

The AMANDA and IceCube

高エネルギー ν 天文学:宇宙探査の窓

Physics Motivation AMANDA detector Recent Experimental Results IceCube Project overview and Status EHE Physics Example: Detection of **GZK** neutrinos

Physics motivation

origin and acceleration of cosmic rays
 understand cosmic cataclysms
 find new kind of objects?

I neutrino properties (v_{τ} , cross sections ...)

⊠ dark matter (neutralino annihilation)

- tests of relativitiy
- search for big bang relics ...
- effects of extra dimension etc. ...

Active Galaxies: Jets

20 TeV gamma rays Higher energies obscured by IR light

VLA image of Cygnus A

The Universe

400 microwave photons per cm³

positron

ビッグバン

たり、

×線・ガンマ線

1000万光年 ブラックポ、ル

a.

低工术从井一二十

-+"

1億光年

γ線バースト

间実験 10万光年

、陽

マゼラン星雲

You cannot expect too many v

μν

 $\rightarrow \mathbf{e} \mathbf{v} \mathbf{v}$

(p,n)

p

π

TeV/EGRET observations !!

Downgrading

EM cascades recycle e^y energies to GeV $\gamma \gamma_{rad} \gg ee \quad E_{th} = \frac{m electron}{E_{rad}} = 2.6 \times 10^{14} \left(\frac{E_{rad}}{10^{-3} eV}\right)^{-1} eV$ $e \gamma_{rad} \ge e \gamma$ e B ---≫eγB 105 104 redshift 103 IR-O Radio D_{ot} (Mpc) 10 CMB $\frac{d\sigma}{d\eta} \sim \frac{2\pi m^2 r_e^2}{s} \left(\frac{1-\eta}{\eta} + \frac{\eta}{1-\eta} \right)$ 10 Ð 10[°] $\eta = \underbrace{ \begin{array}{c} \textbf{E}_{-} \\ \textbf{E}_{\gamma} \end{array} }$ 10⁻¹ "leading" particles carry most faction of the photon energy E (eV) 10 times larger then D_{proton}

You cannot expect too many v

μν

TeV/EGRET observations !!

 \mathbf{e} \mathbf{v}

Cosmic Ray observations!

(p.

p

 π

Synchrotron cooling You cannot expect too high energies

Theoretical bounds

I dorived from known limits on extragelectic protons + reputively

EHE(Extremely HE) v

Synchrotron cooling of μ ... Production sites with low B

Intergalactic space!!

•GZK Production

•Z-burst

•Topological Defects/Super heavy Massive particle

GZK Neutrino Production

Conventional Mechanism of EHE neutrinos!

GZK v fluxes

Yoshida, Dai, Jui, Sommers 1997

ESCELL 2002

Parameters involved in calculation. Predicted fluxes.

Parameters

spectral injection index Y activity evolution index m z of formation of sources Z_{max} Ω_{M} density of matter H_o Hubble constant B intergalactic magnetic field $\eta_L \rho_L / \eta_o \rho_o$ local enhancement E_{max} maximum acceleration energy in source

Orientative order of magnitude

[1-3] [3-5] [1-4] [0.2-1] [50-80 Km/s/Mpc] [B≤1nG] [?] [E_{max} >4 10²⁰ eV]

(Diego González-Díaz, Ricardo Vázquez, Enrique Zas 2003

RESCEU 200

Diego Gonzalez-Diaz, Ricardo Vazquez, Enrique Zas 2003)

CR and ν fluxes for different models

EHE Constraints by CR/γ

	"Cosmological"	"Local"	
	component	component	
Distance	λ _{RES} (1+z) ⁻³	Laupercluater	
Scale	~ 1 Gpc	~ 5 Gpc	
Typical Energy Scale	10 GeV	100 EeV	
Composition	γ	ΎР	
Observational	EGRET	UHECR	
Constraints	Diffuse γ	FLux	

Deciding factors •Source Evolution

- •Extension of source distribution
- •Local source enhancement?

Z-bursts Concept

CRs extending to superEHEs!

RESCEU 2003

Z-burst constraints

(Vachida Sigl Lee 1008)

From Cosmic String?

EHE Neutrino Fluxes

RESCEU 2003

Shall we Dance?

DUMAND (1987-1995)

Where are we?

Amundsen-Scott South Pole Station

Dome

Summer camp

South Pole

road to work

<u>15</u>00 m

AMANDA

2500 m

•Infrequently, a cosmic neutrino is captured in the ice, i.e. the neutrin interacts with an ice nucleus

In the crash a muon (or electron, or tau) is produced

Cherenkov

light cone

Detector

interaction

The muon radiates blue light in its wake
Optical sensors capture (and map) the light

muon

neutrino

Atmospheric muons VANN DVAN

Atmospheric muons and neutrinos: AMANDA's test beams

much improved simulation ...but data 30% higher than MC ...

normalize to most vertical bin

Systematic errors:

 \ge 10% scattering (20m @ 400nm) absorption (110m @ 400nm) ≥ 20% optical module sensitivity \bowtie 10% refreezing of ice in hole

threshold energy ~ 40 GeV (zenith averaged)

Atmospheric v's in AMANDA-II

neural network energy reconstruction regularized unfolding

measured atmospheric neutrino spectrum

Spectrum up to 100 TeV compatible with Frejus data

presently no sensitivity to LSND/Nunokawa prediction of dip structures between 0.4-3 TeV

RELIMINARY

In future, spectrum will be used to study excess due to cosmic v's

Excess of cosmic neutrinos? Not yet ...

... for now use number of hit channels as energy variable

Diffuse flux muon neutrinos

Note that limits depend on assumed energy spectrum ...

Neutrino-Induced Cascades:

Signature of ν_e and ν_τ are hadronic and electromagnetic cascades.

Neutral Current interactions of all neutrino flavors produce hadronic cascades

Background consists of atmospheric muons, emitting energetic secondaries
Why search for Neutrino-Induced Cascades?

Advantages:

- Large Sensitivity for v_e and v_{τ}
- Local events, therefore better energy resolution
- Less intrinsic background of atmospheric muons & neutrinos
- **Nearly 4** π sensitivity

Disadvantages:

- Less signal than in the muon channel due to very large muon range
- Worse angular resolution

Reconstructing Cascades: Vertex Position

Testing Reconstruction with In-Situ Light Sources

Vertex reconstruction:

Reconstructing position of YAG laser light emitters (position known to ~ 1 m).

Energy reconstruction:

LEDs (UV 370 nm) run at different intensities.

Reconstructing energy of LED events (20 % resolution) .

Absolute intensity not known, but relative Intensities reconstructed correctly.

Energy Reconstruction

Parameterization of hitprobability with MC. Function is random walk inspired:

$$P_{hit}(d, E) = 1 - e^{-\mu}$$
$$\mu = c \cdot E / d \cdot e^{-d/\lambda}$$

Construction of Likelihood

$$L(E) = \prod_{i=1}^{allhits} P_{hit}(E) \prod_{i=1}^{nohits} (1 - P_{hit})$$

Resolution of Energy Reconstruction

 Reconstruction of EM cascades of energies: 10², 10³, 10⁴, 10⁵, 10⁶ GeV.

 Vertex within AMANDA II. (radius = 100m, height =200m) Vertex fitted with time-likelihood.

 $\sigma(\log E) < 0.2$

Variables merged into one

"Bayesian Discriminator"

(thereby neglecting correl.)

Likelihood Parameter, I

Final energy spectrum

Energy cut chosen by MC

Optimization

2 events passed all cuts

Background	Expectation
Atmospheric muons	0.45 ^{+0.5} -0.3
Conventional atmospheric v	0.05 ^{+0.05} -0.02
Prompt charm v	0.015-0.7
Sum (w/o charm)	0.50 ^{+0.5} _{-0.3}

The highest energy event (~200 TeV)

300

В

0

0

0

0

. .

·• •

C

0

0

caling: Lin

<62

<67 <71

No external geometry file is opened. Detector: amanda-b-10, 19 strings, 680 modules Data file: he_deff.f2k Displaying data event 1425281 from run 336 Recorded yr/dy: 2000/170 59857.5405130 seconds past midnight. Before cuts: 264 hits, 264 OMs After cuts : 264 hits, 264 OMs

future

annheim, Protheroe and Rachen (2000) – Waxman, Bahcall (1999)

11 dorived from known limits on extragolactic protons to rest flux

v telescope : point source search

Detection of v_{μ} from discrete steady bright or close sources (AGN, ...)

- cosmic ray μ background rejection
- good pointing resolution
- bin search optimization versus a given signal (\propto E⁻²)

v telescope : point source search Maximum significance 3.4 σ 3 compatible with atmospheric $\boldsymbol{\nu}$ 2 1 0 -1 -2 -3 24h 22h 20h 18h 16h 14h 12h 8h 6h 10h 2h 0h Maximum excess on random skymaps maxsigdist 250 Entries 1000 3.802 Mean Preliminary RMS 0.3381 200 150 100 2000-2003 δ=-90° 3369 v from northern hemisphere 50 ~92% 3438 v expected from atmosphere

3.5

4.5

5

5.5

3

2.5

 \Rightarrow also search for neutrinos from unresolved sources

*For 312 bursts w/ WB Broken Power-Law Spectrum (E_{broak} = 100 TeV, Γ_{Bulk} = 300)

Earth

Sensitivity to muon flux from neutralino annihilations in the center of the Earth:

 $xx \rightarrow q\bar{q}, 1^+1^-, W, Z, H \rightarrow V_{\mu}$

Look for vertically upgoing tracks

NN optimized (on 20% data) to

- remove misreconstructed atm. μ
- suppress atmospheric ν
- maximize sensitivity to WIMP signal

Combine 3 years: 1997-99

Total livetime (80%): 422 days

No WIMP signal found

 $M_r = 50 \text{ GeV}$

Limit for "hardest" channel:

$$xx \to \tau^+ \tau^- \to \nu_\mu$$
$$xx \to W^+ W^- \to \nu_\mu$$

WIMP annihilations in the Sun

- ncreased capture rate due to addition of spin-dependent processes
- Sun is maximally 23° below horizon
- Search with AMANDA-II possible hanks to improved reconstruction apabilities for horizontal tracks
- Exclusion sensitivity from nalyzing off-source bins

2001 data 0.39 years livetime

No WIMP signal found

Best sensitivity (considering livetime) of existing indirect searches using

muons from the Sun/Earth

AMANDA as supernova monitor

Bursts of low-energy (MeV) ν_e from SN
 ▶ simultaneous increase of all
 PMT count rates (~10s)

Since 2003: X SNDAQ includes all AMANDA-II channels

Recent online analysis software upgrades

- can detect 90% of SN within 9.4 kpc
- less than 15 fakes/year

 \Rightarrow can contribute to

SuperNova Early Warning System (with Super-K, SNO, Kamland, LVD, BooNE) -----

30 kpc

AMANDA-II

AMANDA-B10

IceCube

coverage

B10: 70% of Galaxy A-II: 95% of Galaxy IceCube: up to LMC

Analysis of 200X data in progress

Telescope

Project overview and Status
 EHE Physics Example: Detection of GZK neutrinos

Bartol Research Inst, Univ of Delaware, USA Pennsylvania State University, USA University of Wisconsin-Madison, USA University of Wisconsin-River Falls, USA LBNL, Berkeley, USA UC Berkeley, USA UC Irvine, USA Univ. of Alabama, USA Clark-Atlanta University, USA Univ. of Maryland, USA IAS, Princeton, USA University of Kansas, USA Southern Univ. and A&M College, Baton Rouge

> University of Canterbury, Christchurch, New Zealand

Chiba University, Japan

Universidad Simon Bolivar, Caracas, Venezuela

Université Libre de Bruxelles, Belgium Vrije Universiteit Brussel, Belgium Université de Mons-Hainaut, Belgium Universität Mainz, Germany DESY-Zeuthen, Germany Universität Wuppertal, Germany Uppsala Universitet, Sweden Stockholm universitet, Sweden Kalmar Universitet, Sweden Imperial College, London, UK University of Oxford, UK Utrecht University, Utrecht, NL

IceCube

80 Strings
4800 PMT
Instrumented
volume: 1 km3 (1 Gt)
IceCube is designed 1400 m
to detect neutrinos of all flavors at energies
from 10⁷ eV (SN) to 10²⁰ eV

2400 m

IceTo

AMANDA

outh

Skiway

10" Hamamateu R-7081

How EHE events look like

The typical light cylinder generated by a muon of 100 GeV is 20 m, 1PeV 400 m, 1EeV it is about 600 to 700 m.

E_µ=10 TeV ≈ 90 hits

DOM ... a Key element in IceCube

Digital Optical Module (DOM)

DAQ design: Digital Optical Module - PMT pulses are digitized in the Ice

esign parameters:

- Time resolution:≤ 5 nsec (system level)
- Dynamic range: 200 photoelectrons/15 nsec
- (Integrated dynamic range: >
- 2000 photoelectrons)
- (1.p.e. /10ns ~ 160μA 10^7G ~8mV 50 Ω) 4V
- saturation→500p.e.
- Digitization depth: 4 µsec. Noise rate in situ: ≤500 Hz
- Tube trig.rate by muons 20Hz

33 cm

Capture Waveform information (MC)

ντ E=10 PeV

- 3 different gain (x15 x3 x0.5)
- Capture inter.
 426nsec
- 10 bits FADC for long duration pulse.

Events / 10 nsec

World-wide DOM collaboration

IceCube

Photomultiplier: Hamamatsu R7081-02 (10", 10-stage, 1E+08 gain)

Selection criteria (@ -40

- °C)
- Noise < 300 Hz (SN, bandwidth)
- Gain > 5E7 at 2kV (nom. 1E7 + margin)
- P/V > 2.0 (Charge res.; *insitu* gain calibration)

Notes:

- Only Hamamatsu PMT meets excellent low noise rates!
- Tested three flavors of R7081.

0

CE Uniformity

()日本

Rotation-be

The Collection Efficiency: Lego plot

Example: The relative Collection Efficiency

Charge Resolution/Waveform

In the Freezer

PMT Setting in the Freezer

SPE Charge Response

eCube

• $S_{spe}(q) \sim (1-P_e)exp[-q/q_{\tau}] + P_e N_G(q-q_0/q_{\sigma})$

Digital Optical Module (DOM) Main Board Test Card

DOM MB Block diagram

SPE Discriminator Scan PMT Pulses Input (71DB)

DAQ Blocks...

Local-Coincidence (LC)

Basic idea: reject PMT noise, reduce data Philosophical debates continue! DOMs are connected to both neighbors "Coherence length" is programmable Three operational modes (in-ice): **None** \Rightarrow all hits, all waveforms transmitted **Soft** \Rightarrow all hits, waveforms only for non-isolated Hard \Rightarrow non-isolated hits only Baseline mode is **soft** local coincidence

Expected Data Rates

PMT noise rate of 1 kHz is expected Scintillation" of glass introduces correlations! Two DOMs/twisted pair (\$, kg, flights,...) Rates/pair (bits/s) for coincidence mode (with zero suppression and compression) • None: 18 kbytes/s x 2 x 10 = \sim 400 kbits/s • **Soft**: 6-8 kbytes x 2 x 10 = ~160 kbits/s • Hard: <1 kbyte/s x 2 x 10 = \sim 20 kbits/s Demonstrated in the lab: 1 Mbit/s

Frigger Issues

Low energy muons (Wimps,...) present the <u>most challenging</u> IceCube trigger condition:
 Low multiplicity, relatively short, dim tracks
 Array noise rate: ~ 25 counts/5 µs ⇒ Can't use a simple multiplicity trigger *a la* Amanda
 Proposal: Require <u>at least one LC</u> to be present for <u>any event trigger</u>. = 1 LC trigger

"I LC Trigger"

Perceived advantages:

- Nearly the loosest trigger condition possible
 - "Any reconstructable event should have 1 LC."

Reduces raw data flow to global trigger: ~ 250

- Array hit rate: 5000 x 1 kHz = 5000 kHz
- Array 1LC trigger rate: = ~20 kHz
- String processor looks for hits with LC tag
- Global trigger needs to filter out "noise 1 LC":
 - Topology calculation reduces rate to < 1 kHz

The big reel for the hotwater drill

Coincident eve

- Energy range:
 - ~3 x 10¹⁴ -- 10¹⁸ eV
- Two functions
 - veto and calibration
 - cosmic-ray physics
 - few to thousands of muons per event

Measure:

- Shower size at surface
- High energy muon component in ice
- Large solid angle
 - One IceTop station per hole
 - ~ 0.5 sr for C-R physics with "contained" trajectories
 - Larger aperture as veto

ІсеТор

ceCube

Angular resolution as a function of zenith angle

above 1 TeV, resolution ~ 0.6 - 0.8 degrees for most zenith angles

Energy Spectrum Diffuse

Blue: after downgoing muon rejection

Red: after cut on N_{hit} to get ultimate sensitivity

Energy Spectrum Point

Events / (Year*Bin)

1

10

10

2

v-Signal (E⁻²)

log₁₀(E_v / GeV)

Blue: after downgoing muon rejection Red: after cut on N_{hit} to get ultimate sensitivity

Effective area of IceCube

JPS 2003

In three years operation... E²dNv/dE ~10⁻⁸ GeV/cm² s sr (diffuse) E²dNv/dE ~7x10⁻⁹ GeV/cm² s (Point source)

200 bursts in coincidence (GRBs – WB flux)
fut to the flux of the fl

Construction: 11/2004-01/2009

Next season: Buildup of the Drill and IceTop prototypes

JPS/TEA 2003

Project status

Startup phase has been approved by the U.S. NSB and funds have been allocated.

- 100 DOMs are produced and being tested this year.
- Assembling of the drill/IceTop prototypes is carried out at the pole this season.
- Full Construction start in 04/05; takes 6 years to complete.
- Then 16 strings per season, increased rate may be possible.

JPS/TEA 2003

GZK EHEv detection

What is the GZK mechanism?
 EHE ν/μ/τ Propagation in the Earth
 Expected intensities at the IceCube depth
 Atmospheric μ – background

Event rate

GZK Neutrino Production

Conventional Mechanism of EHE neutrinos!

Note: The oscillations convert v_e , v_μ to v_e , v_μ , v_τ

Yoshida and Teshima 1993

Yoshida, Dai, Jui, Sommers 1997

UHE (EeV or even higher) Neutrino Events **Arriving Extremely Horizontally** Needs Detailed Estimation Limited Solid Angle Window $(\sigma \rho N_A)^{-1} \sim 600 (\sigma / 10^{-32} \text{cm}^2)^{-1} (\rho / 2.6 \text{g cm}^{-3})^{-1} \text{[km]}$ **Involving the interactions generating** electromagnetic/hadron cascades $\mu N \rightarrow \mu X e^+e^-$

			Pro	ducts			
	v_{e}	v_{μ}	V_{τ}	e/γ	μ	τ	π
ν_{e}				Weak			Weak
ν					Weak		Weak
μ						Weak	Weak
$V_{ au}$						WCak	wGan
e/γ				Cascades			
μ.	Decay	Decay Weak		Pair/decay Bremss	Pair	Pair	PhotoNuci.
τ	Decay	Decay	Decay Weak	Pair Bremss Decay	Decay Pair	Pair	Decay PhotoNuci.
π							Cascades

Muon(Neutrinos) from $\nu_{\mu}\,\nu_{\tau}$

Tau(Neutrinos) from ν_{μ} ν_{τ}

Nadir Angle

EA 2002

EA 2002

EA 2002

Upward-going

Downward going!!

Atmospheric muon! – a major backgrond But so steep spectrum

Down-going events dominate... Atmospheric μ is strongly attenuated...

EA 2002

Flux as a function of ecube energy deposit in km³

Flux as a function of ecube energy deposit in km³

$\blacksquare dE/dX \sim \beta E \longrightarrow \Delta E \sim \Delta X bE$

Intensity of EHE μ and τ [cm⁻² sec⁻¹]

GZK m=4 Zmax=4	l <mark>μ</mark> (E>10PeV)	l r (E>10PeV)	RATE [/yr/km²]
Down	5.90 10 ⁻¹⁹	5.97 10 ⁻¹⁹	0.37
Up	3.91 10-20	6.63 10-20	0.03
	Iμ(E>10PeV) Energy Deposit	Iτ(E>10PeV) Energy Deposit	
Down	4.75 10 ⁻¹⁹	3.28 10 ⁻¹⁹	0.25
m=7 Zmax=5 10w1	7.21 10 ⁻¹⁷	4.83 10⁻¹⁷	37.9
Atm µ	1.74 10 ⁻¹⁹		0.05

IceCube EHE v **Sensitivity** 90% C.L. for 10 year observation Published in Phys. Rev. D

S.Yoshida, R.Ishibashi, H,Miyamoto, PRD 69 103004 (2004)

IceTop : EeV detection

Potential to reject this background for EeV neutrinos by detecting the fringe of coincident horizontal air shower in an array of water Cherenkov detectors (*cf.* Ave *et al.*, PRL 85 (2000) 2244, analysis of Haverah Park)

IceCube summary

ICECube has great capability for TeV-PeV v-induced muons taking advantage of long ranging the clear ice.

For EHE v like the GZK.... $/\mu$ appeared in 10 PeV- EeV are our prime target on GZK v detection. 1/1000 of primary v intensity! Downward τ and μ make main contributions in PeV -EeV Energy Estimation would be a key for the bg reduction Because atmospheric μ spectrum ~ E^{-3.7} GZK v is DETECTABLE by IceCube

0.3-40 events/year (BG 0.05 events/year)

Backup slides

Detector capabilities

muons:

directional error: energy resolution:[¶] coverage:

 $2.0 - 2.5^{\circ}$ 0.3 - 0.4 2π

4π

primary cosmic rays: (+ SPASE) energy resolution:[¶] 0.07 – 0.10

 $\begin{array}{c} & \ensuremath{\square}, \ensuremath{\mathsf{cascades}}^{\texttt{``}}: (e^{\pm}, \tau^{\pm}, \ensuremath{\mathsf{neutral}}\xspace{0.5ex}, \ensuremath{\mathsf{neutral$

 $\int G \left[\frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right] dt = \frac{1}{2} \int G \left[\frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right] dt = \frac{1}{2} \int G \left[\frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right] dt = \frac{1}{2} \int G \left[\frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right] dt = \frac{1}{2} \int G \left[\frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right] dt = \frac{1}{2} \int G \left[\frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right] dt = \frac{1}{2} \int G \left[\frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right] dt = \frac{1}{2} \int G \left[\frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right] dt = \frac{1}{2} \int G \left[\frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right] dt = \frac{1}{2} \int G \left[\frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right] dt = \frac{1}{2} \int G \left[\frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right] dt = \frac{1}{2} \int G \left[\frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right] dt = \frac{1}{2} \int G \left[\frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right] dt = \frac{1}{2} \int G \left[\frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right] dt = \frac{1}{2} \int G \left[\frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right] dt = \frac{1}{2} \int G \left[\frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right] dt = \frac{1}{2} \int G \left[\frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right] dt = \frac{1}{2} \int G \left[\frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right] dt = \frac{1}{2} \int G \left[\frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right] dt = \frac{1}{2} \int G \left[\frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right] dt = \frac{1}{2} \int G \left[\frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right] dt = \frac{1}{2} \int G \left[\frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right] dt = \frac{1}{2} \int G \left[\frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right] dt = \frac{1}{2} \int G \left[\frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right] dt = \frac{1}{2} \int G \left[\frac{1}{2} - \frac{1$

 $v_{\rm u}$ effective area
Vertex Resolution

Reconstruction of 1 TeV EM cascades which trigger AMANDA II

Vertex resolution of cascades in the detector: (radius 100 m, height = 200 m) $\sigma \sim 5$ m for x,y,z coordinates and large range of energies.

Upper limits on the diffuse flux

• $N_{obs} = 2; N_{bg} = 0.5^{+0.5}_{-0.3}$

- Upper bounds on the diffuse flux of astrophysical neutrinos (at 90% CL) for different assumed spectras: $\Phi(E) \sim E^{-\gamma}$; $\gamma=1-3$
- Limit on tau neutrinos 25 30 % worse than for electron neutrinos
- Glashow resonance at 6.3 PeV results in differential v_e limit

GRB v search in AMANDA

Search for v_{μ} candiates correlated with GRBs - background established from data

Year	#GRB	bkg	observed	
1997	78	0.10	0	
1998	99	0.20	0	
1999	96	0.20	0	
2000	44	0.60	0	
Total	317	1,30	0	

⊠ 317 BATSE triggers (1997—2000) ⊠ effective μ-area ≈ 50000 m²

low background due to space- time coincidence

☑ No excess observed!

assuming WB spectrum 4 x 10⁻⁸GeV/s/cm²/sr

analysis continues with non-tringered RATSE and IPN2 data

Grand Summary

Courtesy: Learned & Mannheim; Spiering

τ/μ propagation in Earth

