional to phase 
space volume

�(�; t) = �(D(�t)�; 0)

Projected volume decides probabilityDynamical variables of interest

Dynamical 
variables to be 
integrated out

x = X0

p = P 0

{Xb,P b}

Projection



Maxwellian Distribution
A detour which proves the power of ergodic hypothesis

The strip is actually the 
surface of a 3(N-1)-dim. 
sphere:

State Density Function for Molecules
Ignore the electron, for the moment, and concentrate on the molecules, whose sate density function in thermal equilibrium. 
Good approximation since we can safely assume that the molecules colliding with the electron never met it in the past.

Interaction hamiltonian of the molecules has a nonzero value 
only when the inter-molecule distance becomes negligibly small 
compared to its average determined by the gas density. 

The phase space points uniformly distribute over the surface 
of a 3N-dim. sphere of radius R=sqrt(Etot) x 3N-dim. box with 
a volume L^{3N}. Note that the projection of spatial dimension 
simply gives L^{3N}.

R

N�

b=1

Y 2
b = R2

Y1=
�

Mb/2 |V 1|

|Y 1|=Y1
subspace

N�

b=2

Y 2
b = R2 � Y 2

1

�
R2 � Y 2

1

Projection

Etot =
N�

b=1

1
2
MbV

2
b :=

N�

b=1

Y 2
b = R2

S3(N�1)

�⌥
R2 � Y 2

1

⇥

⌅
�⌥

R2 � Y 2
1

⇥3(N�1)�1

⇥ R3N�4
⇧
1� (Y1/R)2

⌃3N/2

⇥ R3N�4

⇤
1� Y 2

1 /((2/3)R2/N)
3N/2

⌅3N/2

⇤ R3N�4 exp
⇤
� Y 2

1

(2/3)(R2/N)

⌅
⌅ exp

⇤
� Y 2

1

kBT

⌅



Projection of Liouville’s Eq.
Electron distribution as the projection of the full state fun. 

Separating the part containing the 
electron’s dynamical variables from the 
rest, we have

Liouville’s Equation
�(�; t) = �(X,P ; t) State density 

function

0 =
⇥

⇥t
� +

⇥H

⇥�̄
⇥

⇥�T �

Now project the both sides to the 
electron subspace by integrating out 
molecules’ dynamical variables.

f(x,p; t) =
N⇤

b�=1

�⌅
d6�b�

⇥
� (x,p; {�b�} ; t)

fb(x,p;Xb,P b; t) =
⇤

b� �=b

�⌅
d6�b�

⇥
� (x,p;�b, {�b�} ; t)

1-body distribution function:

2-body distribution function:

The “molecule only” terms become surface 
integrals upon integration and vanish 
because rho has the same value 
everywhere on the surface.

where we have introduced

Notice that
F ext = e

�
E +

p

mc
�B

⇥

0 =
�

�

�t
+

p

m
· �

�x
+ F ext · �

�p

⇥
f

+
N⇤

b=1

⌅
d3Xb

⌅
d3P b F b ·

�
�

�p
� �

�P b

⇥
fb

(e < 0)

0 =
�

⇥

⇥t
+

p

m
· ⇥

⇥x
+ F ext · ⇥

⇥p

⇥
�

+
N⇤

b=1

F b ·
�

⇥

⇥p
� ⇥

⇥P b

⇥
�

+ Molecule Only Terms



Collision Term
Time average over the collision period

Collision Term
We move the 2-body term to the R.H.S. 
and call it the collision term: 

for obvious reason. Notice that if it were 
not for this term, the electron would have 
behaved as a single particle in external E 
and B fields. 
With this term, however, the projected 
trajectory of the electron will show a 
shaggy apparently random motion, though 
the full trajectory should be smooth and 
causal in the full phase space.  
!
Noting that the 2-body system can be 
regarded as isolated during the short 
period of collision time and the collision 
motion averaged using the projected H:

�
�f

�t

⇥

coll

= �
N⇧

b=1

⌃
d3Xb

⌃
d3P b F b ·

⇤
�

�p
� �

�P b

⌅
fb

which is none other than the 2-body 
Hamiltonian describing the collision. 
Then we have

where             is the 2-body time evolution  
operator and                          
!
is the 2-body phase space point in question.

D2(t�)

�2 = (x,p;Xb,P b)

�
⇧ t+�t

2

t��t
2

dt⇥F b ·
⇤

�

�p
� �

�P b

⌅
fb =

⇧ t+�t
2

t��t
2

dt⇥
�

�fb

�t⇥

⇥

= fb

�
�2; t +

�t

2

⇥
� fb

�
�2; t�

�t

2

⇥

= fb

�
D2(��t)�2; t�

�t

2

⇥
� fb

�
�2; t�

�t

2

⇥

H̄2 (x,p;Xb,P b) =

⇤

b� �=b

�⌅
d3Xb�

⌅
d3P b�

⇥
H(�)

⇤

b� �=b

�⌅
d3Xb�

⌅
d3P b�

⇥

=
p2

2m
+

P 2
b

2Mb
+ UmM (|x�Xb|)

+ const.



Collision Term (Continued)
Decomposition of 2-body fn. to products of 1-body fns. 

Before and after the collision period of  the 
2-body system, their space coordinates don’t 
change macroscopically, but their momenta 
may seem to jump by a finite amount.  
Microscopically, however, the jump is a 
function of the impact parameter and their 
relative momentum and should be causal in our 
classical mechanical treatment.

Probabilistic view point enters upon replacing 
the 2-body state density function by the 
product of the 1-body state density functions 
for the electron and the molecule in question.

Notice that the momentum transfer is 
determined by the relative momentum and 
the impact parameter. This replacement 
drops the information on the impact 
parameter by throwing away the coordinate 
information of the molecule. This loss of 
information is the source of the stochastic 
nature of the collision process.  
We hence make the replacement

�
d3Xb ⇥

�
d�b |v � V b| �t

since the volume integral should be taken 
over the region where

D2(��t) ⇥= 1

�
p = mv

P b = MbV b

⇥

�
⇧ t+�t

2

t��t
2

dt⇥F b ·
⇤

�

�p
� �

�P b

⌅
fb

= fb

�
D2(��t)�2; t�

�t

2

⇥
� fb

�
�2; t�

�t

2

⇥

fb(�2; t) = fb(x,p;Xb,P b; t)
� f(x,p; t) Fb(P b; t)

or over the X-section along the expected 
trajectory of the 2-body system.



Collision Term (Continued)
Time average over the collision period

Time Averaged Collision Term
Averaged over the collision time, we get

In what follows we understand the time 
derivative as appropriately averaged over the 
collision period as above, and simply write

Since the same kind of molecules should 
contribute equally to the summation (rho 
should be symmetric under exchange of the 
same kind of molecules), we can rewrite this 
to 
�

⇤f

⇤t

⇥

coll

=
⇤

k

Nk

⌅
d3P

⌅
d�k |v � V |

⇥ [f(x,p + �q; t) Fk(P ��q; t)

� f(x,p; t) Fk(P ; t)]

1
�t

⌅ t+�t
2

t��t
2

dt⇥
�

⇤f

⇤t

⇥

coll

=
N⇤

b=1

⌅
d3P b

⌅
d�b |v � V b|

⇥ [f(x,p + �q; t) Fb(P b ��q; t)

� f(x,p; t) Fb(P b; t)]

�
⇤f

⇤t

⇥

coll

=
N⇤

b=1

⌅
d3P b

⌅
d�b |v � V b|

⇥ [f(x,p + �q; t) Fb(P b ��q; t)

� f(x,p; t) Fb(P b; t)]

where       is the number of molecules of k-th 
kind. Noting 

1 =
�

d3X

�
d3P Fk(P ; t) = L3

�
d3P Fk(P ; t)

we define the density of molecules of k-th 
kind                    and 

F̄k(P ; t) = L3 Fk(P ; t)

nk = Nk/L3

Nk



The Boltzmann Equation
The fundamental equation

where the external force is given by

Then we finally arrive at the Boltzmann 
equation:

and the velocities are defined by

F ext = e
�
E +

v

c
�B

⇥

p = mv
P = MkV

⇤
⇤

⇤t
+

p

m
· ⇤

⇤x
+ F ext · ⇤

⇤p

⌅
f(x,p; t)

=
⇧

k

nk

⌃
d3P

⌃
d�k |v � V |

⇤
�
f(x,p + �q; t) F̄k(P ��q; t)

� f(x,p; t) F̄k(P ; t)
⇥

part flowing in part flowing out

p + �q

P ��q

P
p

P

p

P ��q

p + �q

Flowing in

Flowing out

TP = C



Inelastic Scattering
A short comment in passing

So far, we have been assuming that the 
electron-molecule collisions are elastic as 
described by a scattering potential. 
!
If we are to consider inelastic scattering 
involving some change of internal degrees of 
freedom of the colliding molecule, we need to 
expand the phase space to include the 
internal degrees of freedom and then 
project out these internal degrees of 
freedom as needed. 
The resultant loss of information can again 
be taken statistically into account as in the 
form of the inelastic cross section. 
!
We can hence regard the Boltzmann eq. as 
the one after this extra projection.

The Boltzmann equation, as it is, can hence be 
applied to those more general cases. 
!
In practice, however, the inclusion of 
inelastic processes complicates the 
treatment significantly, since we can no 
longer assume that the relative speed stays 
the same before and after the collision.  
!
After all, the physics that controls the 
electron transport in a gas lies in the collision 
term, and  that’s where all the complications 
come from. Calculating the properties of 
complex molecules from the 1st principle 
(=Q.M.) is often impracticable.  



Transport Coefficients
Things you want to derive from the Boltzmann Equation

We often see formulae for electron drift and diffusion as derived 
from the Boltzmann equation, but they are given almost always without 
proof.  
Where do they come from? 
And how? 
!
I can only show you a rough sketch, but I hope it will make you feel a 
little bit more comfortable when you see them next time. 
Some of you, pragmatic people might already have been pretty much 
fed up, but be patient recalling your student time.

Again we will find  THE KEY WORD IS “PROJECTION”! 

“PROJECTION” makes life easy! 



The Boltzmann Equation
From now on we will work in velocity space

where the external force is given by

The Boltzmann equation in (x,v) space is 
readily read out from its (x,p) version:

and the velocity changes must satisfy

F ext = e
�
E +

v

c
�B

⇥

part flowing in part flowing out

Flowing in

Flowing out

TP = C

V

V +�V

v + �v

v

⇤
⇤

⇤t
+ v · ⇤

⇤x
+

F ext

m
· ⇤

⇤v

⌅
f(x,v; t)

=
⇧

k

nk

⌃
d3V

⌃
d�k |v � V |

⇤
�
f(x,v + �v; t) F̄k(V + �V ; t)

� f(x,v; t) F̄k(V ; t)
⇥

�q = m�v = �Mk�V

v

V +�V

V

v + �v

Before moving on, it is worth noting that the 
Boltzmann eq. implies a scaling between the 
gas density and the field strengths for 
steady state solutions having no (x;t) 
dependence.



Velocity Space
Decomposition of f(x,v;t) to n(x;t) fbar(v;x,t)

The probability density of finding the 
electron in the vicinity of x is given by

n(x; t) =
�

d3v f(x,v; t)

With this, we can define the velocity 
distribution function by

f̄(v;x, t) := f(x,v; t) / n(x; t)

By definition this must satisfy the 
normalization condition:

as is obvious by integrating both sides of the 
following over velocities

f(x,v; t) = n(x; t) f̄(v;x, t)

Putting this into the Boltzmann equation, we 
have

Notice that on the R.H.S. (collision term),  
n(x;t) has been factored out, since the 
collision is a very local phenomenon.

It is tempting to assume that fbar will soon 
become independent of position and time due 
to random collisions with molecules, but this 
turns out incorrect as we will see next.

�
d3v f̄(v;x; t) = 1

⇧
⇤

⇤t
+ v · ⇤

⇤x
+

F ext

m
· ⇤

⇤v

⌃ �
n f̄

⇥

= n(x; t)
⌥

k

nk

�
d3V

�
d�k |v � V |

⇤
⇤
f̄(v + �v;x, t) F̄k(V + �V ; t)

� f̄(v;x, t) F̄k(V ; t)
⌅



Simple Minded Factorization
f(x,v;t) = n(x;t) fbar(v) does not work!

If we assume a simple minded factorization

and integrate the both sides of the B.Eq. 
over the electron positions, noting

The 1st term on the R.H.S. is zero since it 
becomes a surface integral where n=0. 
Combining this with the eq. on the left page 
yields 

Integrating both sides of the B.Eq. over the 
electron velocities, we have

where
�v⇥ :=

�
d3v f̄(v;x, t) v

is the local average velocity, which is in 
general position dependent.

f(x,v; t) � n(x; t) f̄(v)

we have

�
d3x n(x; t) = 1

�
�

�t
+ ⇥v⇤ · �

�x

⇥
n(x; t) = 0

which implies a simple drift w/o diffusion, 
possible only if n is uniformly distributed.

⇤
⇤

⇤t
+

⇤

⇤x
· ⌅v⇧+

⌃
d3v

F ext

m
· ⇤f̄

⇤v

⌅
n(x; t)

= n(x; t)
⌃

d3v
⇧

k

nk

⌃
d3V

⌃
d�k |v � V |

⇤
�
f̄(v + �v;x, t) F̄k(V + �V ; t)

� f̄(v;x, t) F̄k(V ; t)
⇥

⌃
d3x

⇤

⇤x
· v

�
nf̄

⇥
+

F ext

m
· ⇤

⇤v
f̄

=
⇧

k

nk

⌃
d3V

⌃
d�k |v � V |

⇤
⇤
f̄(v + �v;x, t) F̄k(V + �V ; t)

� f̄(v;x, t) F̄k(V ; t)
⌅



Concept of Velocity Shell
Towards more realistic solutions to the B.Eq.

We will then consider the velocity space in a 
spherical coordinate system: 

v

� = (cos �, ⇥)

We will hence be forced to retain the time 
and position dependence in fbar and think 
about another way of approximation.

The Basic Idea
The motion of the electron is dominated by  
random and almost isotropic velocity with a 
small modulation (drift velocity) due to the 
external E and B fields.

We hence consider a fraction of the phase 
space where the electron has speed in the 
range (v, v+dv), a shell of a 3-dim sphere in 
the velocity space. 
For the class of phase space points in the 
velocity shell, the distribution should be 
almost isotropic with the small modulation.

The Velocity Shell

v3

v1

v2

�
�

The 3rd axis in the direction 
of the average velocity of 
the shell

�v⇥shell



Harmonic Expansion
Expansion in terms of spherical harmonics

Since we took the 3rd axis in the direction of 
the average velocity of the shell, this implies

Harmonic Expansion
In each velocity shell, we expand fbar in 
terms of spherical harmonics as

f̄(v;x, t) =
⇥�

l=0

m=+l�

m=�l

Y m
l (�, ⇥) f̄m

l (v;x, t)

The distribution will then be dominated by 
low l spherical harmonics, 
     l=0 (scalar=monopole) : dominant 
     l=1 (vector=dipole) : drift

Average shell velocity

f̄�1
1 = f̄1

1 = 0

Ignoring l>1 terms, we can put

where 
f1(v;x, t) :=

�

⇤
0
0
f1

⇥

⌅

f̄(v;x, t) ⇥ f0(v;x, t) + f1(v;x, t) cos �

= f0(v;x, t) + f1(v;x, t) ·
�v

v

⇥

�l m| [Object]⇥ =
�

d� (Y m
l )� [Object]

Notation

The average shell velocity then becomes 

⇥v⇤�v
=

⌃
d�v v f̄(v;x, t)

� ⌃
d�v f̄(v;x, t)

=
v⌅
6 f̄0

0

⇥

⌅
f̄�1
1 � f̄1

1

�i (f̄�1
1 + f̄1

1 )⌅
2 f̄0

1

⇤

⇧

�v⇥�v
=

vf1

3f0



Harmonic Expansion
Projection of B.Eq. to harmonic components

Harmonic Expansion of B.Eq.
All we need to do is to put

The Scalar Equation (l=0)

into the Boltzmann equation, and project out 
l=0 (scalar) and l=1 (vector) components

f̄(v;x, t) ⇥ f0(v;x, t) + f1(v;x, t) cos �

= f0(v;x, t) + f1(v;x, t) ·
�v

v

⇥

�0 0| [B.E.]⇥ = Scalar Eq.
�1 0| [B.E.]⇥ = Vector Eq.

This projection is a tedious but doable 
mathematical exercise, at least for the 
L.H.S. of the Boltzmann equation. All you 
need to know is the composition rules of the 
spherical harmonics, which you must have 
learned in a Q.M. course. 
!
I just show the results of the exercise.

where           is in general a complicated fn.  
If collisions are all elastic, a concrete 
formula is known (c.f. Huxley & Crompton)

⇤

⇤t
(nf0) +

v

3
⇤

⇤x
·(nf1) +

1
4�v2

⇤
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�
4�

3
v2 eE
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·nf1

⇥

= n
⇤

k

nk
1

4�v2

⇤

⇤v
⇥̄m,k(v; [f0])

n nk ⇥̄m,k(v; [f0])

= 4�v2n nk v ⇥m,k(v)

⇤
m

Mk
v f0 +

�
V 2

⇥

3
⇤f0

⇤v

⌅

effective collision frequency
�m,k := nk v ⇥m,k(v)

�̄m,k

The scalar equation can be interpreted as the 
continuity equation expressing energy 
conservation.



Scalar Equation
Interpretation of Scalar Eq.

First recall that the total weight of the 
velocity shell (v,v+dv) is

while the shell averaged velocity is given by

Putting these into the scalar equation
⇤

⇤t
(nf0) +

v

3
⇤

⇤x
·(nf1) +

1
4�v2

⇤

⇤v

�
4�

3
v2 eE

m
· (n f1)

⇥

=
1

4�v2

⇤

⇤v

⇤
n

⇧

k

nk⇥̄m,k (v; [f0])

⌅

�v⇥�v
=

vf1

3f0

⇥

⇥t
ñ +

⇥

⇥x
·
�
ñ ⇥v⇤�v

⇥
+

⇥

⇥v

⇤
eE

m
·
⇥v⇤�v

v
ñ

⌅
=

⇥

⇥v

⇧
n

⌥

k

nk�̄m,k (v; [f0])

⌃

ñ dv = (4� v2dv) (n f0)

net gain of the shell population 
due to collisions 

net loss of the shell population due heating up due to external fields change rate of the 
shell population

net loss of the shell population 
due to drift 

The shell population times the mv^2/2 is the total energy of the shell, and hence the 
conservation of population is equivalent to that of energy.

and canceling out common factors, we get



Harmonic Expansion
Projection of B.Eq. to harmonic components (continued)

Momentum Transfer X-Section
The collision term is characterized by a 
quantity called the momentum transfer cross 
section. 
It is defined in general by

The Vector Equation (l=1)

where

The vector equation can be interpreted as 
the continuity equation expressing momentum 
conservation.

where       and       are relative speeds of 
electrons in the molecule rest frame before 
and after the collision, and their ratio is 
unity for elastic scattering, and

vr v�
r

⇥1,k =
�

d⇥k cos �

�0,k =
�

d�k

�

�m,k = �0,k �
v�

r

vr
�1,k

p ⇥m,k =
�

d⇥k p (1� cos �)

�̄m :=
�

k

nk v ⇥m,k(v) : effective coll. freq.

� :=
(�e)B

mc : cyclotron freq. vec.

Notice that the electron charge is -ve, hence 
(-e) is +ve. 

⇥

⇥t
(n f1) + v

⇥

⇥x
(n f0) +

eE

m

⇥

⇥v
(n f0)� � ⇥ (n f1)

= ��̄m(v) (nf1)



Vector Equation
Interpretation of Vector Eq.

The effective collision frequency is related 
to mean free time

path length

⇥ =
1

�̄m

Multiplying the both sides of the vector eq. 
by tau with this in mind makes the meanings 
of the vector eq. clearer.

�
⇥

⇥t
(n f1) + (� v)

⇥

⇥x
(n f0) +

�
�

eE

m

⇥
⇥

⇥v
(n f0)� (� �)⇥ (n f1) = � (nf1)

change of 
distribution 
during tau

velocity increase 
during tau

rotation during tau

velocity change by a 
single collision

This part remains even after the steady 
state is reached and hence should be kept as 
significant.

Can be large 
for a point 
source

Quickly become small 
after injection

On the other hand the total momentum of 
the velocity shell (v,v+dv) is

dptot = (4� v2dv) (n f0) m
v f1

3 f0
=

4� v2dv

3
m v (n f1)



Vector Equation
Separation of Drift and Diffusion

The Vector Equation

We assume that the 1st term (t-derivative) 
is negligible compared with the rest. This 
assumption implies that the electron is in a 
quasi-equilibrium at least locally. 
Then we have

We now decompose f1 as 

f1 = fE + fG

to separate the vector eq. into the following 
two:

v
⇥

⇥x
(n f0) +

eE

m

⇥

⇥v
(n f0)� � ⇥ (n f1)

⇤ ��̄m(v) (nf1)

⇥

⇥t
(n f1) + v

⇥
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(n f0) +

eE

m

⇥

⇥v
(n f0)� � ⇥ (n f1)

= ��̄m(v) (nf1)

�̄m(v) (nfE)� � ⇥ (n fE) = �eE

m

⇥

⇥v
(n f0)

�̄m(v) (nfG)� � ⇥ (n fG) = �v
⇥

⇥x
(n f0)

Notice that these are linear equations  
of the form

that can be solved by matrix inversion, 

once f0 is given. 
Notice also that upon the integration over x  
the contribution from fG must vanish.

[ �̄m(v)� �⇥ ]
�
n fE/G

⇥
= [fn. of f0]

�
n fE/G

⇥
= [ �̄m(v)� �⇥ ]�1 [fn. of f0]

[ �̄m(v)� �⇥ ]
�

d3x (n fG)

= �v

�
d3x

⇥

⇥x
(n fG)

= Surf. int. = 0



Vector Equation
Separation of Drift and Diffusion

with

Notice that W is a function of the speed v 
and the position of the electron, and the 
average over the whole phase space sample is 
given by 

We can hence rewrite the average velocity of 
the shell as

Now recall that f1 is related to the drift 
velocity of the shell through

This means that the fG and hence WG does 
not contribute to the average velocity of the 
whole ensemble:

W E/G :=
vfE/G

3f0

�v⇥ = �W E⇥

�W G⇥ = 0
and

We can hence interpret WE as  the drift 
velocity due to the external field and WG as 
the convection velocity due to diffusion of 
the velocity shell at a given spatial point.  
!
We will hence concentrate on WE for our 
discussions on the drift velocity v_D, while 
for our discussions on the diffusion we will 
focus on WG, which is our next task.

�v⇥�v
=

vf1

3f0

�v⇥�v
=: W = W E + W G

�v⇥ =
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d3x

⇤
(4�)v2dv (n f0)W

=
⇤ �

4�

3

⇥
v3dv

⇤
d3x (n f1)



Drift Velocity
Mobility Matrix

We start from the equation for fE, which can 
be rewritten with WE as

Recall your linear algebra course, then the 
reciprocal of the matrix M is given by

Notice that n(x;t) does not depend on v and 
hence can be cancelled out.  
We now introduce a matrix [M]: 

f0 [ �̄m(v)� �⇥ ]W E = �v

3

�
⇥

⇥v
f0

⇥
eE

m

where use has been made of a shorthand:

�̄m(v)� �

For notational convenience, we will use this 
abbreviation in what follows. 
Now all we need to do is a matrix inversion.

det [M]with 
�2 := �2 = �2

1 + �2
2 + �2

3

and 
� :=

(�e)B
mc

WE can now be written as

which can be averaged over v to give
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1 ⇥1⇥2 � �⇥3 ⇥1⇥3 + �⇥2
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2 ⇥2⇥3 � �⇥1

⇥3⇥1 � �⇥2 ⇥3⇥2 + �⇥1 �2 + ⇥2
3

⌅

⌃

÷ �
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f0 W E = �v

3
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�v
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⇥
[M ]�1

�
eE
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�W E⇥v (x; t) :=
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(4⇥)v2dv f0 W E

= [µ]E

[M ] := [ �̄m(v)� �⇥ ]
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Drift Velocity
Mobility Matrix (continued)

We introduced the local mobility matrix:

The matrix [M] becomes “nu” and hence the 
[mu*] becomes a single number:

The Mobility Matrix

which is in general a function of (x;t). 
To get the position-averaged mobility 
suitable for the centroid motion, we define

f�
0 (v; t) :=

�
d3x (n f0)

and the (global) mobility matrix:

�W ⇥ = �W E⇥ = [µ�]E

With this, we can write

Notice that the mobility matrix is 
proportional to a unit matrix if B=0.

Special Case [1] (B=0)

µ� = �4⇤e

3m

⇤ ⇥

0
dv

v3

⇥

�
d

dv
f�0

⇥

If there is a B-field, the mobility matrix will 
acquire nonzero off-diagonal elements and 
hence the direction of the E-field and the 
direction of the drift velocity will differ (so-
called Lorentz angle effects).

The drift direction should be anti-parallel 
with the E-field. This suggests that the 
integral should be negative, since (e < 0). 
Assuming that f*0 has a single peak, and the 
integral weights more on the higher side of 
the peak, it is indeed so.

[µ] := �4⇥e

3m

⇤
dv v3

�
⇤

⇤v
f0

⇥
[M ]�1

[µ⇥] := �4⇥e

3m

⇤
dv v3

�
d

dv
f⇥0

⇥
[M ]�1



Drift Velocity
Mobility Matrix (continued)

This is the case of our interest. Assuming 
that E and B are in the 3-axis direction, then 

and the inverse of [M] becomes

Special Case [2] (B//E)
If the velocity distribution can be taken as a 
delta function:

� =

�

⇤
0
0
�

⇥

⌅

[M ]�1 =
1

� (�2 + ⇥2)

�

⇤
�2 ��⇥ 0
�⇥ �2 0
0 0 �2 + ⇥2

⇥

⌅

But the E-field has no 1- or 2- components, 
there will be no 1- or 2-components in the 
drift velocity, either. Moreover, the 3rd 
component coincides with the B=0 case. 
There is hence no B-field effect on the drift 
velocity in the E//B case.

Special Case [3] (v-dist=delta fn.)

f�
0 =

1
4⇥v2

�(v � v̄)

Putting this into the def. of the mobility 
matrix, we have

The mobility matrix is thus parameterized by 
just two parameters, the collision freq. at 
vbar and the cyclotron frequency.
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dv v2 f⇥0 =
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m
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Mean Free Time
Mobility Matrix (continued)

Case (3) formula is usually obtained by time-
averaging the Newtonian equation of motion.

Usual Simplistic Arguments

m
dv

dt
= e

�
E +

v

c
�B

⇥
+ F coll

We define the time average of a variable A 
to be 

Upon this time average, the L.H.S. of the 
Newtonian eq. vanishes, since we are 
considering a bounded motion for which the 
velocity stays finite. We hence have

0 = e

�
E +

⇥v⇤t
c

� B

⇥
+ ⇥F coll⇤t

Notice that there appear the mean free time 
and the average momentum transfer. 
The momentum transfer averaged over all 
angles is easy to get for isotropic collisions

We now need to evaluate the time average of 
the collision force:
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This implies 

Mean Free Time
Mobility Matrix (continued)

This is a simple linear equation, and can be 
solved by matrix inversion as we did, and 
yields the formula you often see in the text 
book

The Drift Velocity Formula

This formula can hence be regarded as the 
limiting case of the delta function like v 
distribution or of a single velocity shell. 
We can also rewrite the Langevin equation in 
the following form

Collecting things together, we arrive at the 
time-averaged Langevin equation:

We can think of the average that appears in

�F coll⇥t =
1
�

lim
N�⇥

1
N

N�

i=1

m �v =
1
�

�m�v⇥

being first taken over scattering angles for 
each group with  nearly the same momentum 
and then over such groups. Then we have

⇥F coll⇤t = �1
�

m ⇥v⇤

�
1
�
� (�e)B

mc
⇥

⇥
⇤v⌅ =

eE

m

Notice that 1/tau=nu and

� :=
(�e)B

mc
tell us that the content of the square 
bracket is the same [M] we met before.
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m
E
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m
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which is known as Tonk’s theorem.

µ(B = 0)

⇤v⌅ =
�

µE

1 + (⇥�)2

� �
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The Inverse of [M]
Another Expression

This implies that the inverse of [M] can be 
cast into the form

The drift velocity formula for a single shell

can be rewritten as

From this we have immediately

B̂
T
[M ]�1B̂ = �

êT
⇥ [M ]�1 ê⇥ =

�

1 + (⇥�)2

where       is a unit vector perpendicular to 
the B-field. We will see later that the 

ê�

[D] =
1
3

�
v2 [M ]�1

⇥
diffusion matrix is given by

Twice integrating  by parts the diffusion eq. 
in the comoving frame, we have

This implies
d

dt
�2

xe
= 2De =

2
3

�
v2 eT [M ]�1 e

⇥

d

dt

⇧
d3x⇥ n(x⇥; t) (x⇥ · e)2

=
⇧

d3x⇥
�

�

�x⇥

⇥T 1
3

⇤
v2 [M ]�1

⌅ �
�

�x⇥

⇥
n(x⇥; t) (x⇥ · e)2

=
⇧

d3x⇥ 2
3

⇤
v2 eT [M ]�1 e

⌅
n(x⇥; t)

=
2
3

⇤
v2 eT [M ]�1 e

⌅

and hence

DL =
1
3

�
v2 �

⇥
DT =

1
3

�
v2 �

1 + (⇥�)2

⇥
and

and

[M ]�1 =
�

�

1 + (⇥�)2

� �
1 + (⇥�)B̂ �+(⇥�)2B̂ B̂·

�

⇤v⌅ =
�

µE

1 + (⇥�)2

� �
Ê � (⇥�)

�
Ê ⇥ B̂

�
+ (⇥�)2

�
Ê · B̂

�
B̂

�

⇥v⇤ =
�

�

1 + (⇥�)2

� �
1 + (⇥�)B̂ � +(⇥�)2B̂ B̂·

� e

m
E



Diffusion 
Diffusion Matrix

So far we have been discussing WE (or 
equivalently fE), the drift due to the 
external fields.  
We now turn our attention to the vector eq. 
for WG (fG), which can be cast into the 
form:

Notice that this time, since n(x;t) depends on 
x, we cannot cancel out n. Nevertheless,   
there appears the same matrix [M]: 

det [M]with 
�2 := �2 = �2

1 + �2
2 + �2

3

and 
� :=

(�e)B
mc

The solution is then

which can be averaged over v to give
[M ] := [ �̄m(v)� �⇥ ]W E

=

�

⇤
� ⇥3 �⇥2

�⇥3 � ⇥1

⇥2 �⇥1 �

⇥

⌅

[M ]�1 =

⇤

⇧
�2 + ⇥2

1 ⇥1⇥2 � �⇥3 ⇥1⇥3 + �⇥2

⇥2⇥1 + �⇥3 �2 + ⇥2
2 ⇥2⇥3 � �⇥1

⇥3⇥1 � �⇥2 ⇥3⇥2 + �⇥1 �2 + ⇥2
3

⌅

⌃

÷ �
�
�2 + ⇥2

⇥

(n f0) [ �̄m(v)� �⇥ ]W G = �v2

3

�
⇥

⇥x
(n f0)

⇥

and hence with the same inverse matrix:

(n f0) W G = �v2

3
[M ]�1

�
�

�x
(n f0)

⇥

n ⇥W G⇤v (x; t) :=
⇤

(4�)v2dv (n f0) W G

= �4�

3

⇤
v2 dv v2 [M ]�1

�
⇥

⇥x
(n f0)

⇥



Diffusion 
Diffusion Matrix (Continued)

Crucial step is to replace f0 on the R.H.S. by 
f0*:

so that we can take out f0* out of the spatial 
derivative and get 

det [M]

with 
�2 := �2 = �2

1 + �2
2 + �2

3

and 
� :=

(�e)B
mc

The approximation 

[M ]�1 =

⇤

⇧
�2 + ⇥2

1 ⇥1⇥2 � �⇥3 ⇥1⇥3 + �⇥2

⇥2⇥1 + �⇥3 �2 + ⇥2
2 ⇥2⇥3 � �⇥1

⇥3⇥1 � �⇥2 ⇥3⇥2 + �⇥1 �2 + ⇥2
3

⌅

⌃

÷ �
�
�2 + ⇥2

⇥

with the diffusion matrix [D] given by

f�
0 (v; t) :=

�
d3x (n f0)

[D] =
4�

3

�
v2 dv v2 [M ]�1 f⇥0

The inverse of [M] is as before:

allowed us to define the diffusion matrix [D] 
that satisfies the usual definition

�

�x
(n f0) � f�

0
�

�x
(n)n ⇥W G⇤v = � [D]

�

�x
n

n ⇥W G⇤v = � [D]
�

�x
n

current density 
(w/o common drift ) grad (density)

There is some subtlety in this approx. but we 
will not get into it now.



Diffusion 
Diffusion Matrix (continued)

where the collision frequency is given by

The matrix [M] becomes “nu” and hence the 
[D] becomes a single number:

Special Case [1] (B=0)

� =
�

k

nk v ⇥m,k(v)

D =
4⇥

3

�
dv

v4

�
f�
0 (v)

The diffusion is hence isotropic (as long as 
the approximation is valid) and inversely 
proportional to gas density and X-section.

We can hence rewrite the diffusion constant 
as

D =
1
3

⇥
dv

(4�v2)f�
0 (v)�

k nk v⇥m,k(v)
v2

Special Case [2] (B//E)
This is the case of our interest. Assuming 
that E and B are in the 3-axis direction, then 

and the inverse of [M] becomes

[M ]�1 =
1

� (�2 + ⇥2)

�

⇤
�2 ��⇥ 0
�⇥ �2 0
0 0 �2 + ⇥2

⇥

⌅

� =

�

⇤
0
0
�

⇥

⌅

DL =
1
3

�
dv

(4⇥v2)f�
0 (v)

�
v2

DT =
1
3

�
dv

(4⇥v2)f�
0 (v) �

�2 + ⇤2
v2

= D33

= D11,22

D12 = �D21 =
1
3
�

�
dv

(4⇥v2)f�
0 (v) ⇤

�2 + ⇤2
v2

Then we have

All the other components are zero.



Diffusion 
Diffusion Matrix (continued)

DL =
1
3

�
dv

(4⇥v2)f�
0 (v)

�
v2

DT =
1
3

�
dv

(4⇥v2)f�
0 (v) �

�2 + ⇤2
v2

= D33

= D11,22

D12 = �D21 =
1
3
�

�
dv

(4⇥v2)f�
0 (v) ⇤

�2 + ⇤2
v2

Notice that the longitudinal diffusion const.

is the same as with the B=0 case. 
On the other hand, the transverse one

is reduced by a factor

in the integrand. Where the tau, being the 
inverse of the collision frequency, is the mean 
free time between collisions.

�2

�2 + ⇤2
=

1
1 + (⇤⇥)2 ⇥ =

1
�

with

corresponds to rotation about the field axis 
but it is not of our interest.

If the velocity distribution can be taken as a 
delta function:

Special Case [3] (v-dist=delta fn.)

f�
0 =

1
4⇥v2

�(v � v̄)

Putting this into the def. of the diffusion 
matrix:

[M ]�1 =

⇤

⇧
�2 + ⇥2

1 ⇥1⇥2 � �⇥3 ⇥1⇥3 + �⇥2

⇥2⇥1 + �⇥3 �2 + ⇥2
2 ⇥2⇥3 � �⇥1

⇥3⇥1 � �⇥2 ⇥3⇥2 + �⇥1 �2 + ⇥2
3

⌅

⌃

÷ �
�
�2 + ⇥2

⇥

[D] =
4�

3

�
v2 dv v2 [M ]�1 f⇥0

with the inverse of [M] given by

we have
[D] =

1
3

v̄2 [M ]�1(v̄)

If B=0, this implies a naive expectation

[D] =
1
3

v̄2� =
1
3

(v̄�)2

�



Random Walk 
Diffusion Matrix (continued)

Case (3) formula is usually obtained by the 
random walk theory with a fixed mean free 
time:

Usual Simplistic Arguments

The probability for the electron to fly over a 
time “t” and then get scattered by the 
molecule by an angle “Omega” is given by

if the scattering is isotropic. For the sake of 
simplicity, let us further assume that there 
is no E and B along the 3rd axis, then 
Newton’s eq. reads

⇥̄ =
1

�(v̄)

P (t, �) =
1
⇥̄

exp
�
� t

⇥̄

⇥
dt

d�
4�

d

dt
v = � � v

The solution to this is a helix

If we have N collisions over the time t, the  
probability of finding the electron at x is 

x(t) =
v̄

⇤

�

⇤
sin � (cos(⇤t + ⇥)� cos ⇥)
sin � (sin(⇤t + ⇥)� sin⇥)

⇤t cos �

⇥

⌅ + x0

P (x) =
N⌃

i=1

�⌥ ⇥

0
dti

1
⌅̄

e�ti/�̄

⌥
d⇥i

4⇤

⇥

⇥ �3

⇤
x�

N⇧

i=1

�x(⇥i,⇧i, ti)

⌅

The average position is apparently zero 
because of the angular integrals which are 
isotropic. 

with

�x⇥ =
�

d3x P (x)x = 0

�x = x� x0



Random Walk 
Diffusion Matrix (continued)

Now the mean square transverse distance is 
given by

Similarly the mean square longitudinal 
distance is given by

which leads us to the expression

DT =
1
3

(v̄�̄)2

�̄ (1 + (⇥�̄)2)

⇤2
L = ⇤2

x3
=

⇧
d3x P (x) x2

3

= v̄2
N⌅

i=1

�⇧ ⇤

0
dti

1
⌅̄

e�ti/�̄

⇧
d�i

4⇥

⇥ N⇤

i=1

t2i cos2 �i

= N v̄2

⇧ ⇤

0
dt⇥

1
⌅̄

e�t�/�̄

⇧
d�
4⇥

t⇥2 cos2 �

=
t

⌅̄
v̄2

⇧ ⇤

0
dt⇥

1
⌅̄

e�t�/�̄ 1
3
t⇥2

= t
2
3

(v̄⌅̄)2

⌅̄
= 2DL t

yielding

⇤2
⌅ = ⇤2

x1
+ ⇤2

x2
=
 

d3x P (x)
�
x2

1 + x2
2

⇥

=
⇤ v̄

⇧

⌅2 N�

i=1

⇧ ⇤

0
dti

1
⌅̄

e�ti/�̄

 
d�i

4⇥

⌃

⇤
N⌥

i=1

2 sin2 �i (1� cos(⇧ti))

= N
⇤ v̄

⇧

⌅2  ⇤

0
dt⇥

1
⌅̄

e�t�/�̄

 
d�
4⇥

2 sin2 � (1� cos(⇧t⇥))

=
t

⌅̄

⇤ v̄

⇧

⌅2  ⇤

0
dt⇥

1
⌅̄

e�t�/�̄ 4
3

(1� cos(⇧t⇥))

= t
4
3

(v̄⌅̄)2

⌅̄ (1 + (⇧⌅̄)2)
= 2⇤2

T = 2 · 2 DT t

DL =
1
3

(v̄�̄)2

�̄

We reencounter the familiar result

DT

DL
=

1
1 + (⇥�̄)2



Diffusion 
Diffusion Matrix (continued)

Now go back to B//E, and rewrite the 
diffusion constants

It is interesting to consider the following 
two extreme cases: 

Case [2] (B//E) Revisited

(a) ⇥� � 1

(b) ⇥� � 1

DT =
1
3

�
dv

(4�v2)f�
0 (v) ⇥(v)

1 + (⇤⇥(v))2
v2

This implies
DT (0)
DT (B)

� 1 + (⇥�1)2 with

valid for a low B-field.

DT (B) ⇤ 1
3

⌥
dv (4�v2)f⇥0 (v) ⇥(v)

⇥
�
(⇤⇥(v))�2 � (⇤⇥(v))�4

 
v2

=
1
3

⇤⇧
v2

⇤2⇥

⌃
�

⇧
v2

⇤4⇥3

⌃⌅

⇤ 1
3

�
⇥v2

⇥

⌅⇥v2⇧
�

v2

�3

⇥
/
�

v2

�

⇥2
+ ⇤2 ⌅⇥v2⇧

�
v2

�

⇥
/
�

v2

�

⇥2

=
DT (0)

⌅⇥v2⇧
�

v2

�3

⇥
/
�

v2

�

⇥2
+ ⇤2 ⌅⇥v2⇧

�
v2

�

⇥
/
�

v2

�

⇥2

This implies

DT (B) ⇤ 1
3

⇧
dv (4�v2)f�

0 (v) ⇥(v)

⇥
⌃
1� (⇤⇥(v))2

⌥
v2

=
1
3

�⇤
⇥ v2

⌅
� ⇤2

⇤
⇥3 v2

⌅⇥

⇤ 1
3

⇤
⇥ v2

⌅

1 + ⇤2 ⌅⇥3 v2⇧ / ⌅⇥ v2⇧

=
DT (0)

1 + ⇤2 ⌅⇥3 v2⇧ / ⌅⇥ v2⇧

DT (0)
DT (B)

� C + (⇥�2)2

with

C =

�
�v2

⇥ ⇤
v2

�3

⌅

�
v2

�

⇥2
and �2

2 =

�
�v2

⇥ ⇤
v2

�

⌅

�
v2

�

⇥2

valid for a high B-field.�2
1 =

�
�3 v2

⇥

�� v2⇥



Amendolia et al. 1986

P9 (1atm, E=115 [V/cm])

�1 = (0.41± 0.02)� 10�10 [s]

�2 = (0.266± 0.006)� 10�10 [s]
C = 2.8± 0.2



Scalar Equation
We need to solve the scalar equation, too

What We Have Done So Far

    which means diffusion does not  
    contribute to the drift velocity of the  
    centroid, as naively expected.

a) We have shown that 
�v⇥ = �W E⇥�W G⇥ = 0 and, hence

b) We have defined the mobility matrix for  
    the centroid 

�W ⇥ = �W E⇥ = [µ�]E

   with which, we can write

[µ⇥] := �4⇥e

3m

⇤
dv v3

�
d

dv
f⇥0

⇥
[M ]�1

[M ]�1 =

⇤

⇧
�2 + ⇥2

1 ⇥1⇥2 � �⇥3 ⇥1⇥3 + �⇥2

⇥2⇥1 + �⇥3 �2 + ⇥2
2 ⇥2⇥3 � �⇥1

⇥3⇥1 � �⇥2 ⇥3⇥2 + �⇥1 �2 + ⇥2
3

⌅

⌃

÷ �
�
�2 + ⇥2

⇥

c) We have also defined the diffusion matrix 

[D] =
4�

3

�
v2 dv v2 [M ]�1 f⇥0

     with which the convection current due to 
     diffusion is given by

n ⇥W G⇤v = � [D]
�

�x
n

Remaining Questions
a) How should we relate [D] to the electron  
    cloud size? In other words, we need to    
    know the spatial distribution, n(x;t). 
b) How can we determine f0*? 
!
In order to answer these questions, we now 
need to look at the scalar equation.

These results came solely from the vector 
equation, and f0* remains as unknown.



Scalar Equation
Derivation of Diffusion Equation

The Diffusion Equation

⇤

⇤t
(nf0) +

v

3
⇤

⇤x
·(nf1) +

1
4�v2

⇤

⇤v

�
4�

3
v2 eE

m
·nf1

⇥

= n
⇤

k

nk
1

4�v2

⇤

⇤v
⇥̄m,k(v; [f0])

we v-integrate the both sides to get

�coll :=
�

k

nk �̄m,k

⇥E :=
4�

3
v2 eE

m
· nf1

By defining

and

we can rewrite it in the following form
⇤

⇤t
(nf0) +

v

3
⇤

⇤x
·(nf1) = � 1

4�v2

⇤

⇤v
(⇥E � ⇥coll)

Recalling �
d3v f0 =

�
(4�v2)dv f0 = 1

f�
0 (v; t) :=

�
d3x (n f0)

�v⇥�v
=

vf1

3f0

⇥

⇥t
n +

⇥

⇥x
·
�

n

⇤
(4�v2) dv f0

vf1

3f0

⇥
= 0

where the R.H.S. is a surface integral. 
Recall also the shell averaged velocity 
formula

then the quantity in the parentheses is the 
current density at (x; t)

n

�
(4�v2) dv f0

vf1

3f0
= n �W ⇥v

The above equation now becomes
�

�t
n +

�

�x
(n �W ⇥v) = 0

which is none other than the usual equation 
of continuity.

We hence restart from the scalar equation



Scalar Equation
Derivation of Diffusion Equation

In to this continuity equation:
�

�t
n +

�

�x
(n �W ⇥v) = 0

we can now put
n �W ⇥v = n �W E⇥v + n �W G⇥v

recalling

and
n ⇥W G⇤v = � [D]

�

�x
n

We then obtain

⇥W E⇤v = [µ]E � [µ�]E = ⇥v⇤

�

�t
n + ⇤v⌅ · �

�x
n �

�
�

�x

⇥T

[D]
�

�

�x

⇥
n = 0

which is none other than the diffusion eq. 
as you transform this into a more familiar 
form if [D] is a constant D times a unit 
matrix

�

�t
n + ⇤v⌅ · �

�x
n � D

�
�

�x

⇥2

n = 0

In the co-moving frame of the centroid 
 (                      ), this becomes

�

�t
n�D

�
�

�x�

⇥2

n = 0

x� = x � ⇥v⇤ t

The solution to this equation with the point 
source initial condition is given by

n =

⇤
1⇧

2�(2Dt)

⌅3

exp
�
� x�2

2(2Dt)

⇥

This implies that the electron cloud will have 
a Gaussian spread given by

�2
x = 2Dt

after created as a point-like cluster. 
!
OK, now the remaining task is f0*!



Scalar Equation
Equation for f0*

Velocity Distribution Function Ignoring the time derivative assuming that 
the electron’s velocity distribution reaches a 
steady state in a short time, this reads⇤

⇤t
(nf0) +

v

3
⇤

⇤x
·(nf1) = � 1

4�v2

⇤

⇤v
(⇥E � ⇥coll)

f�
0 (v; t) :=

�
d3x (n f0)

We again start from the scalar equation

This time we integrate out x, since we are 
now interested in the velocity distribution

Upon this integration the 2nd term of the 
L.H.S. vanishes since it becomes a surface 
integral where the electron is absent. Noting 
that the R.H.S. is a function of f0 and this 
spatial integration replaces f0 by f0*, we 
have

⇤

⇤t
f�
0 = � 1

4�v2

⇤

⇤v
(⇥�

E � ⇥�
coll)

0 = � 1
4�v2

⇤

⇤v
(⇥�

E � ⇥�
coll)

The equation expresses the balance between 
the external force and the collision force. 
The concrete form of the collision term 
depends on the nature of the  molecules in 
the gas in question and hence the concrete 
form of the equation also depends on it. 
When only elastic collision is there, it is 
known (c.f. Huxley & Crompton) that the 
equation becomes 

�
u2 +

⇤
V 2⌅⇥ d

dv
f�
0 +

3 m v

M
f�
0 = 0

u :=
eE

m �
=

eE

m
⇥

with



Scalar Equation
Solution for f0* (elastic only case)

The equation for f0* for a monatomic gas and 
for elastic collisions only

�
u2 +

⇤
V 2⌅⇥ d

dv
f�
0 +

3 m v

M
f�
0 = 0

u :=
eE

m �
=

eE

m
⇥

with

has the solution

f�
0 (v) = A exp

⇤
�3m

M

⇧ v

0

v dv

u2 +
�
V 2⇥

⌅

In this case u=0, and since

Solution for f0*

Special Case I (E=0)

�
1
2

M V 2

⇥
=

3
2

kB T

we end up with

f�
0 (v) = A exp

�
�m v2/2

kB T

⇥

which is none other than the Maxwellian 
distribution as expected.

Special Case II (nu/v=const.)
When the collision frequency divided by v or 
equivalently the cross section can be 
regarded as constant within the range where 
f0* is significant, we have instead

f�
0 (v) = A exp

⇤
�

� v

�

⇥4
⌅

with
�4 =

4 M

3 m

�
e

m

E/nM

⇥m

⇥2

This is called a Druyvesteyn distribution and 
has a sharper peak than the Maxwellian. 

Once the momentum transfer X-section is 
known, nu(v) is known, and hence we can 
calculate f0*. That’s the recipe.  



Cross Section Shape
How sigma_m behaves?

The most popular chamber gas is Ar, so let’s 
try an order of magnitude estimation of the 
electron-Ar cross section. 
Ar has an atomic number A=18 with the first 
3 shells filled up. It is a perfectly symmetric 
molecule and hence the remnant electric 
field dies away very quickly.  The scattering 
cross section is therefore largely determined 
by the size of the outermost orbit. The 
electron in the outermost orbit experiences 
an attractive force from the nucleus largely 
shielded by the other electrons.  
Let’s assume that because of this shielding, 
the electron only feels the net charge of 1 
unit of (-e). 

Order of Magnitude Estimate The orbit radius can then be approximated as 
exactly as with a hydrogen atom for n=3. 

⇥Ar ⇥ � r(3)2

⇥ � (1.5� 10�8 [cm])2

= 7.1� 10�16 [cm2]
But the life is not so simple, This gives a kind 
of upper limit, and the real X-section can be 
much smaller because of the so called 
Ramsauer effect, a QM effect.

The interference makes a dip below the 
resonance peak!

r(n) ⇥ �
mc�QED

n

⇥ (0.5� 10�8 [cm])� 3

= 1.5� 10�8 [cm]

⇥Ar ⇥

�����

⇥
⇥0

Ar + A
1

�� �r + i�r
2

�����

2



Ar Cross Section
That used in Magboltz

⇥0
Ar ⇥ � r(3)2

⇥ � (1.5� 10�8 [cm])2

= 7.1� 10�16 [cm2]

⇥dip �
1
2
m

�c�QED

n

⇥2
� 1.5 [eV]

RAr = 1.8� 10�8 [cm] (exp.)



CH4 Cross Section
That used in Magboltz



C4H10 Cross Section
That used in Magboltz



CF4 Cross Section
That used in Magboltz



Characteristic Energy
Mobility and Momentum Transfer Cross Section

For simplicity, we will assume B=0 here.  
In this case the mobility constant can be 
cast into the form

where use has been made of the fact that 
f0* vanishes at the boundaries. If tau is 
constant, we recover our simple-minded 
formula. The mu* becomes max. with tau.

µ� = �4⇥e

3m

 ⇥

0
dv v3⇤(v)

⇤
d

dv
f�0 (v)

⌅

= �4⇥e

3m

 ⇥

0
dv

⇧⇤
d

dv
v3⇤(v)f�0 (v)

⌅

� d

dv

�
v3⇤(v)

⇥
f�0 (v)

⌃

=
4⇥e

3m

 ⇥

0
dv

d

dv

�
v3⇤(v)

⇥
f�0 (v)

=
4⇥e

3m

 ⇥

0
dv v2

⇧
3⇤(v) + v

⇤
d

dv
⇤(v)

⌅⌃
f�0 (v)

=
e

m
⇥⇤⇤ +

e

3m

⌥
v

d

dv
⇤

�

We can further rewrite the formula as

µ =
2e

3m
�⇥⇥ +

e

3m

�
d

dv
(v⇥)

⇥

Here we used a shorthand, mu*=mu, since 
there is no fear for confusion. 
Recalling that (v tau) is inverse of the gas 
density times the effective momentum 
transfer X-section, the 2nd term vanishes if 
the X-section change is negligible over the 
velocity distribution given by f0*. This is 
true near the X-section minimum. On the 
falling edge it is +ve and on the rising edge  
it is -ve.  
On the other hand, (roughly speaking) the 1st 
term attains its maximum near the X-section 
minimum. Net effect is that the mobility 
attains its maximum near the 
Ramsauer dip.



Characteristic Energy
De/mu as an estimate of the average electron energy

In the thermal limit, the characteristic 
energy is given by

Nernst-Townsend FormulaCharacteristic Energy

which can be cast into the form

Recalling

µ =
e

m
�⇥⇥ +

e

3m

�
v

d

dv
⇥

⇥

and ignoring the variation of tau over the 
velocity range determined by f0*, we have

D =
2

3m

�
1
2
mv2 �

⇥

D =
1
3

⇧ ⇥

0
dv (4�v2) f�0 (v)

�
v2⇥(v)

⇥
=

1
3

⇤
v2⇥

⌅
The diffusion constant at B=0 is given by

�k :=
eD

µ
� 2

3

�
1
2
mv2

⇥

The quantity (eD/mu) is termed the 
characteristic energy of the electron for 
obvious reason.

D e

µ
= kB T = 0.025 [eV] (1 atm, 20�C)

and called the Nernst-Townsend formula. 
For a cool gas such as CO2, this formula 
holds up to about 1kV/cm, while for Ar, this 
breaks down at an E-field value as low as 1V/
cm. The electrons in a pure Ar gas can be 
easily heated up to 1eV or higher. 
!
In the thermal limit, Cd (the diffusion 
coefficient: the rms size of a cluster after a 
unit length of drift) is given by

Cd :=

⇥
2D

µE
�

�
2kB T

E



Cd and Vd for CO2

It is interesting to test the expectation with 
the simulation by Magboltz. 
We can see that the diffusion coefficient Cd 
behaves as 1/sqrt(E) up to 1kV/cm with 
almost no dependence on the B-field. 
The almost no dependence of Cd on B can be 
understood as the consequence of the 
smallness of       . 
!
It is also worth noting that the mobility is 
approximately constant and hence the drift  
velocity is proportional to the E-field in the 
same region: E < 1kV/cm. 
!
The fact that the electron velocity stays 
thermal up to rather high E-fields is 
attributable to many excitation modes of 
CO2 to cool the electrons.

⇥�

Cd :=

⇥
2D

µE
�

�
2kB T

E

vdrift ⇥ const.� E

Trying to understand Magboltz results (B//E)



Cd and Vd for P5
Trying to understand Magboltz results (B//E)

In the case of P5, a more suitable gas for a 
TPC, the behavior is very different. 
First notice the strong dependence of the 
diffusion constant on the B-field, which 
suggests

DT (0)
DT (B)

� C + (⇥�2)2

Assuming that tau is nearly constant in the 
relevant velocity range, we have

⇥� � 1
and hence

The transverse diffusion is thus expected to 
attain its minimum at the maximum tau, or at 
around the Ramsauer dip. Notice also that 
the drift velocity attains its maximum near 
there as expected.

DT = DL

DT minimum

The DL being different from the DT is 
unexpected and needs explanation. 

�2
2 =

�
�v2

⇥ ⇤
v2

�

⌅

�
v2

�

⇥2 � �̄2



Diffusion Revisited 
Electric Anisotropy

The fact that the diffusion in the E-field 
direction differs from those in the other 
directions was first noticed by Wagner, 
Davis, and Hurst (1967). This is called the 
electric anisotropy. Since our previous result 
indicated that the DL is equal to the DT at 
B=0, some approximation we made to some E-
dependent terms must have been inadequate 
to explain this phenomenon. We then need to 
go back to the scalar equation

over the electron speed, we can translate the 
scalar equation into the following form

with

By multiplying both sides by the kinetic 
energy of the electron and integrating 

where

⇤

⇤t
(nf0) +

v

3
⇤

⇤x
·(nf1) = � 1

4�v2

⇤

⇤v
(⇥E � ⇥coll)

�coll :=
�

k

nk �̄m,k

⇥E :=
4�

3
v2 eE

m
· nf1

and

The equation expresses the conservation of 
energy.  Recall that if collisions are all elastic 
and the speed of molecules can be neglected, 
we have

� :=
1
2
mv2

When a molecule is at rest, energy loss per 
collision is given by

where lambda is called the fractional energy 
loss.

⇤coll �
�

k

4⇥v2 m

Mk
v (nf0) �m,k

�� = ⇥k� = 2
Mkm

(Mk + m)2
� � 2

m

Mk
�

where
�m,k(v) := nk v ⇥m,k(v)

⇤

⇤t
(n ⇤�⌅v) +

⇤

⇤x
(n ⇤�W ⌅v) = n ⇤W ⌅v · eE �

�
dv mv ⇥coll



Diffusion Revisited 
Electric Anisotropy

Putting these together, we get

indicating local balance between the energy 
gain from the E-field and the loss due to 
collisions. Since the current density

The collision term then becomes

Since we are dealing with a single electron in 
a quasi steady state, the L.H.S. may be 
ignored in considering a change in the scale 
of one mean free time. The eq. then reads

n �W ⇥v = n �W E⇥v + n �W G⇥v

includes the contribution from diffusion, so 
does the L.H.S. of the above equation.

Setting our coordinate axes in such a way 
that the E-field points to the 3rd axis 
direction and recalling that

⇥W E⇤v · eE = eµE2

⇤W G⌅v · eE = �eE D
1
n

�
�n

�x3

⇥

we can rewrite the energy balance eq. as

Denoting              and expanding this eq. 
around the energy corresponding to the 
average energy at the peak of the electron 
spatial probability distribution where the 
derivative is zero, we have

�̄ = ��⇥v

where use has been made of

⇤
dv mv ⇧coll � n

⇤
dv(4⌅v2)f0(⇥⇤) � = n

�
� (⇥⇤)

⇥

v

n ⇥W ⇤v · eE = n
�
� (⇥⇤)

⇥

v

with
(�⇥) :=

�

k

�k⇥m,k

eµE2 � eE D
1
n

�
⇧n

⇧x3

⇥
⇥ ⇤�⌅v (⇥⌅) (⇤�⌅v)

⌅

⌅t
(n ⇤�⌅v) +

⌅

⌅x
(n ⇤�W ⌅v) = n ⇤W ⌅v · eE � n

�
� (⇥⇤)

⇥

v

e
e

m

1
⇤0 +

�
⇤⇥
⇤�̄

⇥
0
��̄

E2 � eE
2�̄0
3m

1
⇤0

1
n

⇤
⌅n

⌅x3

⌅

⇥ (�̄0 + ��̄)

⌥
(⇥⇤)0 +

⇧
⌅(⇥⇤)

⌅�̄

⌃

0

��̄
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Diffusion Revisited 
Electric Anisotropy

we have

andµ =
e

m
⇥⇤⇤ � e

m⇥

The energy balance eq. can be solved for the 
energy shift as

At the leading edge, where the density has a 
-ve slope, the energy shift is +ve, and at the 
trailing edge, the energy shift is -ve. 
The energy is hence higher at the leading 
edge and lower at the trailing edge than at 
the center. This energy shift induces the 
variation of mobility along the E-field:

µ =
e

m⇤
⇥ e

m⇤0

⇤
1� 1

⇤0

�
⌅⇤

⌅�̄

⇥

0

��̄

⌅

Denoting
� =

⇥̄0
⇤0

�
⌅⇤

⌅⇥̄

⇥

0

Depending on the sign of “gamma”, the 
variation induces a bunching (+ve) or 
debunching (-ve) effect and hence makes the 
longitudinal diffusion different from the 
transverse one. 
Putting these into 

D =
1
3

�
v2⇤

⇥
� 2�̄0

3m⇥0

n ⇥W ⇤v = n µE � D
⇥

⇥x
n

and taking the 3rd component, we have

which implies

The formula shows that DL=DT(B=0) where 
“gamma”=0, the collision freq. attains its 
minimum (=tau maximum) meaning near the 
Ramsauer dip as we have seen for P5.
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