JLC CCD Vertex Detector R&D

> Y. Sugimoto KEK 2003. 8. 19

■ KEK

■ Niigata U.

□ Saga U.

- Tohoku U.
- Tohoku Gakuin U. K. Abe
- **Toyama College** T. Aso of Maritime Tech.

Red names: Graduated or left (4 Ms and 1 D)

Members

- A. Miyamoto, K. Nakayoshi, Y. Sugimoto, H. Yamaoka
- K. Fujiwara, G. Iwai, Y. Onuki, N. Tamura, H. Takayama
- K.D. Stefanov, T. Tsukamoto
- T. Nagamine, Y. Shirasaki

Contents

Introduction
Possible Options
Why CCD?
R&D Program
What has been achieved?
What has been left to be done?
Future Prospects

Possible Options

Candidates for Vertex Detectors at LC
 Silicon Strip Detector --- Occupancy
 Hybrid Active Pixel Sensor --- Thickness
 Charge Coupled Device (CCD)
 Monolithic Active Pixel Sensor (CMOS)
 Other New Ideas (DEPFET, SOI, etc.)

DEPFET

Why CCD?

■ Mission: Show a design by the end of 2000 (ACFA Report)

Structure of CCD

- Diffusion of electrons in epitaxial layer
 - Key of excellent spatial resolution for CCD & CMOS pixel sensors
 - Takes time to diffuse
 - $d = sqrt(Dt) \sim 6\mu m @ t=10ns$
 - \Rightarrow OK for JLC/NLC

(Fully depleted CCD at TESLA)

- CCD has simple structure
 - Large area sensor
 - High yield

 \rightarrow CCD is the most feasible option

CCDMAPSHAPSDEPFETResolutionAAAAAAAAThin materialAAAAAACAARad. HardnessA(?)AAAAAAAA(?)Large waferAAA???

R&D Program

Design Criteria :

"The Highest Vertex Resolution with Technical Feasibility"

High spatial resolution of the sensor
Minimize multiple scattering → Thin wafer
Close to the IP → Radiation Hardness
Room temperature operation, if possible

Spatial Resolution

Beam Tests in '97 and '98

- KEK PS T1 beam line
- 0.5 2.0 GeV/c pion
- 4-CCD Telescope
- CCD Samples: HPK 24 μm² 10/50 μm epi. EEV 22 μm² 20 μm epi.
- Resolution better than
 3µm(r.m.s) was obtained

Excellent spatial resolution of CCD has been demonstrated.

Spatial Resolution (Cont.)

- Resolution Study with Laser Beam Scanner (Niigata U.)
 - Beam spot size: 2µm
 - λ=532 nm / 1064 nm
 - IR(1064nm) Laser simulates MIP
 - Quick study possible
 - Study of charge spread

Laser Scanner

532 nm

1064 nm

Thin Wafer

CCD has sensitive thickness (= epitaxial layer thickness) of ~20µm

Can be thinned down to 20µm if mechanically OK

Several ideas:

Thin wafer stretched by tension

Thin wafer glued on Be support

Partially thinned wafer --- Our study

Partially Thinned Wafer

Picture Frame Type

- Sample wafer :
- Back illumination CCD
- System for flatness measurement constructed
- Non-flatness has been measured
 - \rightarrow Poor Flatness

$20 \,\mu\text{m} \,(24.6 \,\times 6 \,\,\text{mm}^2)$

,300 μm

Honeycomb & Grid Type

Average thickness = 76 μ m = 100 μ m (including edge) ~0.1% X₀ **ANSYS analysis:** material~1/3 \rightarrow rigidity~1/3

Simple plate: thickness 1/3 → rigidity 1/27

Models for ANSYS

Radiation Hardness of CCDs

Radiation Damage on CCDs
 Surface Damage: Charge build-up in SiO₂ and SiO₂-Si interface by dE/dx
 Increase of surface dark current
 Shift of operation voltage (Flat-band Voltage Shift)
 Bulk Damage: Displacement in lattice
 Increase of bulk dark current
 Charge Transfer In-efficiency (CTI)

 Dark Current and Flat-band Voltage Shift HPK S5466 irradiated with 10mCi Sr-90 β-source

No bias during irradiation

Biased during irradiation

Study of CTI

- HPK S5466 and EEV CCD02-06 irradiated with Sr-90 β-source and Cf-242 n-source
- Read-out cycle = $3 \sec (250 \text{ kHz})$
- CTI looks decreasing at higher temperature because of increase of dark current which fill-up the traps.
 (EEV CCD showed much worse CTI due to less dark current)
 - → NOT expected at JLC where Tcyc=6ms and much less dark current
 - → Fat-zero charge injection (~1000 e) is desirable

HPK S5466

Other CTI Improvements

Notch Channel CCD

■ High speed readout : Horizontal CTI is expected prop. to 1/f

Conclusion from Radiation Damage Study

- Surface damage NOT problem in MPP mode operation and 6ms cycle time
- CTI study + Beam Background Simulation
 - \rightarrow CCD can be used for 3 years with
 - B=2T, R=24mm
 - JLC A-Option
 - Notch channel
 - Fat-zero charge injection
 - assuming that effect of H.E. electrons is 10 times stronger than Sr-90 β-source

BUT large ambiguity in E-dependence of electron damage and neutron background level.

Model Calculation of NIEL

 Bulk damage is thought to be proportional to Non-Ionizing Energy Loss (NIEL)

R&D Items left to be done

- Spatial Resolution
 - Study of resolution of radiation-damaged CCD
 - Study of charge diffusion in epi. layer
- Thin Wafer
 - Try to get sample wafers of Honeycomb/Grid type

R&D Items left to be done (Cont.)

Radiation Hardness Study

- Study of energy dependence of bulk damage
 - High energy (150MeV) electron irradiation at Tohoku Univ.
- Study of characteristics of irradiated CCDs
 - \Box I_d vs. Temp
 - Flat-band Voltage Shift
 - □ CTI vs. Temp

 - CTI vs. Fat-zero charge: Injection of controlled amount of charge
 - CTI vs. clock pulse width/height
 - Annealing/anti-annealing

R&D Items left to be done (Cont.)

Simulation studies concerning Vertex det.
 Background study using Full Simulator (JIM, JUPITER)
 Crossing angle: 7 mrad → 20 mrad
 Physics study using Quick Simulator
 Physics and Detector study using Full Simulator

Future Prospects

FY2003-FY2004

Continue jobs left to be done

Find out the best design and operating condition of CCD vertex detector

■ Prepare for the next step

- Conceptual design of prototype ladder (with HPK)
- Find out the financial source
 - Japan-US, KAKENHI, or KEK GAISAN-YOUKYU ?
- FY2005- The Next Step
 - Construction of prototype ladder

Future plan in FY2005~

Custom made CCDs with
 Reduced material (honeycomb type?)
 > 20MHz readout speed
 Multiple readout nodes
 Notch structure
 Charge injection capability
 Readout by ASIC with multi-channel CDSs, Amplifiers, ADCs, and a Multiplexer

Multi-Thread CCD

- Normal CCD: Many V-shifts → Sig. Loss
 CPCCD: Limited space for r.o.elec.
- Multi-port CCD with few tens of V-shifts : MTCCD
- Can be used as a high speed CCD camera
- HPK says "Challenging but not impossible"

Conclusion

- Feasibility of the baseline design of a CCD Vertex Detector has been established.
 R=24, 36, 48, 60 mm
 σ < 4 µm
 Thickness = 300 µm /layer
 ⇒ s_b = 7 + 20/(pbsin^{3/2}q) mm
 To get better performance, studies to get
 Rin < 24 mm (← Radiation hardness)
 - Thickness << 300 µm

will be continued. A milestone is

 $s_{\rm b} = 5 + 10/({\rm pb} \sin^{3/2} q)$ mm

■ Eventually, we have to make a prototype ladder to demonstrate the required performance. (→ need ¥)

Appendix

Situation in Europe ■ LCFI Group (UK) : R&D for Column Parallel CCD ■ 2.26M£, from PPARC (UK): 2002, 2003, 2004 (3y) ■ Approved as DESY PRC R&D 01/01 ■ MAPS Group (CMOS) ■ DESY PRC R&D 01/04 ■ DEPFET DESY PRC R&D 03/01 ■ SiLC, CALICE, TPC, ----, submitted proposals to **DESY PRC**