New Physics

Invitation to Simulation Studies

Keisuke Fujii Linear Collider Physics Mini-Workshop April 25, 2003 at IPNS, KEK

Popular BSM Scenarios BSM = Extra Dims./Symms.

- In the Case of High Cut-off Scale
 - Supersymmetry (Fermionic Dimensions)
 The most well motivated and studied
 - @ ???
- In the Case of Low Cut-off Scale
 - Large Extra Dimension (Bosonic Dims.)
 - Extra Symmetries (New Strong Int.?)
 - Little Higgs
 - Techni-Color
 - @ ???

Supersymmetry Standard BSM

Sample SSB Scenarios

Need for Super Spectroscopy

	Gravity Mediated	Gauge Mediated	Anomaly Mediated
Gravitino Mass	$M_{SSB}^2 / \sqrt{3} M_{pl} \sim TeV$ $(M_{SSB} \sim 10^{10} - 10^{11} GeV)$	$\left(\sqrt{F} / 100 TeV\right)^2 eV$ $10 < \sqrt{F} < 10^4 TeV$	~ 100 TeV
Gaugino Mass	$M_{i} = \left(\frac{\alpha_{i}}{\alpha_{2}}\right) M_{2}$ $M_{1}: M_{2}: M_{3} = 1:2:7$		$M_{i} = \left(\frac{b_{i}}{b_{2}}\right)\left(\frac{\alpha_{i}}{\alpha_{2}}\right)M_{2}$ $M_{1}: M_{2}: M_{3} = 2.8:1:8.3$
Sfermion Mass	$m_{\tilde{f}}^2 = m_0^2 + \sum_i G_{\tilde{f},i} M_i^2$ $m_{\tilde{l}} < m_{\tilde{q}} m_{\tilde{f}_R} < m_{\tilde{f}_L}$	$m_{\tilde{f}}^2 = \sum_{i} G_{\tilde{f},i}^{'} M_i^2$ $m_{\tilde{l}} << m_{\tilde{q}}$	$m_{\tilde{f}}^2 = m_0^2 + \sum_{i} 2a_{\tilde{f},i} b_i \left(\frac{\alpha_i}{\alpha_2}\right)^2 M_2^2$ $m_{\tilde{l}_R} \approx m_{\tilde{l}_L}$
LSP	${ ilde \chi}_1^{0}pprox { ilde B}$	$ ilde{ ilde{G}}$	$ ilde{\chi}_1^0 pprox ilde{W}_{\perp}$

$$\beta_i = -b_i g_i^3 / (4\pi)^2$$

$$b_1 = 33/5 \quad b_2 = 1 \quad b_3 = -3$$

More? -> Theorists

Power of Beam Polarization

W⁺W⁻ (Largest SM BG)

In the symmetry limit, $\sigma_{WW} \rightarrow 0$ for e_R^- !

Slepton Pair

In the symmetry limit, $\sigma_R = 4 \sigma_L!$

BG Suppression

Chargino Pair

Decomposition

Signal Enhancement

Slepton Studies

Signature = acoplanar Lepton Pair

Mass Measurement

End Point Measurement

O(0.1%) measurement is possible!

Smuon Spin Measurement

- 2-fold ambiguity
 - wrong solution makes a flat BG
 - easy to subtract
- sin(theta) dist. for
 J=0 (P-wave)

Chargino Studies Mass Measurement

- O(1%) measurement is possible!
 - Need good energy flow resolution

Test of GUT Relation

Global Fit

Discriminates AMSB

Beam Polarization Essential!

Quantitative Test of SUSY

Supersymmetry A Lot More to Do

Non-standard Event Signatures Difficult Corners of Parameter Space Other SSB Scenarios: GMSB, AMSB, ..., ?? R-parity violation Spectroscopy at Higher E (Cascade Decays) Mass Measurements (Endpoint/Threshold Scan) Determination of Low Scale Parameters CP Phases High Scale Physics (SSB Mechanisms) Combined Analyses with Higgs Sector

Large Extra Dimensions

Brane World Scenario

Our World = Brane

All the SM particles live on the brane!

Gravitons live in the bulk!

--> may leave the brane and

disappear from our world!

Large Extra Dimensions

- How to Decide Nature of Extra Dimensions
 - Size and Shape (Topology)
 - Non-commutative Geometry?
- Possible Probes
 - Quantum Gravity Effects (KK Modes)?
 - Classical Gravity Effects (Black Holes)?
 - String Effects (Regge, Winding Modes)?

Size and Shape

KK Gravitons
-> Missing E

Single Photon Event

Angular Distribution

--> Spin of G (J=2 if KKG)

Energy Distribution

--> #extra dims. (n) and fundamental scale (MD)

$$m_{Pl}^2 \sim M_D^{(2+n)} R^n$$

But So Far No Serious Simulation Studies in ACFA LCWG

Be Prepared for Unexpected

Is Our Detector Good Enough?

- Hermeticity
- Energy Flow Resolution
- Vertex Tagging
- Time Stamping
- Photon Vertex (Off-vertex Photon)
- Heavy Long-lived Particles?
- Polarization (e+?, Transverse Pol.?)

Example of Score Sheet

Sample reference reactions and relevant experimental features in relation to performance requirements on machine and detector

Need to study them with beam induced Background

Machine Tracking/Calorimetry Hermeticity

Feed Back to Machine and Detector Designs

- Beam Polarization (e+?, Transverse Pol.?)
- Beamstrahlung and Beam Energy Spread
- Parton ID by Jet Invariant Mass
- Angular Analysis (Production/Decay)
- Endpoint Measurements
- Threshold Scan
- Photon Pointing
- Slow Track Trigger
- Minimum Veto Angle
- Vertex Tagging (c/b/tau)

LHC + LC or LHC x LC Essentiality

- Higgs
 - Discovery --> LHC
 - Yukawa and Self Couplings --> LC
- Supersymmetry
 - Super Spectroscopy
 - Colored Sparticles --> LHC
 - Colorless Sparticles --> LC
- Large Extra Dimensions
 - Black Hole --> LHC
 - Size and Shape --> LC

Summary

- Past Simulation Studies in ACFA LCWG
 - Mostly SUSY in Phase I (Ecm<500GeV)</p>
 - A lot more to do even within SUSY:
 - Higher E (cascade decays), Different Scenarios, CP Phases, Extrapolation to High Scale, Global Analyses Incl. Higgs Sector, ...
- Large Extra Dimensions
 - Size and Shape? Non-commutiative?
 - Stringy Effects?
- Extra Symmetires
 - Little Higgs?
- ????? --> Ideas and Man Power Wanted!