New Physics Working Report - I

Nobuchika Okada (KEK)

1. New physics subgroup's calendar

2003/4/25: LC Physics Study Group Kickoff meeting New physics subgroup was formed

Conveners: K. Fujii & N. Okada

In order to expand the activity

for New Physics Study at a linear collider

New Physics = SUSY, <u>Extra-dimension</u>,

SUSY has been studied very well

Little detailed study on Extra-dim. Phys.

5/30: 1st New Physics Subgroup Meeting

concentrate on **Physics of Extra-dimensions**

prepare a <u>handbook</u>

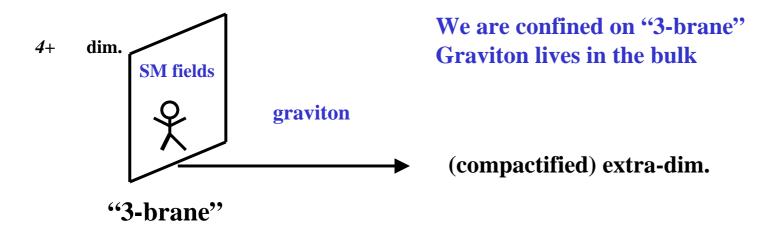
Review talk on Physics of Extra-dimensions

7/30: 2nd New Physics Subgroup Meeting

Report on preparation of handbook Two Review Talks on:

Little Higgs Model by M. Hashimoto

SUSY Dark matter by T. Nihei


New Physics Subgroup home page

http://www-jlc.kek.jp/subg/physics/subg/newphysics/

Minutes & Slides of review talks

2. Physics of Extra-dimensions

Phenomenological Models

Beyond the standard model → Brane World Scenario 4+ dimension New property "geometry"

Typical Scenario: Large (flat) Extra Dimension (Arkani-Hamed-Dimopoulos-Dvali, '98)
Warped (small) Extra Dimension (Randall-Sundrum, '99)

Large Extra Dimension Scenario

Alternative solution to hierarchy problem

without SUSY, TC, etc.

$$M_W \sim 10^2 \text{GeV} \ll M_4 \sim 10^{19} \text{GeV}$$
 If $M_W \sim M_{4+n} \Rightarrow \text{ O.K.}$

Low scale gravity model

$$S_{4+\delta} = M_{4+\delta}^{2+\delta} \int d^4x d^\delta y \sqrt{-g_{4+\delta}} R_{4+\delta}$$

$$= M_P^2 \int d^4x \sqrt{-g_4} R_4$$

$$M_P^2 = M_{4+\delta}^{2+\delta} V_\delta \qquad V : \text{volume of extra-dim.}$$

$$V_\delta = (2\pi r)^\delta \text{ (compactified on } T^\delta \text{)}$$

For $M_{4+\delta} \sim 1 \text{TeV}$

δ	r		
1	10 ¹³ cm	excluded	
	$10^{-1} \; \text{mm}$		\leftarrow r < 218 μ m
3	10 ⁻⁶ mm	allowed	Hoyle et al., PRL 86 (2001) 1418

Phenomenology

- $\cdot M_{4+} \sim O (1 T e V)$
- **'many graviton Kaluza-Klein modes**

$$G_{\mu\nu}(x^{\mu}, y^{1}, y^{2}, ..., y^{n}) = \sum_{n} g_{\mu\nu}^{(\vec{n})}(x^{\mu}) \ \chi^{(\vec{n})}(\vec{y})$$

$$\chi^{(n)} \propto e^{i\frac{\vec{n}\cdot\vec{y}}{r}} \ , \ \left(m_{KK}^{(\vec{n})}\right)^{2} = \frac{|\vec{n}|^{2}}{r^{2}} \quad \text{If 6 dim.} \Rightarrow \quad \frac{1}{r} \sim 10^{-4} \text{eV}$$

Phenomenology of Extra-dimension Scenario

= Phenomenology of graviton Kaluza-Klein modes

Preparation of Handbook

comprehensive guide for studies

Construction of effective action in 4D

1. 4D Lagrangian

4+ dim. Graviton → 4D graviton in 4D

KK gravitons

KK gravi-scalars

KK gravi-vectors

2. Feynman rules

4D reduction of 4+ dim. Einstein's Eqs.

KK graviton
$$(\Box + \hat{n})G_{\mu\nu}^{(n)} = \frac{1}{M_P} \left[-T_{\mu\nu} + \frac{1}{3} \left(\frac{\partial_{\mu}\partial_{\nu}}{\hat{n}^2} \right) T_{\lambda}^{\lambda} \right]$$
KK gravi-scalar
$$(\Box + \hat{n})H^{(n)} = \frac{\sqrt{\frac{3(\delta - 1)}{\delta + 2}}}{M_P} T_{\mu}^{\mu}$$
Vector
$$(\Box + \hat{n})V_{\mu j}^{(n)} = 0$$
Scalar
$$(\Box + \hat{n})S_{ij}^{(n)} = 0$$

Feynman rules

ex) QED + KK graviton

$$\begin{array}{ccc}
f & & & -\frac{ieQ}{2\bar{M}_P} [\gamma_\mu \eta_{\nu\alpha} + (\mu \leftrightarrow \nu)] \\
f & & & & & \end{array}$$

$$G_{\mu\nu}^{(n)}(k) \qquad G_{\alpha\beta}^{(n)}(k) \qquad \frac{iP_{\mu\nu\alpha\beta}}{k^2 - m^2} = \frac{1}{2} (\eta_{\mu\alpha}\eta_{\nu\beta} + \eta_{\mu\beta}\eta_{\nu\alpha} - \eta_{\mu\nu}\eta_{\alpha\beta})$$

$$- \frac{1}{2m^2} (\eta_{\mu\alpha}k_{\nu}k_{\beta} + \eta_{\nu\beta}k_{\mu}k_{\alpha} + \eta_{\mu\beta}k_{\nu}k_{\alpha} + \eta_{\nu\alpha}k_{\mu}k_{\beta})$$

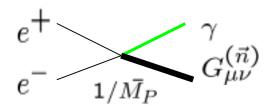
$$+ \frac{1}{6} \left(\eta_{\mu\nu} + \frac{2}{m^2}k_{\mu}k_{\nu} \right) \left(\eta_{\alpha\beta} + \frac{2}{m^2}k_{\alpha}k_{\beta} \right)$$

 $+ (\mu \leftrightarrow \nu)$

Detection of Extra-dimension @ LC

→ detection of KK graviton

direct → KK graviton emission
indirect → KK graviton mediated process


First detection of spin 2 particle!

Emitted KK graviton → non-interacting & stable particle

→ missing energy event

Example: $e^+e^- \rightarrow \gamma + \text{nothing}$

SM background: $e^+e^- \rightarrow \gamma \bar{\nu} \nu$

Each process is suppressed by $1/\bar{M}_P^2$ But \times of KK modes $\Longrightarrow \frac{1}{M_{4+\delta}^2}$

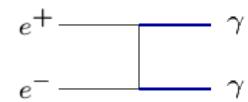
Result $e^+e^- \rightarrow \gamma + E_{\text{missing}}$

$$\sigma[fb]$$
 100 $\delta=2$ SM Bkgd $\delta=2$ $\delta=3$ $\delta=4$ $\delta=$

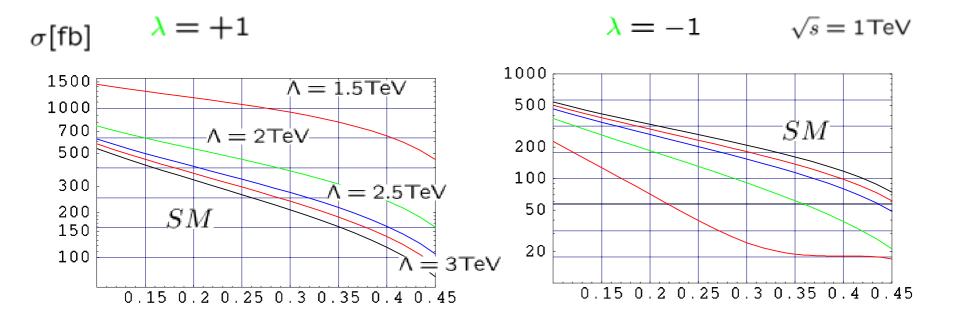
$$\sigma \propto \left(\frac{\sqrt{s}}{M_{4+\delta}}\right)^{\delta+2}$$

$$e^+$$
 $G_{\mu\nu}^{(\vec{n})}$
 γ
 $\sum_{\vec{n}} \frac{1}{s - \left(m_{KK}^{(\vec{n})}\right)^2} \rightarrow \infty \quad (\text{for } \delta \geq 2)$

Need regularization


Naïve: Cut Off by $m_{KK}^{MAX} = \Lambda \sim M_{4+\delta}$

$$\mathcal{L}_{int} = \frac{2\pi \lambda}{\Lambda^4} T_{\mu\nu} T^{\mu\nu} \; ; \quad \lambda = \pm 1$$


Result I

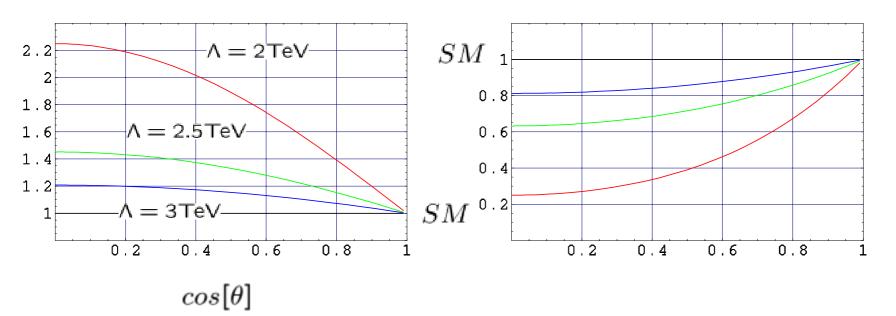
$$e^+e^- \rightarrow \gamma + \gamma$$

SM bkgd

+ cross

 $E_{T,\gamma}^{min}[\text{TeV}]$

Result II
$$e^+e^- \rightarrow \gamma + \gamma$$


Angular distribution \leftarrow spin 2 particle exchange

$$\frac{d\sigma}{d\cos\theta}/\frac{d\sigma}{d\cos\theta}|_{SM}$$

$$\lambda = +1$$

$$\lambda = -1$$

$$\sqrt{s}=1{\rm TeV}$$

3. Future plan

We are calculating other processes

$$e^+ + e^- \rightarrow f + \overline{f}$$

 $W + W, Z + Z$

with polarization

Options
$$e + \gamma \to X, Y, ...$$
 $\gamma + \gamma \to X, Y, ...$

- Calculations are mostly straightforward but very complicated and tedious
- 'Some calculation tools are very useful

FeynCalc: http://www.feyncalc.org/

Two Problems

No enough Time & Manpower

6th ACFA Workshop, TIFR, Mumbai, India

15-17 December 2003

Need people whom we work with !!