Little Higgs models and LC

Gi-Chol Cho (Ochanomizu Univ.)

2nd LC Physics Study Group meeting @KEK, Oct/03/2003

1

Introduction

The hierarchy problem
SUSY : a leading candidate

- Alternative approach?
 - Extra-D?
 - Little Higgs models: Arkani-Hamed etal. (2002)

Little Higgs models

- at certain high E. scale, a theory with
 - global symmetry g
 - gauge symmetry $G_1 \times G_2 (\supset G_{SM})$
- both symmetries are broken at $\Lambda_s \sim 4\pi f$: G_{SM}
 - global sym. : (pseudo) goldstone bosons
 - gauge sym. : extra heavy gauge bosons
- EW symmetry breaking
 - 1-loop effective potential (a la Coleman-Weinberg)
- needs extra vector-like fermions (to cancel quad.div)

consequences

- quad. div. of Higgs: from 2-loop
 - relatively small corrections stabilize the Higgs mass up to the scale Λ
- some extra fields at TeV scale
 - heavy gauge bosons
 - extra (vector-like) fermions

Littlest Higgs model

- simplest version: Arkani-Hamed etal, (2002)
 - global symmetry: SU(5)
 - gauge symmetry: $[SU(2) \times U(1)]_1 \times [SU(2) \times U(1)]_2$

- consider sym.breaking $SU(5) \rightarrow SO(5)$
 - gauge sym. is broken simultaneously $\rightarrow G_{SM}$
 - # of Goldstones: 24-10=14

1, 3_0 : massive (W'&Z') $2_{\pm 1/2}$, $3_{\pm 1}$: massless • non-linear sigma-model

extra gauge bosons

$$\begin{pmatrix} W\\W' \end{pmatrix} = \begin{pmatrix} s & c\\ -c & s \end{pmatrix} \begin{pmatrix} W_1\\W_2 \end{pmatrix}$$
$$\begin{pmatrix} B\\B' \end{pmatrix} = \begin{pmatrix} s' & c'\\-c' & s' \end{pmatrix} \begin{pmatrix} B_1\\B_2 \end{pmatrix}$$
$$s \equiv \sin \theta, \quad s' \equiv \sin \theta'$$

 $W, B \cdots SM$ gauge bosons (massless)

 $W', B' \cdots$ extra gauge bosons (massive)

after EWSB ...

$$\begin{pmatrix} W_L \\ W_H \end{pmatrix} = U_W \begin{pmatrix} W \\ W' \end{pmatrix} \qquad \begin{pmatrix} A_L \\ Z_L \\ A_H \\ Z_H \end{pmatrix} = U_N \begin{pmatrix} W^3 \\ B \\ W'^3 \\ B' \end{pmatrix}$$
$$m_{A_L}^2 = 0 \qquad m_{A_H}^2 \sim O(f^2)$$
$$m_{Z_L}^2 = m_Z^2(1 + O(v^2/f^2)) \qquad m_{Z_H}^2 \sim O(f^2)$$
$$m_{W_L}^2 = m_W^2(1 + O(v^2/f^2)) \qquad m_{W_H}^2 \sim O(f^2)$$

the gauge sector is fixed by: f, $\tan \theta$, $\tan \theta'$

constraints on LH model

- Hadron collider: $p\bar{p} \to A_H X$
 - Han etal (2003), Hewett etal (2002)

$$f \geq 3.5 - 4$$
TeV

 e^+e^- collider?

– contact interaction at LEP2

 $-e^+e^- \rightarrow \mu^+\mu^-$ at LC

•

Extra gauge boson mass

- blue lines: m_{A_H}
- green lines: m_{Z_H}
- mixing angle (θ, θ')
 dependence: few
 hundred GeV

Limit on contact term from LEP2

- $\begin{aligned} \mathcal{L} &= \eta_{\alpha\beta}^{ff'} \bar{f} \gamma^{\mu} P_{\alpha} f \bar{f}' \gamma_{\mu} P_{\beta} f' \\ \eta_{\alpha\beta}^{ff'} &\sim g_{\alpha}^{f} g_{\beta}^{f'} / M^2 \end{aligned}$
- mixing angle: tan θ = tan θ' = 1
- 95%CL bound on the decay constant *f*
 - (L,L) mode: 1.5 TeV
 - (R,R) mode: 1.8TeV

Limit on contact term from LEP2

- mixing angle: $\tan \theta = \tan \theta' = 1/\sqrt{3}$
- bound on the decay constant *f* is much severe than the previous case
- 95% CL bound on f
 - (L,L) mode: 5.4 TeV
 - (R,R) mode: 3.5 TeV

$e^+e^- \rightarrow \mu^+\mu^-$ at LC

 $\sigma(LH)/\sigma(SM)$

- CM energy: $\sqrt{s} = 500 \text{GeV}$
- mixing angle $\tan \theta = \tan \theta' = 1$ (blue) $\tan \theta = \tan \theta' = 1/\sqrt{3}$ (green)

• @
$$f \sim 3 \text{TeV}$$

 $\Rightarrow m_{A_H} \sim 500 \text{GeV} \sim \sqrt{s}$

Bound from measurements at LC

- compare with $\sigma(\exp)/\sigma(SM) 1$
- mixing angle $\tan \theta = \tan \theta' = 1$
- if the measurement accuracy is better than $10\%, f \ge 4 \text{TeV}$

Bound on the extra gauge boson A_H

• mixing angle $\tan \theta = \tan \theta' = 1$

• 10% accuracy $m_{A_H} \ge 0.6 \text{TeV}$

• 5% accuracy $m_{A_H} \ge 0.8 \text{TeV}$

Bound from measurements at LC

- mixing angle $\tan \theta = \tan \theta' = 1/\sqrt{3}$ ($\sqrt{3}$ for orange line)
- 10% accuracy leads to $f \ge 8 \text{TeV}$

• 5% accuracy: $f \ge 10$ TeV

Bound on the extra gauge boson A_H

• mixing angle $\tan \theta = \tan \theta' = 1/\sqrt{3}$

10% accuracy $m_{A_H} \ge 1.6 \text{TeV}$

• 5% accuracy $m_{A_H} \ge 2.2 \text{TeV}$

Summary

• Constraints on the Littlest Higgs model at LC are studied (extra gauge bosons, A_H , Z_H)

•
$$e^+e^- \rightarrow \mu^+\mu^-$$
: interference effect

$$f \geq$$
 4 \sim 6TeV may be expected ($m_{A_H} \geq$ 2TeV)

- (cf) triple gauge boson vtx. (Han etal) $f \sim 12$ TeV expected