LC Physics Study Group Meeting

Introduction

2003.4.25 at KEK Yasuhiro Okada (KEK)

Past activities on LC physics study (among theorists and experimentalists).

- JLC-1 (92)
- World-wide LCWS
 91, 93, 95(Morioka),99,00, 02(Jeju)
- ACFA LCWS
 98(Beijing), 99(Seoul), 00(Taipei), 01(Beijing), 02(Tokyo)
- ACFA report on "Physics and Experiments at JLC" (01)
- "Roadmap" report, JLC project (03)

Higgs physics

Detection

Coupling measurements

\sqrt{s}	300 GeV	400 GeV	500 GeV
Δm_h (lepton-only)	80 MeV		
Δm_{h}	40 MeV		
$\Delta \sigma / \sigma$ (lepton-only)	2.1%	2.5%	2.9%
$\Delta \sigma / \sigma$	1.3%		
$\Delta(\sigma_h \cdot Br(b\overline{b})$	2.0%	1-0	8350
ZZH-coupling Δ ZZH/ZZH	1.1%	1.3%	1.5%
WWH-coupling \(\Delta \WWH/WWH \)	1.6%	_	-
$\Delta \Gamma_{h^0}/\Gamma_{h^0}$	5.5%	12%	16%
Yukawa coupling Δλ/λ	TY ORGINA		0.00000000
λ_b	2.8%	6.1%	8.1%
λ_{τ}	3.5%		
λ_c	11.3%	13%	15%
$\lambda_{\delta}/\lambda_{\tau}$	2.3%		
λ_b/λ_c	11%	12%	14%
λup-type	4.1%	_	-
Adoun-type/Aup-type	3.2%		_
$\Delta(\sigma \cdot Br)/(\sigma \cdot Br)$		0/	04
h°→bБ	1.1%	1.3%	1.7%
h°→W+W-	5.1%	12%	16%
$h^0 \rightarrow \tau^+ \tau^-$	4.4%	_	-
h ⁰ →c č +gg	6.3%		-
h ⁰ →c₹	22%	23%	27%
h ⁰ →gg	10%	11%	13%
$h^0 \rightarrow \gamma \gamma$	_	_	_
$h^0 \rightarrow Z^0 \gamma$	_	_	-

Supersymmetry

Top and W boson

Mass and width determination by top threshold scan

Sensitivity to triple Gauge boson coupling constants

$$\begin{array}{lll} \mathcal{L}_{WWV}/g_{WWV} & = & ig_1^V(W_{\mu\nu}^\dagger W^\mu V^\nu - W_\mu^\dagger V_\nu W^{\mu\nu}) + i\kappa_V W_\mu^\dagger W_\nu V^{\mu\nu} \\ & + & \frac{i\lambda_V}{m_W^2} W_{\lambda\mu}^\dagger W_\nu^\mu V^{\nu\lambda}, \end{array}$$

$$\sqrt{s} = 500$$
 GeV and $\mathcal{L} = 50$ fb^{-1}

Process	$\Delta \kappa_{\gamma}$	$\Delta \kappa_Z$	λ	
W^+W^-	$-0.0052 \sim 0.0057$	$-0.0064 \sim 0.0062$	$-0.012 \sim 0.021$	
$e\nu W$	$-0.021 \sim 0.020$		$-0.039 \sim 0.038$	
$\nu \overline{\nu} \gamma$	$-0.071 \sim 0.075$	-	$-0.044 \sim 0.079$	
$\nu \overline{\nu} Z$		$-0.29 \sim 0.25$	$-0.46 \sim 0.17$	
$W^+W^-\gamma$	$-0.020 \sim 0.016$	$-0.018 \sim 0.025$	-0.025 ~ 0.028	
W^+W^-Z	$-0.053 \sim 0.041$	$-0.071 \sim 0.15$	$-0.050 \sim 0.030$	
eeWW	$-0.032 \sim 0.039$	_	$-0.084 \sim 0.12$	

Things calculated only theoretically, ...

 $\delta \lambda / \lambda$

Higgs self-coupling measurement

Higgs self coupling sensitivity

Y.Yasui, et.al.

Heavy Higgs boson in MSSM

LC (Contours of production cross sections)

LHC

S.Kiyoura, et. al.

Extra-dimensions

Determination of the number of extra-dimensions by the missing-mass distribution.

K. Odagiri

Heavy Higgs boson production in a photon-photon collider

$$\gamma\gamma \rightarrow H, A \rightarrow \bar{t} t$$

A: solid line

H: long-dashed

E.Asakawa, et. al..

Physics research at each stage of energy and integrated luminosity

- Many issues remain to be studied.
- Simulation studies are necessary to evaluate detection efficiencies and backgrounds for some important processes.

	LHC	LC	
		500 GeV	$1 \mathrm{TeV}$
Light Higgs boson (120 - 140 GeV) Detection Width (Γ_H) J^P Coupling (gvv_H, Y_{ffH}) Top Yukawa C.C. (Y_{tH}) Self-coupling (λ_{HHH})	0 d d o d x	0000®×	
500 GeV SM Higgs boson			
Detection	0	×	0
Top quark Δm_t Width (Γ_t)	~ 1 GeV ×	≲ 100 M)V	-
Supersymmetry Squark mass reach Slepton/Chargino/Neutralino Mass measurement Proving SUSY (Spin, Coupling) Testing SUSY breaking model MSSM Heavy Higgs Indirect constraint on SUSY parameters	≲ 2.5 TeV Cascade decay O X O high tan β	Pair prod	etion
Large Extra Dimension KK graviton Black hole production	00	Δ ×	0
Z', KK graviton of RS model, KK mode of W and Z, etc. Mass reach	Direct production	Contact inte	raction

Today's meeting

- Hear a report on past/on-going activities from each "group".
- (Higgs, New Physics, Top, Gamma-gamma, Luminosity, +World-wide study on LHC/LC)
- Set next goals for each group.
- Discuss how to proceed.
- We should present many results, for example, at LCWS 2004 and ACFA LCWS 2003.

To be discussed

- Form working groups and choose conveners.
- List items to be studied.
- Decide analysis methods (platform, etc.).
- List activities involving both theorists and experimentalists.
- Set up rough schedule of activities.
- Decide immediate next steps (tutorial school for beginners, etc.)
 etc. etc.