暗黒物質の探し方

東京大学大学院理学系研究科 物理学教室

蓑輪 眞

- ●1933 F. Zwicky かみのけ座銀河団の速度分散 Helv. Phys. Acta. 6 (1933) 110
 Virial 定理 << 赤方偏移の光学観測→ Dark Matter の存在
- 1965 A. Penzias & R. Wilson 宇宙マイクロ波背景輻射 (CMB) の発見 電波観測の発達

●1973 J. Ostriker & P. Peebles ApJ. 186 (1973) 467
 多体系のシミュレーションによる回転銀河の安定条件
 ≪ 我々の銀河の回転速度 220km/s Dark Matter の存在

- ●1970年代後半 電波(HIガス21cm輝線)による銀河回転曲線の観測
 → Dark Matterの存在の立証
- 1992 COBE 宇宙マイクロ波背景輻射のゆらぎの発見
 → インフレーションモデル、Ω_{tot}=1 を示唆
- ●1998 Super Kamiokande ニュートリノ質量の発見
 → DOM CDM

WMAP の援護射撃

Pictures: NASA/WMAP Science Team; http://map.gsfc.nasa.gov/

近傍にある証拠

Galactocentric Radius [kpc]

DAMA's <discovery> by annual modulation

R. Bernabei et al., Riv. Nuovo Cim. 26(2003)1.)

The story

Current exclusion limits in $\sigma_{\chi_{-n}}^{\text{SI}}$ and $\sigma_{\chi_{-p}}^{\text{SD}}$

SD

 10^{3}

SI

Dark Matter Candidates

Lightest Supersymmetric Particle
 R-parityの保存から安定

→ 宇宙初期に生成され現在まで存在し続ける

$$\chi = a_1 \tilde{B} + a_2 \tilde{W}_3 + a_3 \tilde{H}_1 + a_4 \tilde{H}_2$$

gauginos と higgsinos の線形結合の基底状態
 coupling SUSY モデル依存

■ 39GeV \leq m $_{\chi}$

Searches, direct and indirect

INDIRECT searches

 $\chi \chi \rightarrow WW, ZZ, \gamma \gamma \rightarrow e^-, p^-, d^-, \gamma, \upsilon, ...$ BESS, GLAST, AMS, SK, AMANDA, MACRO, ...

DIRECT searches

Nuclear recoil detection

Direct detection, relevant parameters

• Event rate SUSY $R \sim \sigma_{\chi-N} \times n \langle v \rangle \propto \sigma_{\chi-N} \times \left(\frac{\rho}{M_{\chi}}\right) \times \int v f(v) dv$

$$\begin{split} \rho(r) &= \frac{\rho_0}{1+r^2/r_0^2} \\ f(\vec{v}) &= \frac{1}{\pi^{3/2} v_0^3} e^{-|\vec{v}|^2/v_0^2} \end{split}$$

Isothermal Halo Model

Cross section

• $\sigma_{\chi-N}$ depends fundamentally on the χ -quark interaction strength.

- Spin-independent (SI): H, h, squark exchange
- Spin-dependent (SD): Z, squark exchange

Spin Independent and Spin Dependent cross sections

Cross Section

$$\sigma_{x-N} = \sigma_{x-N}^{SI} + \sigma_{x-N}^{SD}$$

• SI interaction

$$\sigma_{\chi-N}^{\mathrm{SI}} \simeq A^2 \frac{\mu_{\chi-N}^2}{\mu_{\chi-p}^2} \sigma_{\chi-n}^{\mathrm{SI}}$$

A : atomic numberμ : reduced mass

• SD interaction

$$\sigma_{\chi-N}^{SD} = \frac{\lambda^2 J (J+1)}{0.75} \frac{\mu_{\chi-N}^2}{\mu_{\chi-p}^2} \sigma_{\chi-p}^{SD}$$

 λ : Landé factor J: total spin of the nucleus

• SD Cross Section

• conventional approximation

using the odd-group model in which

the contribution of either proton or neutron is considered.

$$\sigma_{\chi-N}^{SD} = \frac{\lambda^2 J (J+1)}{0.75} \frac{\mu_{\chi-N}^2}{\mu_{\chi-p}^2} \sigma_{\chi-p}^{SD}$$

Isotope	unpaired	abundance	$\lambda^2 J(J+1)$	
⁷ Li	р	92.5%	0.411	LiF for SD
¹⁹ F	р	100%	0.647	
²³ Na	р	100%	0.041	
⁷³ Ge	n	7.8%	0.065	
127	р	100%	0.023	

(odd-group model)

Fig. 10 of J. I. Collar et al, New J. of Phys. 2 (2000) 14.1

$$E_{0} = \frac{1}{2} M_{X} v_{0}^{2} \qquad r = \frac{(4MM_{N})}{(M+M_{N})^{2}} \qquad E_{0} r = 10 \text{ keV}$$

for $M = 50 \text{ GeV}$ and $A = 19$

Mean recoil energy $E_o r$ vs target mass

Nuclear form factor

Running experiments and projects (not complete)

Quenching factor

q < 1 for scintillators and semiconductors

0.3 (Na), 0.09 (I) 0.25 (Ge) 0.46 (LXe)

→ low effective threshold

• q = 1 for bolometers

Techniques for DM detection

- Pulse shape discrimination/analysis
 PSD/PSA (e/ γ nuclear recoil separation)
- Bolometry (q = 1)
- Phonon-ionization simultaneous

measurement

(e/ γ - nuclear recoil separation)

- Annual modulation
- Direction sensitive detection
- Background shields

PSD/PSA (Nal(TI))

B. Ahmed, et al., Astropart. Phys. 19 (2003) 691.

Statistical subtraction

B. Ahmed, et al., Astropart. Phys. 19 (2003) 691.

γ-calibration

real data

Bolometer

Specific heat:

 $\Theta_{\rm D}$: Debye temperature

Phonon – ionization simultaneous measurement

T. Shutt et. al., Phys. Rev. Lett. 69 (1992) 3531 Same response to e/γ

but

to nuclear recoil, q = 1 for phonon q = 0.25 for ioninzation

 e/γ - nuclear recoil separation

Annual modulation

Direction sensitive detection

Background shields

- Oxygen Free High Conductivity Copper (OFHC)
- Old-age(archaeological) lead

$$T_{1/2}(^{210}\text{Pb}) \sim 20 \text{ years}$$

- Pure water
- Active self shielding

fiducial volume

Radon purge

Tokyo Group (Minowa)

- Bolometer experiments (SD-sensitive)
 - Pilot run LiF Nokogiriyama(~15m.w.e.) ~1999
 - Results LiF/NaF Kamioka(~2700m.w.e.) ~2003
- R&D, direction sensitive scintillators 2003~
 - Pilot run stilbene Kamioka

Bolombeter SD limits in a_p and a_n

$$\sigma_{\chi-N}^{SD} = \frac{\lambda^2 J (J+1)}{0.75} \frac{\mu_{\chi-N}^2}{\mu_{\chi-p}^2} \sigma_{\chi-p}^{SD} = 4 G_F^2 \mu_{\chi-N}^2 C_N^{SD}$$
$$C_N^{SD} \propto (a_p \langle S_{p(N)} \rangle + a_n \langle S_{n(N)} \rangle)^2 \frac{J+1}{J}$$

 $a_{\rm p}, a_{\rm n} : \chi$ - nucleon couplings $\langle S_{\rm p(N)} \rangle, \langle S_{\rm n(N)} \rangle$: expectation values of p, n spin in N

$<S_{p(N)}>$ and $<S_{n(N)}>$

Isotope	odd	<s<sub>p(N)></s<sub>	<s<sub>n(N)></s<sub>
7Li	р	0.497	0.004
¹⁹ F	р	0.441	-0.109
²³ Na	р	0.248	0.020
⁷³ Ge	n	0.009	0.372
127	р	0.309	0.075

For a_p , a_n determination,

- ¹⁹F is complementary to ²³Na, ⁷³Ge, ¹²⁷I due to opposite sign of $\langle S_{p(N)} \rangle / \langle S_{n(N)} \rangle$
 - NaF is more sensitive to a_n than LiF.

SD limits in a_p and a_n

Detector

Bolometer

- Wide choice of target
- High resolution
- Low threshold
- No quenching

$$(E_{\text{visible}} = E_{\text{recoil}})$$

NTD Ge thermistor

Neutron Transmutation
 Doped Germanium

Schematic drawing of a bolometer

Inner Shield

old lead (>400yrs.) from a wrecked ship.

> 21 Pb < 2.0 Bq/kg 0

suspending it with kevlar cords.

DAQ System Dilution Refrigerator Main Amplifier X 8

Signal

- All data are taken without any online trigger with 1 kHz. \longrightarrow complete off line analysis
- Data size is 74 Mbyte / hour.

Numerical Pulse Shaping with Wiener Filter

Numerical Pulse Shaping with Wiener Filter

• Result (SI and SD σ_{x-p} limit)

• Result (SD limits in the $a_p - a_n$ plane)

- We **improved LiF limits** in a part of the parameter space.
- Combined limits with the results of LiF are more stringent than UK2000 limits for 10, 50 and 100 GeV⁻².

Direction sensitive scintillators R&D 銀河中での地球の動き

地球の自転 → DMの入射方向の日変化

地球の自転動きが暗黒物質のシグナルを生む

DM wind is fairy strong

スチルベンシンチレータ

重荷電粒子の入射方向によって発光量が異なる Z. Phys. 162 (1961) 122 → 反跳原子核の方向に対する感度が期待される

m_xo(10GeV)の暗黒物質に感度のある低エネルギー(100keV以下)の炭素反跳について測定を行った

中性子による発光効率測定

測定

2cm x 2cm x 2cm スチルベン結晶

炭素反跳の発光効率は c'axis に関して7%変化
ほかの軸に対する(ϕ)依存性は見られなかった

暗黒物質探索への利用

$$\frac{dR'}{dE_{\text{vis}}} = \int dE_R d\cos\gamma\delta(E_{\text{vis}} - q(E_R,\cos\gamma)E_R) \frac{d^2R}{dE_R d\cos\gamma} \frac{$$

暗黒物質探索への利用

神岡地下実験室での測定

放射線シールド

・シールドごと北を向けている

●蒸発窒素ガスによるラドンパージ → ~1 Bq/m³

 116g スチルベン結晶
Low BG PMT 浜松 R8778MOD 2本による両読み出し
Nal(TI) によるアクティブシールド
ペルチェ素子による PMT 冷却

スチルベン結晶

PMT R8778MOD

XMASS 実験用の R8778 の光電面を可視光用に変更 金属バルブの低バックグラウンド仕様

Nal(TI) シールド

■PMT からの放射線を防ぐため

R8778 1本あたり Geによる測定 by Xmass	U 系列	Th 系列	^{4 0} K	^{6 0} Co
	1.8×10⁻²Bq	6.9×10⁻³Bq	1.4×10⁻¹Bq	5.5×10 ⁻³ Bq

●スチルベンの発光量少ない

→ Nal 可視光を透過する High Z な物質

R8778MODの暗電流

イベント選択

低エネルギーでは Nal は "波形"を成さない

それぞれの領域の波形を積分して 領域Aでの値との比に対してCUT をかける

オシロスコープで取得した 波形を領域に分けて 低エネルギーでの Nal (TI) イベントを除去

断面積に対する制限の導出

暗黒物質に対する制限曲線

実験を制限しているもの 1.バックグラウンドレート

PMT 中の放射性不純物 (ダイノード構造のセラミック、ステム部分のガラス)

→ 結晶の周りを古い鉛で囲う ●光検出器の改善(量子効率の意味でも) Avalanche Photodiode, Prism PMT など

2. スチルベン結晶

Anisotropy not sufficient

A=12 is not large enough for SI detection

 $(\sigma_{\chi-N}^{\rm SI} \propto A^2)$

→ より異方性のある、アントラセン・ナフタレンの使用 Spin に依存した相互作用に有利な¹⁹F を含む結晶の製造 Octafluoronaphtalene, dodecafluoroanthracene

END Tokyo Group Results

Publications

H. Sekiya, M. Minowa, Y. Shimizu, Y. Inoue, W. Suganuma: Measurements of anisotropic scintillation efficiency for carbon recoils in a stilbene crystal for dark matter detection, astro-ph/0307384, Physics Letters B571 (2003) 132-138.

A.Takeda, M.Minowa, K.Miuchi, H.Sekiya, Y.Shimizu, Y.Inoue, W.Ootani, Y.Ootuka: Limits on the WIMP-Nucleon Coupling Coefficients from Dark Matter Search Experiment with NaF Bolometer, astro-ph/0306365, Physics Letters B572 (2003) 145-151.

Y. Shimizu, M. Minowa, H. Sekiya, Y. Inoue: Directional scintillation detector for the detection of the wind of WIMPs, astro-ph/0207529, Nuclear Instruments and Methods in Physics Research Section A 496 (2003) 347-352.

K. Miuchi, M. Minowa, A. Takeda, H. Sekiya, Y. Shimizu, Y. Inoue, W. Ootani, and Y. Ootuka: First results from dark matter search experiment with LiF bolometer at Kamioka Underground Laboratory, astro-ph/0204411, Astroparticle Physics 19 (2003) 135-144.

Another challenging DM search XMASS experiment

Goals

☆ Direct detection of Dark Matter

- → Discovery of Dark Matter
- \Rightarrow Real time observation of low energy solar v (pp, ⁷Be)
 - \rightarrow Precise determination of <u>v</u> oscillation parameters
- \Rightarrow Observation of $0\nu\beta\beta$ decay
 - \rightarrow Majorana property and absolute mass of <u>v</u>

XMASS = Multipurpose Ultra low-background detector with liquid Xe

- Key idea
 - Self shielding for γ ray background by liquid Xe (Z=54)

Reconstruct the vertex of events from PMTs information $\rightarrow \gamma$ ray backgrounds are absorbed in outer volume \rightarrow Dark matter can go into fiducial volume

Sensitivity of 800kg detector for DM (SI)

>10² improvement of sensitivity for existing experiments

>10² improvement of sensitivity for existing experiments

R&D status with 100kg detector

- 100kg liquid Xe detector
 - Liquid Xe in ~30cm cube (30lite
 - High purity copper chamber

- Targets of 100kg detector
- $\ensuremath{\overset{}_{\propto}}$ Confirmation of 800kg detector performance estimation
 - Reconstruct vertex and energy of events by fitter
 - Demonstrate the self shielding power for γ ray BG
 - Measure photon yield and its attenuation length
 - Understand the environmental BG inside the shield
 - • Measure a content of radioactive impurities in Xe

Compare real data and MC estimation

☆ Real data

 \rightarrow Live time ~ 0.9days

rightarrow MC (γ ray background)

- Outside of the shield
- RI sources in PMTs
- ²¹⁰Pb in the lead shield

Good agreement!

 Purification of Xe by distillation
☆ Test using 1.6kg Xe in September 2003
☆ XMASS succeeds to reduce Kr concentration in Xe from 310[ppb] to < 5[ppb] with one cycle (~1/100)

→ Full process of 100kg Xe next week!

Radioactive impurity in Xe

Content of radioactive impurity in Xe

	1 st 100kg run	Target
Kr (ppt)	< 2000 🗕	• 0.35
Th−chain (g⁄g)	$< 8.4 \times 10^{-13}$	2.0×10^{-14}
U−chain (g⁄g)	6.4×10^{-13}	1.0×10^{-14}

 \Rightarrow Kr reduction

 \rightarrow ~2 cycle purification by purification tower

☆ Th-chain, U-chain

- → Target value of 800kg detector is close at hand
- \rightarrow Identify the source and

remove it by cleaning up and filtering

END XMASS Project
Sensitivity necessary for the discovery of DM (SI)

 How can one reach as shown in Nihei's talk?

$$\sigma_{\chi-n}^{\rm SI} \ge 2 \times 10^{-12} \, \rm pb$$

 Current typical limit with NaI(TI) – PSA by UK group

 $\frac{\mathrm{d}R}{\mathrm{d}E_{\mathrm{visible}}} \leq 4 \times 10^{-1} \mathrm{events/kg/day/keV}(@4-5\,\mathrm{keV})$

 $\sigma_{\chi-n}^{\rm SI} \leq 2 \times 10^{-5} \, \rm pb \, (@M_{\chi} \sim 100 \, \rm GeV)$

Well experienced experimentalist would not say that

- One has to go down to $\frac{dR}{dE_{visible}} \leq 4 \times 10^{-8} \text{ events/kg/day/keV} (@4-5 \text{ keV})$
- with 6 p.e. /keV (Nal(Tl))
 5 p.e. /keV (LXe)
- even lower p.e.'s for larger volume detectors

To go further,

- Huge mass conventional detectors never help even with PSA.
- Bolometr background rate is too high.
- Annual modulation effect is too small.
- Innovation needed
- Direction sensitive (and, hopefully, SDsensitive) detector
- Self-shielding ultra pure material(e.g. LXe)