
Extended Kalman Filter

Keisuke Fujii

The ACFA-Sim-J Group

ABSTRACT

This short review stems from the appendix of Kotoyo Hoshina’s Ph.D thesis and chapter 4 of
Yasuhiro Nakashima’s Master’s thesis both written in Japanese. It is intended to be an introduction
for those who are interested in principle of Kalman Filter and its application to track fitting in
high energy collider experiments.
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Chapter 1

Introduction

The ultimate goal of a detector system at a future linear e+e− collider experiment is to measure two
4-vectors, pµ (4-momentum), and sµ (spin polarization), of ”partons” (quarks, leptons, gauge bosons, and
other fundamental particles such as Higgs bosons, if any) produced in e+e− collisions so that we can visualize
the underlying Feynman amplitudes and determine their corresponding S-matrix element. When you have
quarks or gluons in the final states, however, what you actually observe is not these fundamental partons but
jets of particles, which are predominantly stable hadrons. In order to reconstruct parent partons from the
jets of particles, we need a high resolution particle tracker capable of efficient and accurate reconstruction
of densely packed tracks of charge particles in the jets.

Track reconstruction consists of two steps: track finding, which selects hits belonging to a single track
from the set of hits created by all the charged particles in an event, and track fitting, which fits the selected
hits to a track model and determines its track parameters at the interaction point. The purpose of this
short review is to elaborate this second step, track fitting, so as to find out the optimal way to extract track
parameters at the interaction point.

In a uniform magnetic field, a charged particle follows a helical trajectory, which can be specified by 5
parameters: (dρ, φ0, κ, dz, tanλ), if there is no multiple scattering or energy loss in detector materials. The
simplest way to extract the track parameters is then to perform a χ2 fit assuming that the particle follows a
perfect helix, ignoring multiple scattering and energy loss. In this method, however, we have a single track
parameter vector for a single set of hits. In the case of a low momentum tracks, for which multiple scattering
and energy loss due to ionization are significant, a relatively strong disturbance in the middle of the flight
would distort the trajectory and subsequent hits would deteriorates the fit near the interaction point (see
Fig. 1.1-a)).

In order to solve this problem, HEP community started to use Kalman filter for track reconstruction in
around 1987 [2, 3, 4]. The idea of Kalman filter first appeared in 1960 [1] to deal with a linear system under
the influence of random disturbance. It is designed to effectively estimate, from multiple observations about
a system, its state at a certain point. The method is effective in particular when

• equation of motion is (quasi-)linear1,

• there are many discrete points of measurements,

• the distance between adjacent measurement points is short enough so that the state at k-th point is

1Since the original Kalman filter is for a linear system, its application to a non-linear system such as a charged particle
trajectory in a magnetic field requires proper linearization. Strictly speaking, therefore, the Kalman filter we are going to
discuss in what follows should be called an extended Kalman filter. We shall, however, call it Kalman filter in this note.
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Figure 1.1: Simple χ2 fitting versus Kalman filter based fitting.

well approximated by the extrapolation of the state at (k − 1)-th point using the equation of motion,
even in the presence of random disturbance between them.

The most crucial difference from the simple χ2 fitting to a single helix is that we can put a different track
parameter vector to a different measurement point, since we update the track parameters as we add a
new measurement point. Because of this we can take into account step-by-step the evolution of the track
parameters due to energy loss, multiple Coulomb scattering, and decays such as K → µν or π → µν,
etc., and hence improve the fit near the interaction point and consequently the estimation of the particle’s
momentum thereat (see Fig. 1.1-b)).



Chapter 2

Principle of Kalman Filter

2.1 Statement of the Problem

In general a system we deal with using Kalman filter is subject to random disturbance (process noise) during
its evolution following an equation of motion (system equation). Our goal is to derive the best estimate of
this system’s state at a given point from information collected at multiple observation points (measurement
sites).

We assume that the state of the system can be specified by a p-dimensional column vector (state vector),
āk, where the suffix k denotes the site at which the state is given and the bar over a means that it is the
true value. The system equation that describes the evolution of the state āk−1 at site (k − 1) to āk at site
(k) can be written in the following form:

āk = fk−1(āk−1) + wk−1, (2.1)

where fk−1(āk−1), which is a non-linear function in general, is a state propagator corresponding to a smooth
deterministic motion expected if the random disturbance due to the process noise, wk−1, were absent. We
assume that the process noise has no bias: < wk−1 >= 0 and has a covariance given by

Qk−1 ≡< wk−1w
T
k−1 > . (2.2)

At each measurement site, we measure observables about the system. The set of observed values of these
observables at site (k) forms an m-dimensional column vector called measurement vector, mk. The relation
between the measurement vector and the state vector thereat is a measurement equation:

mk = hk(āk) + εk, (2.3)

where hk(āk) gives the true measurement vector that would be observed if the random error due to the
measurement noise, εk, were absent. Notice that hk(āk) is also non-linear in general and serves as a projector
that projects out components of the measurement vector. We again assume that the random measurement
noise is unbiased1: < εk >= 0 and has a covariance given by

V k ≡ (G)−1 ≡< εkε
T
k > . (2.4)

1In the case of tracking, this corresponds to assuming that the alignment is perfect and there is no systematic errors in
coordinate measurements.
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2.1.1 Example 1: Ballistic Missile

The Kalman filter was originally invented to track a ballistic missile and predict its trajectory. In this case,
the state vector, ak, consists of position and momentum of the missile at site (k):

ak =
(

x
p

)

k

(2.5)

which evolves according to Hamiltonian equation with the process noise, wk−1, corresponding to random
turbulence between (k − 1) and (k).

The radar-detected position and velocity of the missile at site (k) comprises the measurement vector,
mk, which is subject to a finite measurement error, εk, of the radar system.

2.1.2 Example 2: Tracking in HEP Experiments

Our main concern is tracking of a charged particle in a magnetic field. If the magnetic field is uniform, at
least locally, near the measurement site (k), then we can approximate the track of this particle by a helix[5]:





x = x0 + dρ cosφ0 + α
κ (cosφ0 − cos(φ0 + φ))

y = y0 + dρ sinφ0 + α
κ (sinφ0 − sin(φ0 + φ))

z = z0 + dz − α
κ tanλ · φ,

(2.6)

where x0 = (x0, y0, z0)T
k is a pivotal point or simply pivot that represents a measurement site (k). At a

given site, or equivalently for a given pivot, the helix is then specified by 5 parameters:

ak =




dρ

φ0

κ
dz

tanλ




k

. (2.7)

This parameter vector serves as the state vector in this case. Notice that the change of pivot transforms the
helix parameter vector. As we move from site (k − 1) to site (k), the state vector hence propagates from
ak−1 to ak according to the pivot transformation. The pivot transformation thus determines the function
fk−1 in the system equation. On the other hand, the process noise, wk−1, in this case comes from multiple
Coulomb scattering and energy loss between site (k− 1) and site (k). We shall elaborate these points later.
The measurement vector mk is a set of coordinates measured by a position sensitive detector at site (k),
which is subject to random detector noise expressed by εk.

2.1.3 What We Need

Accumulation of the measurement vectors improves the estimate of the state of the system. What we need
is hence machineary (recurrence formulae) to do

• Prediction, which predicts the state vector at site (k′′ > k) based on the observations made at sites up
to (k):

{m′
k; k

′ ≤ k} 7→ ak
k′′>k : future

• Filtering, which updates the predicted state vector at site (k) based on the observations made at sites
up to (k − 1) by adding the observation at site (k):

{m′
k; k

′ ≤ k} 7→ ak
k′′=k : present
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• Smoothing, which improves the filtered state vector at site (k′′ < k) by using all the observations made
at sites up to (k):

{m′
k; k

′ ≤ k} 7→ ak
k′′<k : past

In the rest of this chapter, we will derive recurrence formula for each of these three cases2.

2.2 Prediction: Extrapolation to Next Site

We begin with the prediction, which predicts the state vector at site (k) from the measurements made at
sites up to (k − 1). Let us recall that Eq.(2.1) relates the state vector at site (k − 1) to that at site (k).
Notice that before making observation at site (k) we don’t know anything about the random process noise
(the second term on the right-hand side of Eq.(2.1)) that would disturb the smooth motion given by the first
term of Eq.(2.1) as the system moves from site (k − 1) to (k). The best we can do is, hence, to extrapolate
the state vector at site (k − 1) by using only the first term or the state propagator:

ak−1
k = fk−1(a

k−1
k−1) = fk−1(ak−1). (2.9)

By definition, the covariance matrix (error matrix) for ak−1 ≡ ak−1
k−1 is given by

Ck−1 ≡ Ck−1
k−1

≡
〈
(ak−1 − āk−1) (ak−1 − āk−1)

T
〉
. (2.10)

Similarly we can define the covariance matrix for the predicted state vector (ak−1
k ) and express it in terms

of Ck−1 with the help of Eqs.(2.9), (2.1), and (2.10):

Ck−1
k ≡

〈(
ak−1

k − āk

) (
ak−1

k − āk

)T
〉

(2.11)

=
〈(

fk−1(ak−1)− fk−1(āk)−wk−1

) (
fk−1(ak−1)− fk−1(āk)−wk−1

)T
〉

'
〈
(F k−1(ak−1 − āk−1)−wk−1) (F k−1(ak−1 − āk−1)−wk−1)

T
〉

= F k−1

〈
(ak−1 − āk−1) (ak−1 − āk−1)

T
〉

F T
k−1 +

〈
wk−1w

T
k−1

〉

+cross terms
= F k−1 Ck−1 F T

k−1 +
〈
wk−1w

T
k−1

〉

+cross terms, (2.12)

2The notation we shall use from now on can be summarized as follows.




ai
k : estimate of āk using measurements at sites up to (i)

(ak
k ≡ ak for simplicity of notation)

Ci
k : covariant matrix for ai

k

Ci
k ≡

〈
(ai

k − āk)(ai
k − āk)T

〉

ri
k : residual

ri
k ≡ mk − hk(ai

k)

Ri
k : covariance matrix for ri

k

Ri
k ≡

〈
ri

kriT
k

〉

(2.8)

Notice that unless otherwise stated, suffix k means that it is at site (k) and superfix i means that it is from observations at
sites up to (i). When there are two superffices like i, j, it means that it is from observations at sites (i) to (j). Notice also that
when superfix coincides with suffix we shall often omit the superfix unless there is some fear for confusion.
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where use has been made of

fk−1(ak−1)− fk−1(āk) '
(
∂fk−1

∂ak−1

)
(ak−1 − āk−1)

= F k−1(ak−1 − āk−1).

Since the random process noise and the random fluctuation of the estimated state vector at site (k− 1) are
statistically independent, the cross terms in the above equation vanish and because of Eq.(2.2), we arrive at

Ck−1
k = F k−1Ck−1F

T
k−1 + Qk−1, (2.13)

where

F k−1 ≡
(
∂fk−1

∂ak−1

)
(2.14)

is, hereafter, called a propagator matrix.

2.3 Filtering: Optimal Estimate at Current Site

As mentioned above, what we want to do in the filtering step is to update the predicted state vector at site
(k) based on the observations at sites up to (k − 1) by including the observation at site (k) and make the
optimal estimate of the state vector at site (k) possible with all the information so far collected at all the
sites up to site (k). The goal here is to formulate this as a recurrence formula.

The fact that the covariance matrix for the predicted state vector (ak−1
k ) is given by Eq.(2.13) implies

that all we can say about the state vector at site (k) from what we have observed at sites up to (k− 1) can
be summarized into the following single χ2:

(χ2)k−1
k = (χ2)k−1

k−1 + (a∗k − ak−1
k )T

(
Ck−1

k

)−1
(a∗k − ak−1

k ),

where a∗k is a new estimate of the state vector at site (k) to be optimized below by adding the information
from the measurement at site (k), and (χ2)k−1

k−1 ≡ (χ2)k−1 is the χ2 up to site (k − 1) and is independent of
a∗k.

Now we add the information from the new measurement made at site (k):

(χ2)k,k
k = (mk − hk(a∗k))

T G (mk − hk(a∗k)) .

We then obtain the following as an increment to (χ2)k−1
k−1:

χ2
+ = (a∗k − ak−1

k )T
(
Ck−1

k

)−1
(a∗k − ak−1

k )

+ (mk − hk(a∗k))
T G (mk − hk(a∗k)) (2.15)

= (a∗k − ak−1
k )T

(
Ck−1

k

)−1
(a∗k − ak−1

k )

+
(
mk − hk(ak−1

k )− (hk(a∗k)− hk(ak−1
k ))

)T
G

(
mk − hk(ak−1

k )− (hk(a∗k)− hk(ak−1
k ))

)

' (a∗k − ak−1
k )T

(
Ck−1

k

)−1
(a∗k − ak−1

k )

+
(
mk − hk(ak−1

k )−Hk(a∗k − ak−1
k )

)T
G

(
mk − hk(ak−1

k )−Hk(a∗k − ak−1
k )

)
, (2.16)

where we assumed that a∗k − ak−1
k is small and retained up to the first order term in Taylor expansion:

hk(a∗k) ' hk(ak−1
k ) + Hk (a∗k − ak−1

k ),
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where the derivative of the projector:

Hk =

(
∂hk

∂ak−1
k

)
(2.17)

is, hereafter, called a projector matrix. Since (χ2)k−1
k−1 attains its minimum at ak−1 and is independent of

a∗k
3, the optimal estimate of the state vector at site (k) (ak ≡ ak

k) we can get from observations made at
sites up to (k) is the a∗k that minimizes this increment (χ2

+).
By solving the condition of extremum:

∂χ2
+

∂a∗k
= 0

for a∗k, we readily obtain

ak = ak−1
k +

[(
Ck−1

k

)−1
+ HT

k GkHk

]−1

HT
k Gk

(
mk − hk(ak−1

k )
)

and hence arrive at

ak = ak−1
k + Kk

(
mk − hk(ak−1

k )
)
, (2.18)

where

Kk =
[(

Ck−1
k

)−1
+ HT

k GkHk

]−1

HT
k Gk. (2.19)

The matrix Kk defined here is called Kalman Gain Matrix and represents how the new measurement at site
(k) improves the predicted state vector at site (k) (the second term of Eq.(2.18) corresponds to a new pull
towards the measurement vector mk).

The above expression for the Kalman gain matrix can be cast into another form. Namely, from Eq.(2.19),
we have

Kk

(
HkC

k−1
k HT

k + (Gk)
−1

)
=

[(
Ck−1

k

)−1
+ HT

k GkHk

]−1 (
HT

k GkHkC
k−1
k HT

k + HT
k

)

=
[(

Ck−1
k

)−1
+ HT

k GkHk

]−1

×
[{

HT
k GkHk +

(
Ck−1

k

)−1 −
(
Ck−1

k

)−1
}

Ck−1
k HT

k + HT
k

]

= Ck−1
k HT

k

and hence

Kk = Ck−1
k HT

k

(
V k + HkC

k−1
k HT

k

)−1
, (2.20)

where use has been made of Eq.(2.4).
With Eq.(2.18) together with either Eq.(2.19) or Eq.(2.20), we can update the predicted state vector

ak−1
k by including the information from the new measurement at site (k) and obtain the filtered state vector

ak ≡ ak
k.

3We shall discuss how to update the estimate of the state vector at a past point later.
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Let us now derive a recurrence formula to update the covariance matrix (Ck−1
k ) so as to obtain the

covariance matrix for ak. By definition of covariance matrix together with Eq.(2.18), we have

Ck ≡
〈
(ak − āk)(ak − āk)T

〉

=
〈(

ak−1
k + Kk(mk − hk(ak−1

k ))− āk

) (
ak−1

k + Kk(mk − hk(ak−1
k ))− āk

)T
〉

=
〈[

(ak−1
k − āk) + Kk

{
mk − hk(āk)−

(
hk(ak−1

k )− hk(āk)
)}]

[· · ·]T
〉
.

Substituting Eq.(2.3), we then obtain

Ck =
〈[

(ak−1
k − āk) + Kk

{
εk −

(
hk(ak−1

k )− hk(āk)
)}]

[· · ·]T
〉

'
〈[

(ak−1
k − āk) + Kk

{
εk −Hk(ak−1

k − āk)
}]

[· · ·]T
〉

=
〈[

(1−KkHk) (ak−1
k − āk) + Kkεk

]
[· · ·]T

〉
,

where again we assumed that ak−1
k − āk is small and hence retained only up to the first order term of Taylor

expansion as in Eq.(2.17).
Since the difference between the filtered and true state vectors at site (k), ak−1

k − āk, is statistically
independent of the measurement error at site (k), εk, their cross terms will vanish upon averaging. We thus
obtain

Ck = (1−KkHk)
〈
(ak−1

k − āk)(ak−1
k − āk)T

〉
(1−KkHk)

T + Kk

〈
εkε

T
k

〉
KT

k

= (1−KkHk) Ck−1
k (1−KkHk)

T + KkV kK
T
k (2.21)

= (1−KkHk) Ck−1
k −

[
(1−KkHk) Ck−1

k HT
k −KkV k

]
KT

k

= (1−KkHk) Ck−1
k −

[
Ck−1

k HT
k −Kk(HkC

k−1
k HT

k + V k)
]
KT

k

= (1−KkHk) Ck−1
k , (2.22)

where use has been made of Eqs.(2.11), (2.4), and (2.20).
Using Eq.(2.19), we can further reform the above formula for Ck as follows:

Ck = (1−KkHk) Ck−1
k

=

(
1−

[(
Ck−1

k

)−1
+ HT

k GkHk

]−1

HT
k GkHk

)
Ck−1

k

=
[(

Ck−1
k

)−1
+ HT

k GkHk

]−1 {(
Ck−1

k

)−1
+ HT

k GkHk −HT
k GkHk

}
Ck−1

k

=
[(

Ck−1
k

)−1
+ HT

k GkHk

]−1

.

We thus arrive at

Ck =
[(

Ck−1
k

)−1
+ HT

k GkHk

]−1

, (2.23)

which gives the filtered covariance matrix as weighted mean. This formula indicates that the new covariance
matrix, Ck, has indeed smaller eigen values than the predicted one, Ck−1

k . Combining this formula and
Eq.(2.19), we obtain yet another formula for the Kalman Gain Matrix:

Kk = CkH
T
k Gk. (2.24)
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2.4 Smoothing: Reevaluation at Past Site

In general, the state vector obtained at site (k) in the filtering process is the optimal at that point. The state
vector at site (k) can, however, be reevaluated and further improved after we accumulate more information
at subsequent sites: (k+ 1) to (n). This process is called Smoothing. Obviously the result of filtering at the
last site, (n), coincides that of smoothing. What we need to know is therefore how to smooth the filtered
state vector site by site, starting from site (n) and moving back toward site (1). Our goal is hence to work
out an inverse recurrence formula that gives the smoothed state vector at site (k) in terms of the smoothed
state vector at site (k + 1) and the filtered state vectors at sites (k) and (k + 1).

For this purpose, we start with the smoothing at site (k + 1). The optimal estimate of the state vector
(an

k+1) at site (k+1) using the information from all the n sites should be given as the weighted mean of the
predicted state vector (ak

k+1) at site (k + 1) using observations made at sites (1) to (k) and the backward
filtered state vector (an,k+1

k+1 ) based on observations made at sites (n) to (k + 1). This weighted mean is
obtained by minimizing the following χ2:

χ2 = (an
k+1 − ak

k+1)
T

(
Ck

k+1

)−1
(an

k+1 − ak
k+1)

+(an
k+1 − an,k+1

k+1 )T
(
Cn,k+1

k+1

)−1
(an

k+1 − an,k+1
k+1 ).

Differentiating this χ2 with respect to an
k+1 and setting the result to zero, we readily obtain the smoothed

state vector at site (k + 1):

an
k+1 =

[(
Ck

k+1

)−1
+

(
Cn,k+1

k+1

)−1
]−1 [(

Ck
k+1

)−1
ak

k+1 +
(
Cn,k+1

k+1

)−1
an,k+1

k+1

]
.

On the other hand, its covariance matrix is given by

(
Cn

k+1

)−1 =
(
Ck

k+1

)−1
+

(
Cn,k+1

k+1

)−1
.

Solving the above two equations for an,k+1
k+1 and

(
Cn,k+1

k+1

)−1
, we have

an,k+1
k+1 = an

k+1 + Cn
k+1

[
Ck

k+1 −Cn
k+1

]−1
(an

k+1 − ak
k+1) (2.25)

(
Cn,k+1

k+1

)−1
=

(
Cn

k+1

)−1 −
(
Ck

k+1

)−1
. (2.26)

Similarly, for the smoothed state vector at site (k) we obtain

an
k =

[
(Ck)

−1 +
(
Cn,k+1

k

)−1
]−1 [

(Ck)
−1 ak +

(
Cn,k+1

k

)−1
an,k+1

k

]
(2.27)

(Cn
k)−1 = (Ck)

−1 +
(
Cn,k+1

k

)−1
. (2.28)

Our goal is now to eliminate factors with superfix n, k + 1 from the above two equations, making use of
Eqs.(2.25) and (2.26).

From the definition of covariance matrix:

Cn,k+1
k ≡

〈
(an,k+1

k − āk)(a
n,k+1
k − āk)T

〉

and Eq.(2.1), we obtain

Cn,k+1
k =

〈(
f−1

k (an,k+1
k+1 )− f−1

k (āk+1 −wk)
) (

f−1
k (an,k+1

k+1 )− f−1
k (āk+1 −wk)

)T
〉
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'
〈(

F−1
k (an,k+1

k+1 − āk+1 + wk)
) (

F−1
k (an,k+1

k+1 − āk+1 + wk)
)T

〉

= F−1
k

〈(
(an,k+1

k+1 − āk+1) + wk

) (
(an,k+1

k+1 − āk+1) + wk

)T
〉

F−1
k

T
,

where we assumed that an,k+1
k+1 and āk+1 − wk are close and hence we can approximate f−1

k to a good
accuracy by its Taylor expansion to the first order. Noting that the process noise between site (k) to site
(k + 1) is statistically independent of the difference, an,k+1

k+1 − āk+1, and making use of Eq.(2.2) and the
definition of covariance matrix, we obtain

Cn,k+1
k = F−1

k

(
Cn,k+1

k+1 + Qk

)
F−1

k
T
. (2.29)

Since Cn,k+1
k+1 is given by Eq.(2.26), we have thus eliminated factors with superfix n, k + 1.

On the other hand, Eqs.(2.27) and (2.28) lead us to

an
k = Cn

k

{
(Cn

k)−1 ak +
(
Cn,k+1

k

)−1
(an,k+1

k − ak)
}

= ak + Cn
k

(
Cn,k+1

k

)−1
(an,k+1

k − ak)

= ak + Cn
k

(
Cn,k+1

k

)−1 (
f−1

k (an,k+1
k+1 )− f−1

k (ak
k+1)

)

' ak + Cn
k

(
Cn,k+1

k

)−1
F−1

k (an,k+1
k+1 − ak

k+1),

resulting in

an
k = ak + Ak(an

k+1 − ak
k+1) (2.30)

Ak ≡ Cn
k

(
Cn,k+1

k

)−1
F−1

k Ck
k+1

(
Ck

k+1 −Cn
k+1

)−1
(2.31)

after some simple arithmetics with the help of Eq.(2.25). Cn
k and Cn,k+1

k in Ak can be eliminated by using
Eq.(2.28) and Eqs.(2.29) and (2.26), respectively, as follows:

Ak ≡ Cn
k

(
Cn,k+1

k

)−1
F−1

k Ck
k+1

(
Ck

k+1 −Cn
k+1

)−1

=
[
(Ck)

−1 +
(
Cn,k+1

k

)−1
]−1 (

Cn,k+1
k

)−1
F−1

k Ck
k+1

(
Ck

k+1 −Cn
k+1

)−1

=
[
Cn,k+1

k

{
(Ck)

−1 +
(
Cn,k+1

k

)−1
}]−1

F−1
k Ck

k+1

(
Ck

k+1 −Cn
k+1

)−1

=
[(

Ck + Cn,k+1
k

)
(Ck)

−1
]−1

F−1
k Ck

k+1

(
Ck

k+1 −Cn
k+1

)−1

= Ck

(
Ck + Cn,k+1

k

)−1
F−1

k Ck
k+1

(
Ck

k+1 −Cn
k+1

)−1
. (2.32)

On the other hand, Eqs.(2.13) and (2.29) imply

Ck + Cn,k+1
k = F−1

k

(
Ck

k+1 + Cn,k+1
k+1

)
F−1

k
T
,

which together with Eq.(2.26) leads us to

Ck + Cn,k+1
k = F−1

k

(
Ck

k+1 + Cn,k+1
k+1

)
F−1

k
T

= F−1
k

(
Ck

k+1 + Ck
k+1

(
Ck

k+1 −Cn
k+1

)−1
Cn

k+1

)
F−1

k
T
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= F−1
k Ck

k+1

(
Ck

k+1 −Cn
k+1

)−1
Ck

k+1F
−1
k

T
. (2.33)

Substituting this in Eq.(2.32) and combining the result with Eq.(2.30), we finally arrive at




an
k = ak + Ak(an

k+1 − ak
k+1)

Ak = CkF
T
k

(
Ck

k+1

)−1
,

(2.34)

which is none other than the recurrence formula for an
k we have been looking for.

For completeness let us now derive the covariance matrix for an
k . From Eqs.(2.32) and (2.33), we obtain

Cn
k

(
Cn,k+1

k

)−1
= CkF

T
k

(
Ck

k+1

)−1 (
Ck

k+1 −Cn
k+1

) (
Ck

k+1

)−1
F k.

Multiplying the both sides by Cn,k+1
k from the right and substituting Cn,k+1

k with Eq.(2.33), we get

Cn
k = Ck −CkF

T
k

(
Ck

k+1

)−1 (
Ck

k+1 −Cn
k+1

) (
Ck

k+1

)−1
F kCk,

resulting in the desired formula:

Cn
k = Ck + Ak

(
Cn

k+1 −Ck
k+1

)
AT

k , (2.35)

where use has been made of Eq.(2.34).

2.5 Inverse Kalman Filter: Exclusion of Site

As our last exercise let us consider the case in which we want to exclude a site in the middle, say site (k),
from the estimate of the state vector, after we perform Kalman filter from site (1) to site (n) and smooth
back from site (n) to site (1). Of course, we can always redo Kalman filter as if there were no site (k) to
eliminate the site. There is, however, better way that makes full use of the previous results with site (k) at
hand. This process is called Inverse Kalman Filter and is useful, in particular, when we want to perform
alignment of the measurement layer at site (k) as is often the case with tracking devices.

Elimination of site (k) corresponds to the following subtraction for χ2:

χ∗2 = (an∗
k − an

k)T (Cn
k)−1 (an∗

k − an
k)− (mk − hk(an∗

k )T Gk(mk − hk(an∗
k ).

By differentiating this new χ∗2 with respect to an∗
k and setting the result to zero, we can write down an

equation to derive the optimal estimate of the state vector at site (k) with the measurement vector at site
(k) left out.

Comparison of this with Eq.(2.15) for the filtering process tells us that the following substitutions:

ak−1
k → an

k

Ck−1
k → Cn

k

Gk → −Gk

transforms χ2
+ to χ∗2. We can thus readily translate the formulae for the filtering process, Eqs.(2.18), (2.20),

and (2.23), to the formulae for the inverse Kalman filter:

an∗
k = an

k + Kn∗
k (mk − hk(an

k)) (2.36)

Kn∗
k = Cn

kHT
k

(
−V k + HkC

n
kHT

k

)−1
(2.37)

Cn∗
k = (1−Kn∗

k Hk)Ck n

=
[
(Cn

k)−1 −HT
k GkHk

]−1
. (2.38)

Notice that the essential difference is the sign in front of Gk or V k, which indicates the negative weight
associated with the eliminated information at site (k).



Chapter 3

Application of Kalman Filter to Track
Fitting

3.1 Basic Formulae for Kalman Filter

In this chapter we formulate a procedure for Kalman-filter based track fitting in high energy collider ex-
periments. A general purpose 4π detector at a collider experiment is usually equipped with a solenoidal
magnet and in its axial magnetic field a tracking system cylindrically surrounding the interaction point at
its center. The tracking system often consists of multiple measurement layers so as to sample locations of a
particle along its trajectory.

Let us begin with picking out necessary formulae for the Kalman-filter based track fitting from the
recurrence formulae we derived in the previous chapter. When we apply Kalman filter to track fitting, we
usually start from a hit in the outermost measurement layer and move back toward the interaction point.
This is because the average two-track distance is largest for the outermost layer and hence chance for hit
point confusion is minimal. Moreover, when we reach the innermost hit point, the filtered state vector is
already optimal and requires no smoothing. Unless there is need for track extrapolation to outer detectors,
the recurrence formulae we need are the following two, which give the filtered state vector (ak) and its
covariance matrix (Ck) at site (k):

ak = ak−1
k + Kk

(
mk − hk(ak−1

k )
)

Ck =
[(

Ck−1
k

)−1
+ HT

k GkHk

]−1

,
(3.1)

in terms of the predicted state vector (ak−1
k ), the Kalman gain matrix (Kk), the residual of the measurement

vector (mk) with respect to the expected measurement vector (hk(ak−1
k )), the covariance matrix (Ck−1

k ) for
the predicted state vector, and the inverse of the measurement error matrix (Gk ≡ (V k)−1). Notice that
the Kalman gain matrix is given by

Kk = CkH
T
k Gk,

and the predicted state vector and its covariance matrix by

ak−1
k = fk−1(ak−1)

Ck−1
k = F k−1 Ck−1 F T

k−1 + Qk−1,

where Qk−1 is the covariance matrix for the process noise between site (k − 1) and site (k) and F k−1 and

14
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Hk are two application-specific derivatives, the propagator matrix (F k−1) and the projector matrix (Hk):




F k−1 ≡
(

∂f k−1(ak−1)

∂ak−1

)

Hk ≡
(

∂hk(ak−1
k

)

∂ak−1
k

)
,

which are derived from system and measurement equations.
These formulae allow us to update the state vector as we accumulate information on the system by

including a new measurement vector at a new site on a site-by-site basis, once we have application specific
functions such as fk−1, hk, and their derivatives, F k−1 and Hk together with concrete formulae for the
process noise (Qk−1) and the measurement noise (V k).

3.2 System Equation: f k−1, F k−1, and Qk−1

Since the measurement equation is detector dependent, let us first consider the system equation for a charged
particle track in a magnetic field and try to find out concrete formulae for fk−1, F k−1, and Qk−1. For this
purpose we need to specify a track model.

As we mentioned earlier, if the magnetic field is uniform and in the direction of z-axis, at least locally,
near the measurement sites in question, then we can approximate the track of this particle by a helix (see
Eq.(2.6)): 




x = x0 + dρ cosφ0 + α
κ (cosφ0 − cos(φ0 + φ))

y = y0 + dρ sinφ0 + α
κ (sinφ0 − sin(φ0 + φ))

z = z0 + dz − α
κ tanλ · φ,

(3.2)

where x0 = (x0, y0, z0)T
k−1 is a pivotal point or simply pivot that represents a measurement site (k−1) and φ

is the deflection angle measured from the pivot. Since the pivot is an arbitrary reference point, we can take
it to be the hit point at site (k− 1) or equivalently the (k− 1)-th hit point. At a given site, or equivalently
for a given pivot, the helix is then specified by 5 parameters:





dρ : the distance between the helix and the pivot in the x-y plane
φ0 : the azimuthal angle of the pivot with respect to the center of the helix
κ : ≡ Q/Pt : the charge in units of that of proton / the transverse momentum
dz : the distance between the helix and the pivot in the z direction
tanλ : the dip angle, i.e., the angle of the helix to the x-y plane,

(3.3)

which form a state vector ak−1 = (dρ, φ0, κ, dz, tanλ)T . The paramter κ is related to the signed radius ρ of
the helix1 through ρ = α/κ, where α is a constant given in terms of the speed of light (c) and the magnetic
field (B) as α ≡ 1/cB.

The helix parameters are depicted in Fig.3.1. Notice that the definition of φ0 differs by π, depending on
the sign of the track charge. This is to avoid discontinuity of φ0 that would take place when the curvature of
the track changes its sign during track fitting, by compensating the sudden jump of the center of the helix
from one side of the track to the other.

3.2.1 State Propagator: fk−1(ak−1)

Notice that the change of pivot from site (k − 1) to site (k) transforms the helix parameter vector without
changing the helix itself. As we move from site (k−1) to site (k), the state vector hence propagates from ak−1

1It should be stressed that we should use κ in stead of ρ as a parameter for track fitting, since only then we can allow
continuous sign change of curvature as needed in fitting a high momentum track.
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�

(x, y, z)

(a) Negative Track

y

x

 (x0, y0, z0)

ρ+dρ>0φ>0

ρ<
0

(xc, yc)

(b) Positive Trackρ+dρ<0

φ<0

ρ>0 (xc, yc) φ0

φ0

Figure 3.1: Geometric interpretation of track parameters for (a) negatively and (b) positively charged tracks.

to ak−1
k according to the pivot transformation. The pivot transformation thus determines the propagator

function fk−1(ak−1) in the system equation.
Fig.3.2 shows how the track parameters:

ak−1 ≡ a = (dρ, φ0, κ, dz, tanλ)T

transform as we change pivot, where we denote a point on the helix by x, a pivot (hit point) by x0, and the
center of helix by Xc. The primed parameters:

a′ ≡ ak−1
k = (d′ρ, φ

′
0, κ

′, d′z, tanλ′)T = fk−1(ak−1)

are those for the new pivot.

X
c
=
(X

c,
Y
c,
Z
c)

x'0=
(x
'0,y
'0,z
'0)

x
0
=
(x
0,y

0,z
0)

x

x'

ρ

x0 - Xc

negative track

dρ

d'ρ

φ0

∆φ

φ'0=φ0+∆φ

Figure 3.2: Relation between track parameters and pivot.

By inspection of Fig.3.2, we can read off the following relation between the primed and the unprimed
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helix parameters:




d′ρ = (Xc − x′0) cosφ′0 + (Yc − y′0) sinφ′0 − α
κ

φ′0 =





tan−1
(

Yc−y′0
Xc−x′0

)
(κ > 0)

tan−1
(

y′0−Yc

x′0−Xc

)
(κ < 0)

κ′ = κ
d′z = z0 − z′0 + dz −

(
α
κ

)
(φ′0 − φ0) tanλ

tanλ′ = tanλ,

(3.4)

where
{
Xc ≡ x0 +

(
dρ+ α

κ

)
cosφ0

Yc ≡ y0 +
(
dρ+ α

κ

)
sinφ0 .

(3.5)

Equation (3.4) together with Eq.(3.5) defines the propagator function fk−1(ak−1) for the state vector.

3.2.2 Propagator Matrix: F k−1

By differentiating Eq.(3.4) with respect to a = (dρ, φ0, κ, dz, tanλ)T we can calculate the propagator matrix
F k−1:

F k−1 ≡
(
∂a′

∂a

)
=




∂d′ρ
∂a
∂φ′0
∂a

∂κ′
∂a

∂d′z
∂a

∂ tan λ′
∂a




.

Notice that κ and tanλ do not change by the pivot transformation and hence the calculation of their partial
derivatives is trivial. For the calculation of the partial derivatives of the rest we will start with φ′0 since it
appears also in d′ρ and d′z.

∂φ′0/∂a

Noting that the coordinates of the new pivot, x′0, y′0, and z′0, are not parameters but arbitrarily chosen
constants, we obtain from Eq.(3.4) the partial derivative of φ′0 with respect to a variable ω to be

∂φ′0
∂ω

= cos2 φ′0

(
∂Yc
∂ω

Xc − x′0
− tanφ′0

∂Xc
∂ω

Xc − x′0

)
, (3.6)

where (Xc, Yc) is related to (x′0, y′0) through Eq.(3.5) as



Xc ≡ x′0 +

(
d′ρ + α

κ′

)
cosφ′0

Yc ≡ y′0 +
(
d′ρ + α

κ′

)
sinφ′0 ,

resulting in



Xc − x′0 =

(
d′ρ + α

κ

)
cosφ′0

Yc − y′0 =
(
d′ρ + α

κ

)
sinφ′0

(3.7)
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since κ′ = κ. To complete the differentiation, all we need now is to calculate ∂Xc/∂a and ∂Yc/∂a, using
Eq.(3.5):





∂Xc

∂dρ
= cosφ0

∂Xc

∂φ0
= −

(
d′ρ +

α

κ

)
sinφ0

∂Xc

∂κ
= − α

κ2
cosφ0

∂Xc

∂dz
= 0

∂Xc

∂ tanλ
= 0





∂Yc

∂dρ
= sinφ0

∂Yc

∂φ0
=

(
d′ρ +

α

κ

)
cosφ0

∂Yc

∂κ
= − α

κ2
sinφ0

∂Yc

∂dz
= 0

∂Yc

∂ tanλ
= 0 .

(3.8)

The desired partial derivatives are then readily obtained by substituting Eqs.(3.7) and (3.8) in Eq.(3.6)
as needed. The resultant ∂φ′0

∂a is given by




∂φ′0
∂dρ

= −
(
d′ρ +

α

κ

)−1

sin(φ′0 − φ0)

∂φ′0
∂φ0

=
(
dρ +

α

κ

) (
d′ρ +

α

κ

)−1

cos(φ′0 − φ0)

∂φ′0
∂κ

=
α

κ2

(
d′ρ +

α

κ

)−1

sin(φ′0 − φ0)

∂φ′0
∂dz

= 0

∂φ′0
∂ tanλ

= 0 ,

(3.9)

regardless of the sign of κ.

∂d′ρ/∂a

As with φ′0, we obtain the following from Eq.(3.4) for the partial derivative of d′ρ with respect to a
variable ω:

∂d′ρ
∂ω

=
∂Xc

∂ω
cosφ′0 − (Xc − x′0) sinφ′0

∂φ′0
∂ω

+
∂Yc

∂ω
sinφ′0 + (Yc − y′0) cosφ′0

∂φ′0
∂ω

− ∂

∂ω

α

κ
.
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Using this equation together with Eqs.(3.8) and (3.9), we can carry out partial differentiation of d′ρ with
respect to a and obtain





∂d′ρ
∂dρ

= cos(φ′0 − φ0)

∂d′ρ
∂φ0

=
(
dρ +

α

κ

)
sin(φ′0 − φ0)

∂d′ρ
∂κ

=
α

κ2

(
1− cos(φ′0 − φ0)

)

∂d′ρ
∂dz

= 0

∂d′ρ
∂ tanλ

= 0

(3.10)

regardless of the sign of κ.

Other Partial Derivatives

Partial derivatives of κ′ and tanλ′ are trivial:




∂κ′

∂dρ
=

∂κ′

∂φ0
=
∂κ′

∂dz
=

∂κ′

∂ tanλ
= 0

∂κ′

∂κ
= 1

∂ tanλ′

∂dρ
=

∂ tanλ′

∂φ0
=
∂ tanλ′

∂κ
=
∂ tanλ′

∂dz
= 0

∂ tanλ′

∂ tanλ
= 1.

(3.11)

With the help of Eq.(3.9) partial derivatives of d′z are also easily obtained to be




∂d′z
∂dρ

=
α

κ

(
d′ρ +

α

κ

)−1

tanλ sin(φ′0 − φ0)

∂d′z
∂φ0

=
α

κ
tanλ

(
1−

(
dρ +

α

κ

) (
d′ρ +

α

κ

)−1

cos(φ′0 − φ0)

)

∂d′z
∂κ

=
α

κ2
tanλ

(
φ′0 − φ0 − α

κ

(
d′ρ +

α

κ

)−1

sin(φ′0 − φ0)

)

∂d′z
∂dz

= 1

∂d′z
∂ tanλ

= −α
κ

(φ′0 − φ0)

(3.12)

regardless of the sign of κ.
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3.2.3 Process Noise: Qk−1

For completeness, we discuss here how to implement multiple Coulomb scattering as the process noise, wk−1,
between site (k − 1) and site (k).

Notice that in the recurrence formulae given by Eq.(3.1) the effect of the process noise only appears as
its variance, Qk−1, in

Ck−1
k = F k−1 Ck−1 F T

k−1 + Qk−1.

Of course, the variance of the process noise depends of the distribution of materials between site (k−1) and
site (k). For simplicity, let us first assume that the distance between the two sites is small enough so that
we can approximate the multiple scattering to take place as if all the materials between site (k− 1) and site
(k) are concentrated on an infinitely thin layer at the mid point (m; k − 1 < m < k) between site (k − 1)
and site (k). In this thin layer limit[5], the covariance matrix Qm of the helix parameter vector at the mid
point (m) takes the following simple form:

Qm = σ2
MS




0 0 0 0 0
0 1 + tan2 λ 0 0 0
0 0 (κ tanλ)2 0 κ tanλ(1 + tan2 λ)
0 0 0 0 0
0 0 κ tanλ(1 + tan2 λ) 0 (1 + tan2 λ)2



, (3.13)

where the κ and tanλ are those at the mid point but can be approximated by those at site (k−1), provided
that the distance between site (k−1) and the mid point is small enough to do so, and σMS is given as usual
by

σMS =
0.0141

P (GeV)β

√
XL

(
1 +

1
9

log10XL

)
, (3.14)

where P , β, and XL are the momentum, the speed in units of the speed of light, and the thickness of the
scatterer in units of its radiation length.

The desired covariance matrix for the process noise Qk−1 is then obtained by moving the pivot from the
mid point (m) to site (k):

Qk−1 = F m,k Qm F T
m,k, (3.15)

where F m,k is the propagator matrix for the covariance matrix2 of the state vector from the mid point (m)
to site (k) as given by Eqs.(3.6), (3.10), (3.11), and (3.12) with a = am and a′ = ak

k−1.
When the track segment between site (k − 1) and site (k) is not short enough to apply the thin layer

approximation elaborated above, we can subdivide the segment into N steps and perform the following
summation:

Qk−1 =
N−1∑

s=1

F ms,k Qms
F T

ms,k. (3.16)

3.3 Measurement Equation: hk, Hk, and V k

Having derived the formulae related to the system equation, let us now move on to the derivations of the
formulae related to the measurement equation:

mk = hk(āk) + εk,
2In this notation F k−1 ≡ F k−1,k
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where the measurement vector mk is a set of coordinates measured by a position sensitive detector at site
(k), which is subject to random detector noise expressed by εk.

What we need is the projector (hk(a)), which gives the exact coordinates of the hit point at site (k) as
a function of the true track parameter vector at site (k), the projector matrix (Hk), which is its derivative
with respect to the track parameter vector, and the covariance matrix (V k) for the measurement noise.

In practice, locations of a charged particle are sampled at discrete points along its trajectory. We can
imagine layers of (virtual) surfaces on which we sample the locations and call them measurement surfaces or
layers. Each measurement layer corresponds to a measurement site, say site (k), and records the coordinates
of its intersection, a hit point, with the particle’s trajectory. The coordinates of the hit point comprise a
measurement vector mk.

3.3.1 Projector: hk(a)

In order to predict the measurement vector on a measurement layer as a function of the state vector, i.e.,
the track parameter vector, we need, first of all, an equation that gives the intersection, xk(a), of a track
specified by a with the measurement surface given by Sk(x) = 0:

xk = xk(a) = x(φk(a),a) (3.17)

and another equation that translates the intersection xk(a) to the measurement vector:

mk = mk(xk) , (3.18)

where x = x(φ,a) is a trajectory equation, which is given by Eq.(3.2) in the case of a helical track, and
φk(a) is the deflection angle at which the track hits the measurement surface corresponding to site (k).

Given these two equations, we can now define the projector hk(a) by

hk(a) = mk(xk(a))
= mk(x(φk(a),a)) . (3.19)

3.3.2 Projector Matrix: Hk

Although concrete forms of these equations depend on the nature of the measurement layer and hence
application-specific, we can write down a general formula for the derivative of hk with respect to a:

Hk ≡ ∂hk

∂a
=

(
∂mk

∂x

) (
∂x(φk(a),a)

∂a

)
, (3.20)

where the second factor on the right-hand side is given by

∂x(φk(a),a)
∂a

=
∂x

∂φk

∂φk

∂a
+
∂x

∂a
, (3.21)

in which ∂x/∂φk and ∂x/∂a are determined solely by the trajectory equation. On the other hand, ∂mk/∂x
is determined by the geometry of the measurement surface Sk(x) = 0 and the layout of the coordinate
system on it, which are both application-specific.

Let us hence calculate ∂φk/∂a below. We start from the equation for φk:

Sk(x(φk,a)) = 0. (3.22)

Differentiating both sides by the track parameter vector, we obtain

0 =
∂Sk

∂a
=
∂Sk

∂x

(
∂x

∂φk

∂φk

∂a
+
∂x

∂a

)
, (3.23)
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from which we have

∂φk

∂a
= −

(
∂Sk

∂x

) (
∂x

∂a

) /(
∂Sk

∂x

) (
∂x

∂φk

)
. (3.24)

Notice that ∂Sk/∂x is determined solely by the geometry of the measurement surface and ∂x/∂φ and ∂x/∂a
by the trajectory equation alone.

Whether Eq.(3.22) has an analytic solution or not depends on the geometry of the measurement surface
Sk(x) = 0 and it is often difficult to write down the analytic solution in a compact form even if it exists at
all, unless we are dealing with particularly simple surfaces like cylinders of planes. In such a case, we rely
on Newtonian method to solve the equation. Assume that we have an approximate solution φn, then we
can Taylor-expand the equation as

0 = Sk(x(φ,a)) ' Sk(x(φn,a)) +
∂Sk

∂x
· ∂x

∂φn
· (φ− φn) , (3.25)

which results in a recurrence formula:

φn+1 = φn − Sk(x(φn,a))(
∂Sk
∂x

)
n
·
(

∂x
∂φ

)
n

. (3.26)

We can use this recurrence formula iteratively until φn converges and hence Sk(x(φn,a)) becomes negligibly
small3. If the measurement layer in question is near the current pivot, we can usually start from φ1 = 0 and
get the iteration converged after a few iterations.

3.3.3 Measurement Noise: V k

To complete the necessary set of the formulae for Kalman filter, we need the covariance matrix for the
measurement noise (V k), which is in our case given by an error matrix that represents the resolution of the
position sensitive detector at site (k). Denoting the residual measurement vector by

∆mk ≡ mk − hk(āk) ,

we can define the covariance matrix by

V k ≡
〈
∆mk ∆mT

k

〉
. (3.27)

If we have two coordinates measured on the measurement surface at site (k) and if the two measured
coordinates are statistically independent, we can write the covariance matrix in the form:

V k =
(
σ2

1 0
0 σ2

2

)
, (3.28)

where σ1 and σ2 are the resolutions for the two coordinates, respectively. Although these resolutions depend
on the hit location and the track angle, etc. in general, we can take V k as a constant matrix in the track
fitting.

3In practice it is necessary to introduce a damping factor (1 + Λ) to the denominator of the second term of Eq.(3.26), where
we start from Λ ¿ 1 and if |Sk| increases we multiply Λ by a factor greater than 1 and if |Sk| decreases we divide it by the
same factor.



Chapter 4

Implementation in C++

4.1 Design Philosophy

Since the tracking system of a collider detector usually consists of various components such as a vertex
detector (VD), an intermediate tracker (IT), a central tracker (CT), etc., which have different shapes and
coordinate systems, the software package for Kalman-filter-based track fitting should be able to accommodate
a measurement layer with any shape and/or coordinate system. Considering possible extrapolation of a track
to an outer tracking device such as a muon detector, it is also desirable that the package can handle site-to-
site change of the magnetic field. In order to satisfy these requirements with minimum user-implemented
code, we shall use C++ and try to exploit its object-oriented features as much as possible. For persistency
of data, we shall rely on ROOT’s automatic schema evolution.

Notice that the Kalman filter defines a generic procedure and has a much wider scope than track fitting.
This suggests necessity for a library of generic abstract base classes (KalLib) that implement the generic
algorithm of the Kalman Filter. By inheriting from the generic base classes in KalLib and implementing
their pure virtual methods for track fitting purpose, we can then realize a Kalman-filter-based track fitter
library (KalTrackLib). However, KalTrackLib should not depend on any particular track model or shape
or coordinate system of a measurement layer according to the above guideline. We hence separate out
geometry classes that provide track model (helix, straight line, ...) and surfaces (cylinder, hyperboloid, flat
plane, etc.) as a geometry library (GeomLib). Each of these three class libraries, KalLib, KalTrackLib,
and GeomLib are distributed as a subpackage of LEDA (Library Extension for Data Analysis) or KalTest
(Kalman filter Test bench).

In this way we can minimize the number of user-implemented classes to the following three:

• MeasLayer: a measurement layer that multiply inherits from an abstract measurement layer class
TVMeasLayer and a shape class in GeomLib.

• KalDetector: an array that holds user-defined MeasLayers with any shape and/or coordinate system.
Notice that this also defines material distributions in the tracker.

• Hit: a coordinate vector as defined by the MeasLayer.

Notice also that track model can change site to site, which allows magnetic field variation along a particle
trajectory.

23
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4.2 KalLib: Base Class Library for Kalman Filter

Let us start with implementation of the base class library (KalLib) to describe a generic Kalman filter
process.

Fig.4.1 is a class diagram showing the architecture of KalLib. The TVKalSystem class is an abstract

Root:

KalLib

Class TVKalSystem

+ AddAndFilter(next: TVKalSite&)
                                         : void
+ SmoothBackTo(k: Int_t): void

Class TObjArray

Class TVKalSite

- fM: TKalMatrix: meas. vector
- fV: TKalMatrix: meas.  noise
- fH: TKalMatrix: @h/@a
+ Filter(): Bool_t
+ Smooth(post: TVKalSite&): void
+ CalcExpectedMeasVec(
          a: const TVKalState&,
          m: TKalMatrix&) = 0: Int_t
+ CalcMeasVecDerivative(
          a: const TVKalState&,
          H: TKalMatrix&) = 0: Int_t

Class TKalMatrix
Class TVKalState

- fF: TKalMatrix: @f/@a
- fQ: TKalMatrix: process noise
- fC: TKalMatrix: cov. matrix
+ Propagate(to: TVKalSite&): void
+ MoveTo(to: const TVKalSite&,
             F: TKalMatrix&,
             Q: TKalMatrix&) = 0: void

Class TMatrixDClass TObjArray

Utils

Class TAttLockable

Figure 4.1: KalLib: Kalman filter base class library.

class representing a system to process with Kalman Filter. It is a ROOT’s TObjArray of TVKalSite’s.
A TVKalSite object corresponds to a measurement site and is a TObjArray of up to three TVKalState’s,
corresponding to predicted, filtered, and smoothed state vectors. On the other hand, a TVKalState object
stands for a state vector and is a p× 1 TKalMatrix, which inherits from ROOT’s TMatrixD. These abstract
classes have to carry fk−1(ak−1), F k−1, Qk−1, mk, Hk, and V k as data members and corresponding pure
virtual functions to evaluate them. In what follows, we will explain major data members and member
functions of these abstract classes so as to demonstrate which abstract class carries which data members
and member functions.

4.2.1 TVKalSystem Class (Inheriting from TObjArray; an Array of Sites)

The TVKalSystem class inherits from ROOT’s TObjArray and hence behaves as an array of measurement
sites. It is the abstract base class representing any Kalman system and is the only class that can handle
relation between different sites.

Data Members:

TVKalSite * fCurSitePtr; // a pointer to the current site.
Double t fChi2; // χ2 value.

Member Functions:
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void AddAndFilter(TVKalSite & next);

filters the next site (next) and add it to the base TObjArray.

void SmoothBackTo(Int t k);

smoothes back from the last site to site (k).

4.2.2 TVKalSite Class (Inheriting from TObjArray: an Array of States: Measurement
Site)

The TVKalSite class inherits from ROOT’s TObjArray and hence behaves as an array that carries state
vectors at various stages (Predicted, Filtered, and Smoothed). It also inherits from TAttLockable in the
Utils package so that it can be excluded from filtering without being eliminated from TVKalSystem. It is
the abstract base class representing a measurement site and stores, as data members, information on the
observation made there and the estimates of the state vector thereat.

Data Members:

TKalMatrix fM; // measurement vector.
TKalMatrix fV; // measurement error matrix.
TKalMatrix fH; // projector matrix.

Member Functions:

Int t CalcExpectedMeasVec(const TVKalState & a, TKalMatrix & h) = 0;

A pure virtual function representing a projector to calculate the expected measurement
vector h for a given state vector a. It is application-specific and to be implemented in a
derived class.

Int t CalcMeasVecDerivative(const TVKalState & a, TKalMatrix & H) = 0;

A pure virtual function representing a projector matrix H, which is the derivative of the
projector with respect to the input state vector a. It is application-specific and to be im-
plemented in a derived class.

Bool t Filter();

implements the generic algorithm of Kalman Filter as expressed by Eq.(3.1). It filters
this instance of TVKalSite by using a predicted state vector from the previous site, a mea-
surement vector, and its error matrix stored in the instance itself, calculates the filtered
state vector ak, and its covariance matrix Ck, and adds them to the base class TObjArray
as a TVKalState.

void Smooth(TVKalSite & post);

implements the generic algorithm of Smoothing as given by Eqs.(2.34) and (2.35). It
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smoothes this instance of TVKalSite by using the information stored in the instance it-
self and that from the post site (post), calculates the smoothed state vector an

k and its
covariance matrix Cn

k , and adds them to the base class TObjArray as a TVKalState.

4.2.3 TVKalState Class (Inheriting from TKalMatrix: State Vector)

The TVKalState class is a p × 1 TKalMatrix, which in turn inherits from ROOT’s TMatrixD (a double
precision matrix). It is the abstract base class representing a state vector stored in the base class TKalMatrix.

Data Members:

TVKalSite * fSitePtr; // pointer to corresponding site.
TKalMatrix fF; // propagator matrix.
TKalMatrix fQ; // covariance matrix for the process noise.
TKalMatrix fC; // covariance matrix for the state vector.

Member Functions:

TVKalState & MoveTo(const TVKalSite & to, TKalMatrix & F,
TKalMatrix & Q) const = 0;

A pure virtual function that transports this instance of TVKalState to the destination
site (to) and returns itself as reference, together with the corresponding propagator matrix
and the process noise matrix. It is application-specific and to be implemented in a derived
class.

void Propagate(TVKalSite & to);

propagates this instance of TVKalState to the destination site (to) and calculates the
covariance matrix of the predicted state vector there. It implements the generic algorithm
(Eqs.(2.9) and (2.13)) to propagate a state vector and its covariance matrix by means of
the MoveTo() function.

4.3 Kaltracklib: Kalman-Filter-Based Track Fitting Library

In this section, we will apply the Kalman filter technique to track fitting by implementing, in a way specific
to track fitting, pure virtual member functions of the base classes such as TVKalSystem, TVKalSite, and
TVKalState in KalLib in their derived classes. These derived classes comprise, together with some other
supplementary classes, a class library called KalTrackLib. Fig.4.2 is a class diagram showing the architecture
of KalTrackLib. The classes defined in KalTrackLib implement the common algorithm specific to track fitting
but are not dependent on any particular shape or coordinate system of tracking devices in question. In what
follows, we will explain essential features , major data members and member functions relevant to end users,
of the classes in KalTrackLib.

4.3.1 TKalTrack Class: Inheriting from TVKalSystem; Track

A track is a set of hit points. It is, hence, natural to define a track as an instance of a class inheriting from
TVKalSystem, which is an array of measurement sites. Since TVKalSystem has no pure virtual functions,
there is no base class member function to override.
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KalLib

KalTrackLib

Class TKalTrack

Class TKalTrackSite

- fX0: TVector3: pivot
- fHitPtr: TVTrackHit*
+ CalcExpectedMeasVec(
     a: const TVKalState&,
     h: TKalMatrix&): Int_t
+ CalcMeasVecDerivative(
     a: const TVKalState&,
     H: TKalmatrix&): Int_t

Class TKalTrackState

- fX0: TVector3: pivot
+ MoveTo(
    to: constTVKalSite&,
    F:  TKalMatrix&,
    Q: TKalMatrix&)
   const: TKalTrackState&

Class TVTrackHit

- fMeasLayerPtr: TVMeasLayer*
+ XvToMv(
    xv: const TVector3&,
    t0: Double_t) const =0
  : TKalMatrix

Class TVMeasLayer

- fIndex: Int_t: index in Cradle
- fMateriialInPttr: TMaterial* 
- fMaterialOutPtr: TMaterial*
+ HitToXv(
    ht: const TVTrackHit&) 
   const = 0 : TVector3
+ XvToMv(
    ht: const TVTrackHit&,
    xv: const TVector3&)
   const = 0: TKalMatrix
+ CalcDhDa(
    ht: const TVTrackHit&,
    xv: const TVector3&,
    dxdphiada: const TKalMatrix&,
    H: TKalMatrix&)
   const = 0: void
+ GetEnergyLoss(
    isoutgoing: Bool_t,
    hel    : const TVTrack&,
    df      : Double_t)
  const: Double_t
+ CalcQms(
    isoutgoing: Bool_t,
    hel    : const TVTrack&,
    df      : Double_t,
    Qms : TKalMatrix&)
   const : void

Class TVKalDetector

Class TKalDetCradle

+ Install(
     det: TVKalDetector&)
   : void
+ Transport(
     from: const TKalTrackSite&,
     to: const TKalTrackSite&,
     sv: TKalMatrix&,
     F:  TKalMatrix&,
     Q:  TKalMatrix&)
   : void

Class TVKalSystem

+ AddAndFilter(next: TVKalSite&)
                                         : void
+ SmoothBackTo(k: Int_t): void

Class TVKalSite

- fM: TKalMatrix: meas. vector
- fV: TKalMatrix: meas.  noise
- fH: TKalMatrix: @h/@a
+ Filter(): Bool_t
+ Smooth(post: TVKalSite&): void
+ CalcExpectedMeasVec(
          a: const TVKalState&,
          m: TKalMatrix&) = 0: Int_t
+ CalcMeasVecDerivative(
          a: const TVKalState&,
          H: TKalMatrix&) = 0: Int_t

Class TKalMatrix

Class TVKalState

- fF: TKalMatrix: @f/@a
- fQ: TKalMatrix: process noise
- fC: TKalMatrix: cov. matrix
+ Propagate(to: TVKalSite&): void
+ MoveTo(to: const TVKalSite&,
             F: TKalMatrix&,
             Q: TKalMatrix&) = 0: void

Utils

Class TAttElement

Figure 4.2: KalTrackLib: Kalman-filter-based track fitting class library.

Member Functions:

TKalTrack();

constructor that constructs an instance of TKalTrack.

4.3.2 TKalTrackSite Class: Inheriting from TVKalSite; Measurement Site

In track fitting, a measurement site provides a hit point, whose coordinates comprise a measurement vector.
The TKalTrackSite class is designed to serve as the measurement site and implements the pure virtual mem-
ber functions of the base class, TVKalSite, while carrying a pointer to a measurement vector (TVTrackHit)
as one of its data members.

Data Members:
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TVTrackHit * fHitPtr; // pointer to a corresponding hit object.
TVector3 fX0; // pivot set to the hit point.

Member Functions:

TKalTrackSite(const TVTrackHit & ht);

A constructor that constructs an instance from a hit object.

Int t CalcExpectedMeasVec(const TVKalState & a, TKalMatrix & h);

implements its base class pure virtual function that provides a projector to calculate the
expected measurement vector h for a given state vector a. This function realizes the algo-
rithm in subsection 3.3.1 and the Newtonian method in subsection 3.3.2.

Int t CalcMeasVecDerivative(const TVKalState & a, TKalMatrix & H);

implements its base class pure virtual function that provides a projector matrix H, which
is the derivative of the projector with respect to the input state vector a. This function
realizes the algorithm in subsection 3.3.2.

Functions for derivatives such as ∂x/∂φk and ∂x/∂a that appear in the realization of the generic
algorithm in CalcExpectedMeasVec() and CalcMeasVecDerivative() depend on a track model (trajectory
equation). Their interface will be fixed by an abstract base class, TVTrack, defined later in GeomLib and
be implemented in a derived class that describes a particular track model such as a helix or a straight line.
The derivative of the measurement vector with respect to the position vector ∂mk/∂x is, on the other hand,
determined by the shape and coordinate system of the measurement layer in question. The interface of
the function to calculate it will be specified by an abstract base class, TVMeasLayer, defined later and be
implemented in a derived class that describes a particular measurement layer.

4.3.3 TKalTrackState Class: Inheriting from TVKalState; Track Parameter Vector

In track fitting, a state vector carries track parameters as their components. TKalTrackState is designed
to serve as the track parameter vector and implements the pure virtual member function MoveTo() of the
base class, TVKalState.

Data Members:

TVector3 fX0; // pivot.

Member Functions:

TKalTrackState & MoveTo(const TVKalSite & to,
TKalMatrix & F,
TKalMatrix & Q) const;

implements the base class pure virtual function that transports this instance of TKalTrackState
to the destination site (to) and returns itself as reference, together with the corresponding
propagator matrix and the process noise matrix.
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The calculation of the process noise depends on the distribution of materials between the current site and
the next site. As described below the structure of a tracking device is defined by a concrete class derived
from an abstract base class, TVKalDetector, which is an array of measurement layers that derive from
their abstract base class TVMeasLayer. The information on the local materials about the measurement
layer is stored in the TVMeasLayer class. If necessary, we can compose a tracking system consisting of
multiple tracking devices by installing the corresponding KalDetectors into a folder class, TKalDetCradle.
The instance of TKalDetCradle then knows everything about the detector configuration. The MoveTo()
function thus invokes TKalDetCradle::Transport() to move to site to in order to take into account the
process noise that depends on the material distribution. Notice that the TKalDetCradle::Transport()
functions invokes a pure virtual MoveTo() function of an abstract class, TVTrack, in GeomLib so that the
track model can change from site to site in accordance with the local magnetic field.

4.3.4 TVTrackHit Class: Inheriting from TKalMatrix; Measurement Vector

In track fitting, a hit point plays the role of a measurement vector. It provides a set of coordinates at
the intersection of a particle’s trajectory with a measurement layer. The TVTrackHit class is designed to
be the abstract base class for any hit point and specifies, through a pure virtual method (XvToMv()), the
interface for the coordinate projector from the 3-dimensional position vector corresponding to the hit point
to coordinate axes of the measurement layer.

Data Members:

Double t fBfield; // magnetic field.
TVMeasLayer * fMeasLayerPtr; // pointer to the corresponding measurement layer.

Member Functions:

TKalMatrix XvToMv(const TVector3 & xv, Double t t0) const = 0;

A pure virtual function that specifies the interface for the coordinate projector from the
expected hit position vector xv to the coordinate axes of the measurement layer, knowing
the measured coordinates as stored in the instance and the input time stamp t0 of the hit.
The coordinate projector depends on the coordinate system of the measurement layer in
question and hence is to be implemented in a derived class.

In order to introduce a new tracking device, one has to define a concrete hit point class inheriting from
TVTrackHit and implements its pure virtual method, XvToMv().

4.3.5 TVMeasLayer Class: Measurement Layer

As mentioned earlier, a tracking detector can be regarded as a set of measurement layers. Each of these
measurement layers should be equipped with at least common interfaces for the projector hk and the
projector matrix Hk and for various other functions needed to calculate them using the generic algorithms
explained in subsections 3.3.1 and 3.3.2. These common interfaces are specified by abstract base classes,
TVMeasLayer in KalTrackLib and TVSurface in GeomLib. A concrete measurement layer then multiply
inherits from TVMeasLayer and a concrete surface object such as a cylinder (TCylinder) or a hyperboloid
(THype) or a plane (TPlane) derived from TVSurface, thereby realizing a particular shape and a coordinate
system specific to the measurement layer. The TVMeasLayer class inherits from TAttElement and behaves
as an element of some container, a TVKalDetector object described below.
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Data Members:

TMaterial * fMaterialInPtr; // pointer to inner material.
TMaterial * fMaterialOutPtr; // pointer to out ner material.
Int t fIndex; // index in TKalDetCradle.
Bool t fIsActive; // flag to tell layer is active or not.

Notice that a measurement layer defines a surface on which coordinate measurements are made or, if it is
not active, it just spcifies a boundary between different materials.

Member Functions:

TKalMatrix XvToMv(const TVTrackHit & ht, const TVector3 & xv) const = 0;

A pure virtual function corresponding to Eq.(3.18) that projects the 3-dimensional hit
point vector xv to coordinate axes and returns the resultant measurement vector.

TVector3 HitToXv(const TVTrackHit & ht) const = 0;

A pure virtual function that transforms a measurement vector as stored in ht to a 3-
dimensional hit point vector. To be used to calculate a next pivot.

void CalcDhDa(const TVTrackHit & ht,
const TVector3 & xv,
const TKalMatrix & dxphiada,

TKalMatrix & H) const = 0;

A pure virtual function that calculates the projector matrix H at the hit point xv with
dxphiada = ∂x(φ(a),a)/∂a given as an input, assuming the use of the generic algorithm
given in subsection 3.3.2.

Double t CalcEnergyLoss( Bool t isoutgoingt,
const TVTrack & hel,

Double t df) const;

calculates and returns energy loss during the evolution of the track hel by the deflec-
tion angle df, knowing the direction of flight specified by isoutgoing.

void CalcQms( Bool t isoutgoingt,
const TVTrack & hel,

Double t df,
TKalMatrix & Qms) const;

calculates the process noise matrix Qm as given by Eq.(3.13) for the evolution of the track
hel by the deflection angle df, knowing the direction of flight specified by isoutgoing.

As mentioned above, a concrete measurement layer multiply inherits from this TVMeasLayer class and a
concrete surface object derived from TVSurface. Since the surface objects such as TCylinder or THype or
TPlane are already equipped with methods to calculate the intersection of a track and a surface, etc., all
users have to implement in the concrete measurement layer class is the projector to coordinate axes as given
by Eq.(3.18) and the corresponding projector matrix.
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4.3.6 TVKalDetector Class: Inheriting from TObjArray; Detector Component

In order to describe a tracking detector such as VTX, IT, and CT, consisting of multiple measurement layers
implemented as instances of a concrete class that multiply inherits from the abstract base class TVMeasLayer
and a concrete surface class such as TCylinder or THype or TPlane, we define an abstract base class called
TVKalDetector, which inherits from ROOT’s TObjArray and carries these concrete measurement layers as
array elements. The TVKalDetector class acts only as a container and has no special member functions.
The TVKalDetector class also inherits from TAttElement and behaves as an element of an instance of
TKalDetCradle described below.

Notice that one can Add() a measurement layer with any shape or any coordinate system to TVKalDetector,
as far as the measurement layer has TVMeasLayer and TVSurface as its base classes. This way one can com-
pose a detector system with measurement layers with various shapes and coordinate systems in a unified
manner.

4.3.7 TKalDetCradle Class: Inheriting from TObjArray; Detector System

In order to describe a whole tracking system consisting of tracking detector components such as VTX, IT,
and CT, we define a class called TKalDetCradle, which inherits from ROOT’s TObjArray and carries the
individual measurement layers from various detector components as its array elements. The whole purpose
of TKalDetCradle is to hold all the measurement layers including dummy layers corresponding to a beam
pipe, support cylinders, etc. The TKalDetCradle object is the only object that knows everything about
the distribution of materils in the detector system and hence its Transport() member function is used by
TKalTrackState::MoveTo().

Member Functions:

TKalDetCradle();

A constructor that constructs an instance of TKalDetCradle.

void Install(TVKalDetector & det);

installs det as a component of this instance of TKalDetCradle.

void Transport(const TKalTrackSite & from,
const TKalTrackSite & to,

TKalMatrix & sv,
TKalMatrix & F,
TKalMatrix & Q) const;

transports the input state sv from site from to site to and calculates the propagator matrix
F and the process noise Q with successive thin layer multiple scattering approximation given
by Eqs.(3.13) and (3.16).

4.4 GeomLib: Geometry Class Library

GeomLib is a library consisting of classes to describe track models and measurement surfaces. A class to
represent a concrete track model such as a helix or a straight line should inherit from an abstract base class
called TVTrack, while a class to represent a concrete surface such as a cylinder or a plane should inherit
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from an abstract base class called TVSurface. These abstract base classes serve to set interfaces. Fig.4.3
is a class diagram showing the architecture of GeomLib. The classes defined in GeomLib implement utility

GeomLib

Class TVSurface

+ CalcXingPointWith(hel: const TVTrack&,
                                  xx :           TVector3&,
                                  phi:           Double_t,
                                  mode:       Int_t,
                                  eps:          Double_t = 1.e-8) const: Int_t
+ CalcS           (xx: const TVector3&) const = 0: Double_t
+ CaclDSDx    (xx: const TVector3&) const = 0: TMatrixD
+ IsOnSurface (xx: const TVector3&) const = 0: Bool_t
+ GetSortingPolicy()   const = 0: Double_t

Class TVTrack

- fDrho  : Double_t
- fPhi0   : Double_t
- fKappa: Double_t
- fDz      : Double_t
- fTanL  : Double_t
- fX0      : TVector3: pivot
+ MoveTo(x0to: const TVector3&,
                 fid   :           Double_t&,
                 F    :           TMatrixD* = 0,
                 C    :           TMatrixD* = 0) = 0: void
+ CalcXAt      (phi: Double_t)   const = 0: TVector3
+ CaclDxDa   (phi: Double_t)   const = 0: TMatrixD
+ CaclDxDphi(phi: Double_t)   const = 0: TMatrixD
+ CaclDapDa(fid : Double_t,
                      dr  : Double_t,
                      drp: Double_t,
                      F   : TMatrixD&)  const = 0: void

Class THelicalTrack

+ MoveTo(x0to: const TVector3&,
                 fid   :           Double_t&,
                 F    :           TMatrixD* = 0,
                 C    :           TMatrixD* = 0): void
+ CalcXAt      (phi: Double_t)   const: TVector3
+ CaclDxDa   (phi: Double_t)   const: TMatrixD
+ CaclDxDphi(phi: Double_t)   const: TMatrixD
+ CaclDapDa(fid : Double_t,
                      dr  : Double_t,
                      drp: Double_t,
                      F   : TMatrixD&)  const: void
+ CalcStartHelix(x1: const TVector3&,
                           x2: const TVector3&,
                           x3: const TVector3&,
                           dir: Bool_t = kIterForward): void

Class TCylinder

- fR          : Double_t: radius
- fHalfLen: Double_t: half length
- fXc        : TVector3: center
+ CalcXingPointWith(hel: const TVTrack&,
                                  xx :           TVector3&,
                                  phi:           Double_t,
                                  mode:       Int_t,
                                  eps:          Double_t = 1.e-8) const: Int_t
+ CalcS           (xx: const TVector3&) const: Double_t
+ CaclDSDx    (xx: const TVector3&) const: TMatrixD
+ IsOnSurface (xx: const TVector3&) const: Bool_t
+ GetSortingPolicy()   const: Double_t

Class TPlane

- fXc        : TVector3: a point on the plane
- fNormal: TVector3: normal
+ CalcS           (xx: const TVector3&) const: Double_t
+ CaclDSDx    (xx: const TVector3&) const: TMatrixD
+ IsOnSurface (xx: const TVector3&) const: Bool_t
+ GetSortingPolicy()   const: Double_t

Figure 4.3: GeomLib: geometry class library to describe track models and measurement surfaces.

methods to calculate the intersection of a track and a surface, the tangential vector of a track, the gradient
of a surface, etc., which are independent of KalTrackLib or KalLib. In what follows, we will explain essential
features , major data members and member functions relevant to end users, of the classes in GeomLib.

4.4.1 TVTrack Class: Inheriting from TVCurve; Track

The TVTrack class is the abstract base class that sets interface for a trajectory equation as a function of a
track parameter a and a parameter φ that specifies location along the trajectory1.

Data Members:

1The trajectory parameter φ is the deflection angle from the pivot in the case of a helical track. It is the signed path length
from the pivot in the case of a straight line track.
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Double t fDrho; // dρ.
Double t fPhi0; // φ0.
Double t fKappa; // κ.
Double t fDz; // dz.
Double t fTanL; // tanλ.
Double t fAlpha; // α ≡ 1/cB (see Eq.(3.3)).

Member Functions:

void MoveTo(const TVector3 & xv0,]
Double t & fid,
TMatrixD * F = 0,
TMatrixD * C = 0) = 0;

A pure virtual function to move the pivot to xv0 and calculate the parameter change
fid to the new pivot together with *F= ∂a′/∂a and/or the covariance matrix at the new
pivot *C, if F6= 0 and/or C6= 0.

TVector3 CalcXAt(Double t phi) const = 0;

A pure virtual function to calculate the position vector of a particle along the track at
phi.

TMatrixD CalcDxDa(Double t phi) const = 0;

A pure virtual function to calculate and return ∂x(φ,a)/∂a (see subsection 3.3.2).

TMatrixD CalcDxDphi(Double| t phi) const = 0;

A pure virtual function to calculate and return the tangential vector to the trajectory:
∂x(φ,a)/∂φ (see subsection 3.3.2).

4.4.2 TVSurface Class: Inheriting from TObject; Surface

The TVSurface class is the abstract base class for any surface and sets interfaces for the methods to calculate
its intersection with a track, the gradient at a given point on it, etc., as needed in the generic algorithm
explained in subsection 3.3.2.

Member Functions:

Int t CalcXingPointWith(const TVTrack & hel,
TVector3 & xx,
Double t & phi,
Int t mode,
Double t eps = 1.e-8) const;

implements the Newtonian method in subsection 3.3.2 to calculate the intersection xx with
a track hel and the corresponding location parameter phi with the tolerance eps. The
mode parameter is dummy here. It returns the number of intersections.
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Double| t CalcS(const TVector3 & xx) const = 0;

A pure virtual function to calculate the left-hand side Sk(x) of the surface equation (Eq.(3.22))
at x =xx.

TMatrixD CalcDSDx(const TVector3 & xx) const = 0;

A pure virtual function to calculate the gradient of Sk(x): ∂Sk/∂x at x =xx.

Bool t IsOnSurface(const TVector3 & xx) const = 0;

A pure virtual function to test if xx is on the surface or not.

Double t GetSortingPolicy() const = 0;

A pure virtual function to get the sorting policy with which to sort surfaces from inside to
outside.

4.4.3 THelicalTrack Class: Inheriting from TVTrack; Helical Track

The THelicalTrack class inherits from TVTrack and implements its pure virtual functions, thereby realizing
a helical track.

Member Functions:

void MoveTo(const TVector3 & xv0,
Double t & fid,
TMatrixD * F = 0,
TMatrixD * C = 0);

moves the pivot to xv0 and calculates the deflection angle fid to the new pivot together
with *F= ∂a′/∂a and/or the covariance matrix at the new pivot *C, if F6= 0 and/or C6= 0
as explained in section 3.2.

TVector3 CalcXAt(Double t phi) const;

calculates the position vector of a particle along the helix at the deflection angle phi ac-
cording to Eq.(3.2).

x (φ,a) =



x
y
z


 =



x0 + dρ cosφ0 + α

κ (cosφ0 − cos(φ0 + φ))
y0 + dρ sinφ0 + α

κ (sinφ0 − sin(φ0 + φ))
z0 + dz − α

κ tanλ · φ




TMatrixD CalcDxDphi(Double| t phi) const = 0;
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calculates and returns the tangential vector to the trajectory:

∂x(φ,a)
∂φ

=




∂x

∂φ

∂y

∂φ

∂z

∂φ




= −
(
α

κ

)
·




− sin(φ0 + φ)

cos(φ0 + φ)

tanλ


 . (4.1)

See subsection 3.3.2.

TMatrixD CalcDxDa(Double t phi) const;

calculates and returns the track-parameter derivative of the trajectory:

∂x(φ,a)
∂a

=




cosφ0 sinφ0 0

− (
dρ + α

κ

)
sinφ0 + α

κ sin(φ0 + φ)
(
dρ + α

κ

)
cosφ0 − α

κ cos(φ0 + φ) 0

− α
κ2 (cosφ0 − cos(φ0 + φ)) − α

κ2 (sinφ0 − sin(φ0 + φ)) α
κ2φ tanλ

0 0 1

0 0 −α
κφ




T

.

See subsection 3.3.2.

void CalcDapDa(Double t fid,
Double t dr,
Double t drp,
TMatrixD & F) const;

calculates F = ∂a′/∂a when the pivot is moved by ∆φ0 = fid and dρ changed from
dr to drp. See subsection 3.2.2.

void CalcStartHelix(const TVector3 & x1,
const TVector3 & x2,
const TVector3 & x3,

Bool t dir = kIterForward) const;

finds a helix passing through 3 points x1, x2, and x3 and sets the resultant helix parameters
to itself, knowing the direction of flight specified by dir.

4.4.4 TStraightTrack Class: Inheriting from TVTrack; Straight Line Track

A straight line track class TStraightTrack can be defined as the α → ∞ and φ → 0 limit of the
THelicalTrack class with

α

κ
φ = constant.
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If we define this constant to be −ψ, we have

lim
φ→0




α

κ
(cosφ0 − cos(φ0 + φ))

α

κ
(sinφ0 − sin(φ0 + φ))

− α

κ
tanλφ




= − lim
φ→0

α

κ
φ




cos(φ0+φ)−cos φ0

φ

sin(φ0+φ)−sin φ0

φ

tanλ




= ψ




− sinφ0

cosφ0

tanλ


 ,

which leads us to the following equation of trajectory:

x (φ,a) =



x
y
z


 =



x0 + dρ cosφ0 − φ sinφ0

y0 + dρ sinφ0 + φ cosφ0

z0 + dz + φ tanλ


 (4.2)

with φ redefined to be ψ. Notice that φ now stands for the signed projected path length to the x-y plane
measured from the pivot.

Member Functions:

void MoveTo(const TVector3 & xv0,
Double t & fid,
TMatrixD * F = 0,
TMatrixD * C = 0);

moves the pivot to xv0 and calculates the projected path length fid to the new pivot
together with *F= ∂a′/∂a and/or the covariance matrix at the new pivot *C, if F6= 0
and/or C 6= 0.

TVector3 CalcXAt(Double t phi) const;

calculates the position vector of a particle along the track at the projected path length
phi according to Eq.(4.2).

TMatrixD CalcDxDphi(Double| t phi) const = 0;

calculates and returns the tangential vector to the trajectory:

∂x(φ,a)
∂φ

=




− sinφ0

cosφ0

tanλ


 . (4.3)

TMatrixD CalcDxDa(Double t phi) const;
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calculates and returns the track-parameter derivative of the trajectory2:

∂x(φ,a)
∂a

=




cosφ0 sinφ0 0

− dρ sinφ0 − φ cosφ0 dρ cosφ0 − φ sinφ0 0

0 0 0

0 0 1

0 0 φ




T

.

void CalcDapDa(Double t fid,
Double t dr,
Double t drp,
TMatrixD & F) const;

calculates F = ∂a′/∂a when the pivot is moved by ∆φ0 = fid and dρ changed from
dr to drp.

4.4.5 TCylinder Class: Inheriting from TVSurface; Cylindrical Surface

The TCylinder class inherits from TVSurface and implements its pure virtual functions, thereby realizing
a cylindrical surface.

Data Members:

Double t fR; // radius.
Double t fHalfLen; // half length.
TVector3 fXc; // center: xc = (xc, yc, zc)T .

Member Functions:

Int t CalcXingPointWith(const TVTrack & hel,
TVector3 & xx,
Double t & phi,
Int t mode,
Double t eps = 1.e-8) const;

overrides, for CPU time economy, the base class’s Newtonian method to calculate the inter-
section xx with a track hel and the corresponding location parameter phi with the tolerance
eps, since an analytic solution is available. The (forward, closest, backward) crossing pint
is chosen for mode = (-1,0,+1), respectively. It returns the number of intersections.

Double| t CalcS(const TVector3 & xx) const;

calculates the left-hand side Sk(x) of the surface equation (Eq.(3.22)) at x =xx:

Sk(x) = (x− xc)2 + (y − yc)2 − fR2 (4.4)
2We continue to use the same parameter vector with five components a = (dρ, φ0, κ, dz, tan λ)T as with a helical track,

though the trajectory does not depend on κ, in order to facilitate the continuation from or to a helix.
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TMatrixD CalcDSDx(const TVector3 & xx) const;

calculates the gradient of Sk(x): ∂Sk/∂x at x =xx:

∂Sk

∂x
=

(
∂Sk

∂x

∂Sk

∂y

∂Sk

∂z

)
= ( 2(x− xc) 2(y − yc) 0 ) . (4.5)

Bool t IsOnSurface(const TVector3 & xx) const;

tests if xx is within the length of the cylinder.

Double t GetSortingPolicy() const;

returns the radius fR as the sorting policy with which to sort surfaces from inside to outside.

4.4.6 THype Class: Inheriting from TVSurface; Hyperboloidal Surface

The THype class inherits from TVSurface and implements its pure virtual functions, thereby realizing a
single-leaf hyperboloidal surface.

Data Members:

Double t fR0; // waist radius at z = 0.
Double t fHalfLen; // half length.
TVector3 fXc; // center: xc = (xc, yc, zc)T .
Double t fTanA; // tanA with A being the stereo angle of wires.

Member Functions:

Double| t CalcS(const TVector3 & xx) const;

calculates the left-hand side Sk(x) of the surface equation (Eq.(3.22)) at x =xx:

Sk(x) = (x− xc)2 + (y − yc)2 − fR2 − (z − zc)2 fTanA2 (4.6)

TMatrixD CalcDSDx(const TVector3 & xx) const;

calculates the gradient of Sk(x): ∂Sk/∂x at x =xx:

∂Sk

∂x
=

(
∂Sk

∂x

∂Sk

∂y

∂Sk

∂z

)
= ( 2(x− xc) 2(y − yc) −2(z − zc) fTanA2 ) . (4.7)

Bool t IsOnSurface(const TVector3 & xx) const;

tests if xx is on the surface and within the length of the hyperboloid.

Double t GetSortingPolicy() const;

returns the radius fR0 as the sorting policy with which to sort surfaces from inside to
outside.
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4.4.7 TPlane Class: Inheriting from TVSurface; Flat Surface

The TPlane class inherits from TVSurface and implements its pure virtual functions, thereby realizing a
flat surface.

Data Members:

TVector3 fXc; // reference point on the plane: xc = (xc, yc, zc)T .
TVector3 fNormal; // outward normal: n = (nx, ny, nz)T .

Member Functions:

Double| t CalcS(const TVector3 & xx) const;

calculates the left-hand side Sk(x) of the surface equation (Eq.(3.22)) at x =xx:

Sk(x) = (x− xc) · n = (x− xc)nx + (y − yc)ny + (z − zc)nz (4.8)

TMatrixD CalcDSDx(const TVector3 & xx) const;

calculates the gradient of Sk(x): ∂Sk/∂x at x =xx:

∂Sk

∂x
= n = (nx ny nz ) . (4.9)

Bool t IsOnSurface(const TVector3 & xx) const;

tests if xx is on the surface.

Double t GetSortingPolicy() const;

returns the distance from the origin as the sorting policy with which to sort surfaces from
inside to outside.



Chapter 5

How To Use the Kalman Filter Package

In this chapter we will show how to use the C++ class libraries elaborated in the last chapter, KalLib,
KalTrackLib, and GeomLib, to apply the Kalman filter technique to track fitting with a particular tracking
system, taking a simple example of a cylindrical tracking system distributed as examples/kaltest/ct in
the KalTest package. As shown in Fig.5.1, the example includes the following three user-defined classes

KalTrackLib

Class TVMeasLayer

+ HitToXv(
    ht: const TVTrackHit&) 
   const = 0 : TVector3
+ XvToMv(
    ht: const TVTrackHit&,
    xv: const TVector3&)
   const = 0: TKalMatrix
+ CalcDhDa(
    ht: const TVTrackHit&,
    xv: const TVector3&,
    dxdphiada: const TKalMatrix&,
    H: TKalMatrix&)
   const = 0: void

User Land (KalTest/CT)

GeomLib

Class EXHit

+ XvToMv(
    xv: const TVector3&,
    t0: Double_t) const
  : TKalMatrix

Class EXMeasLayer

+ HitToXv(
    ht: const TVTrackHit&) 
   const = 0 : TVector3
+ XvToMv(
    ht: const TVTrackHit&,
    xv: const TVector3&)
   const = 0: TKalMatrix
+ CalcDhDa(
    ht: const TVTrackHit&,
    xv: const TVector3&,
    dxdphiada: const TKalMatrix&,
    H: TKalMatrix&)
   const = 0: void

Class EXKalDetector

+ EXKalDetector(m: Int_t = 100)

EXKalTest: Main Program

Class TVKalDetector

Class TCylinder

Class TVTrackHit

- fMeasLayerPtr: TVMeasLayer*
+ XvToMv(
    xv: const TVector3&,
    t0: Double_t) const =0
  : TKalMatrix

Figure 5.1: Sample code for a simple cylindrical tracker: examples/kaltest/ct.

required by the package:

• EXMeasLayer: a measurement layer that multiply inherits from the abstract measurement layer class
TVMeasLayer and a concrete surface class TCylinder in GeomLib,

• EXKalDetector: an array that holds the user-defined measurement layers with particular shape and
coordinate system and defines material distributions in the tracker, and

40
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• EXHit: a measurement vector as defined by EXMeasLayer,

as well as a steering program to actually carry out the Kalman-filter-based track fitting EXKalTest. In what
follows, we will explain essential features of these program units1.

5.1 EXMeasLayer Class: Inheriting from TVMeasLayer and TCylinder

Let us start with a class EXMeasLayer to describe a simple cylindrical measurement layer having a radius
R with its axis aligned with the z-axis. As explained in subsection 4.3.5, this suggests that EXMeasLayer is
to inherits from TVMeasLayer in KalTrackLib and TCyliner in GeomLib.

For simplicity, let us assume that EXMeasLayer provides Rφ and z coordinates of a hit point at r = R with
fixed measurement errors σrφ and σz, respectively. This sets the coordinate system necessary to implement
the pure virtual functions of TVMeasLayer to calculate the projector to coordinate axes as given by Eq.(3.18)
and the corresponding projector matrix.

5.1.1 Declaration of EXMeasLayer Class: EXMeasLayer.h

The header file for EXMeasLayer is shown below:

#ifndef __EXMEASLAYER__
#define __EXMEASLAYER__

#include "TVector3.h" // from ROOT
#include "TKalMatrix.h" // from KalLib
#include "TCylinder.h" // from GeomLib
#include "TVMeasLayer.h" // from KalTrackLib
#include "KalTrackDim.h" // from KalTrackLib

class TVTrackHit; // forward declaration

class EXMeasLayer : public TVMeasLayer, public TCylinder {
public:

// Ctors and Dtor
EXMeasLayer(TMaterial &min,

TMaterial &mout,
Double_t r0,
Double_t lhalf,
Bool_t isactive = kTRUE);

virtual ~EXMeasLayer();

// Parrent’s pure virtuals that must be implemented
virtual TKalMatrix XvToMv (const TVTrackHit &ht,

const TVector3 &xv) const;
virtual TKalMatrix XvToMv (const TVector3 &xv) const;
virtual TVector3 HitToXv (const TVTrackHit &ht) const;

1Notice that the sample code shown below might be slightly different from the actual code distributed with KalTest because
of possible omissions of some features or details irrelevant for the purpose of this chapter.
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virtual void CalcDhDa (const TVTrackHit &ht,
const TVector3 &xv,
const TKalMatrix &dxphiada,

TKalMatrix &H) const;

ClassDef(EXMeasLayer,1) // Sample measurement layer class
};
#endif

where ClassDef(...) is a ROOT macro that expands into declarations for ROOT-required data fields
and methods for automatic schema evolution.

5.1.2 Implementation of EXMeasLayer Class: Preamble

The implementation of EXMeasLayer starts with

#include "EXMeasLayer.h"
#include "EXHit.h"

ClassImp(EXMeasLayer)

where ClassImp(EXMeasLayer) is a ROOT macro that expands into implementations of ROOT-methods
declared in the ClassDef(...) macro in the header file for automatic schema evolution.

5.1.3 Constructor and Destructor: EXMeasLayer() and ~EXMeasLayer()

Then we need a constructor and the destructor:

EXMeasLayer::EXMeasLayer(TMaterial &min, // material inside the layer
TMaterial &mout, // material outside the layer
Double_t r0, // radius of the layer
Double_t lhalf, // half length of the layer
Bool_t isactive) // flag to tell the layer is active

: TVMeasLayer(min, mout, isactive),
TCylinder(r0, lhalf)

{
}

EXMeasLayer::~EXMeasLayer()
{
}

where TMaterial is a ROOT class to store material information.
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5.1.4 Coordinate Projector: XvToMv()

Then we need to implement the coordinate projector, which projects the hit point vector xk to the coordinate
axes to get the corresponding measurement vector:

mk(xk) =
(
Rk · φk

zk

)
=

(
Rk · tan−1

(
yk
xk

)

zk

)
,

where Rk is the radius of layer (k). The coordinate projector method, XvToMv(.....), calculates and
returns the measurement vector mv as the return value:

TKalMatrix EXMeasLayer::XvToMv(const TVector3 &xv) const
{

// Calculate hit coordinate information:
// mv(0,0) = r * phi
// (1,0) = z

TKalMatrix mv(kMdim,1);
mv(0,0) = GetR() * TMath::ATan2(xv.Y(), xv.X());
mv(1,0) = xv.Z();
return mv;

}

TKalMatrix EXMeasLayer::XvToMv(const TVTrackHit & /* ht */,
const TVector3 &xv) const

{
return XvToMv(xv);

}

where GetR() is the method of the base class TCylinder. Notice that in this example, ht, is not used.

5.1.5 Reverse Coordinate Projector: HitToMv()

We also need to implement the reverse coordinate projector, which projects back the measurement vector
stored in an EXHit object to the 3-dimensional hit position vector:

xk =



xk

yk

zk


 =



Rk · cosφk

Rk · sinφk

zk


 ,

which can be realized for instance as follows:

TVector3 EXMeasLayer::HitToXv(const TVTrackHit &vht) const
{

const EXHit &ht = dynamic_cast<const EXHit &>(vht);

Double_t phi = ht(0,0) / GetR();
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Double_t z = ht(1,0);
Double_t x = GetR() * TMath::Cos(phi);
Double_t y = GetR() * TMath::Sin(phi);

return TVector3(x,y,z);
}

5.1.6 Projector Matrix: CalcDhDa()

Finally we need to implement the projector matrix:

Hk =




∂(Rk·φk)
∂a

∂zk
∂a


 =



Rk

(
∂φk
∂xk

) (
∂xk
∂a

)

∂zk
∂a


 =



− yk

Rk

(
∂xk
∂a

)
+ xk

Rk

(
∂yk
∂a

)

∂zk
∂a


 ,

where

∂xk

∂a
=

∂x (φ (a) ,a)
∂a

=
∂x

∂φk
· ∂φk

∂a
+
∂x

∂a

∂φk

∂a
= − 1(

∂Sk
∂x · ∂x

∂φk

) ∂Sk

∂x
· ∂x

∂a

as explained in subsection 3.3.2. The projector matrix method, CalcDhDa(.....), can then be implemented
for instance as folows:

void EXMeasLayer::CalcDhDa(const TVTrackHit &, // Hit: not used here
const TVector3 &xxv, // hit position vector
const TKalMatrix &dxphiada, // @x(\phi(a),a)/@a

TKalMatrix &H) const // projector matrix = @h/@a
{

// Calculate
// H = (@h/@a) = (@phi/@a, @z/@a)^t
// where
// h(a) = (phi, z)^t: expected measurement vector
// a = (drho, phi0, kappa, dz, tanl, t0)
//

Int_t sdim = H.GetNcols();
Int_t hdim = TMath::Max(5,sdim-1);

Double_t xv = xxv.X();
Double_t yv = xxv.Y();
Double_t xxyy = xv * xv + yv * yv;

// Set H = (@h/@a) = (@d/@a, @z/@a)^t
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for (Int_t i=0; i<hdim; i++) {
H(0,i) = - (yv / xxyy) * dxphiada(0,i)

+ (xv / xxyy) * dxphiada(1,i);
H(0,i) *= GetR();
H(1,i) = dxphiada(2,i);

}
if (sdim == 6) {

H(0,sdim-1) = 0.;
H(1,sdim-1) = 0.;

}
} ,

where in this example the measurement vector does not depend on t0 and hence the 6th track parameter
is dummy.

5.2 EXKalDetector Class: Inheriting from TVKalDetector

Now that we have the EXMeasLayer class implemented, we need a folder to construct and bind together the
EXMeasLayer objects to build a tracking detector. For this purpose, let us implement the EXKalDetector
class inheriting from TVKalDetector in KalTrackLib (see subsection 4.3.6).

5.2.1 Declaration of EXKalDetector Class: EXKalDetector.h

The header file for EXMeasLayer will then look like what follows:

#ifndef __EXKALDETECTOR__
#define __EXKALDETECTOR__

#include "TVector3.h" // from ROOT
#include "TVKalDetector.h" // from KalTrackLib
#include "EXMeasLayer.h"

class EXKalDetector : public TVKalDetector {
public:

// Ctor and Dtor
EXKalDetector();
~EXKalDetector();

// Utility method
Double_t GetBfield (const TVector3 &xx = TVector3(0.)) const

{ return fgBfield; }

private:
static Double_t fgBfield; // magnetic field [kG]
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ClassDef(EXKalDetector,1) // Sample hit class
};

#endif

where ClassDef(...) is a ROOT macro that expands into declarations for ROOT-required data fields
and methods for automatic schema evolution.

5.2.2 Implementation of EXKalDetector Class: Preamble

The implementation of EXKalDetector starts with

#include "EXKalDetector.h"
#include "EXMeasLayer.h"
#include "EXHit.h"

#include "TRandom.h" // from ROOT

Double_t EXKalDetector::fgBfield = 30.; // [kG]

ClassImp(EXKalDetector)

where ClassImp(EXKalDetector) is a ROOT macro that expands into implementations of
ROOT-methods declared in the ClassDef(...) macro in the header file for automatic schema evolution.

5.2.3 Constructor and Destructor: EXKalDetector() and ~EXKalDetector()

For simplicity, let us assume that our cylindrical tracker has a CFRP inner cylinder and multiple cylindrical
measurement layers equally spaced in r surrounding the CFRP inner cylinder and that the inter-layer gaps
are filled with air. We can construct such a structure in a constructor of EXKalDetector2:

EXKalDetector::EXKalDetector(Int_t m)
: TVKalDetector(m)

{
Double_t A, Z, density, radlen;
A = 14.00674 * 0.7 + 15.9994 * 0.3; // mass number
Z = 7.3; // atomic number
density = 1.205e-3; // [g/cmm^3]
radlen = 3.42e4; // [cm]
TMaterial &air = *new TMaterial("Air", "", A, Z, density, radlen, 0.);

2ROOT forbids creation of any heap objects in the default constructor, since it will lead to memory leak in reading the class
object from a flat file using ROOT’s streamers. This example violates this rule since it does not perform any object I/O for the
EXKalDetector class. If your KalDetector object needs to be written to or read from a flat file via ROOT’s object I/O scheme,
you need to move the creation of heap objects to somewhere outside the default constructor.
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A = 12.0107; // mass number
Z = 6.; // atomic number
density = 0.1317; // [g/cmm^3]
radlen = 42.7/density; // [cm]
TMaterial &cfrp = *new TMaterial("CFRP", "", A, Z, density, radlen, 0.);

static const Int_t nlayers = 50; // # sampling layers
static const Double_t lhalf = 200.; // half length
static const Double_t rmin = 45.; // r_{min} = radius of 0th layer
static const Double_t rstep = 3.; // step in r
static const Double_t rcylin = 43.; // inner radius of CFRP cylinder
static const Double_t rcylout = 44.; // outer radius of CFRP cylinder

static const Bool_t kActive = kTRUE;
static const Bool_t kDummy = kFALSE;

// Create dummy layers of the inner cylinder of the central tracker
Add(new EXMeasLayer(air, cfrp, rcylin, lhalf, kDummy));
Add(new EXMeasLayer(cfrp, air, rcylout, lhalf, kDummy));

// Create measurement layers of the central tracker
Double_t r = rmin;
for (Int_t layer = 0; layer < nlayers; layer++) {

Add(new EXMeasLayer(air, air, r, lhalf, kActive));
r += rstep;

}
SetOwner(); // detector owns measurement layers

}

EXKalDetector::~EXKalDetector()
{
}

where TMaterial is a ROOT class to store material information.

5.3 EXHit Class: Inheriting from TVTrackHit

Having implemented the measurement layer class, EXMeasLayer, and its container or the detector consisting
of it, EXKalDetector, we can now move on to a hit class on it, EXHit, derived from TVTrackHit.

5.3.1 Declaration of EXHit Class: EXHit.h

The header file for EXHit is shown below:
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#ifndef __EXHIT__
#define __EXHIT__

#include "KalTrackDim.h"
#include "TVTrackHit.h"
#include "EXMeasLayer.h"

class EXHit : public TVTrackHit {
public:

// Ctor and Dtor
EXHit(const EXMeasLayer &ms,

Double_t *x,
Double_t *dx,
Double_t b,
Int_t m = kMdim);

virtual ~EXHit();

// Parent’s pure virtual functions that must be implemented
virtual TKalMatrix XvToMv (const TVector3 &xv, Double_t t0) const;
virtual void DebugPrint(Option_t *opt = "") const;

ClassDef(EXHit,1) // Sample hit class
};
#endif

where ClassDef(...) is a ROOT macro that expands into declarations for ROOT-required data fields
and methods for automatic schema evolution.

5.3.2 Implementation of EXHit Class: Preamble

The implementation of EXHit starts with

#include "EXHit.h"
#include "EXMeasLayer.h"

#include <iostream>
#include <iomanip>

using namespace std;

ClassImp(EXHit)

where ClassImp(EXHit) is a ROOT macro that expands into implementations of ROOT-methods declared
in the ClassDef(...) macro in the header file for automatic schema evolution.
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5.3.3 Constructor and Destructor: EXHit() and ~EXHit()

Since the base class constructor requires, as inputs, a measurement layer, arrays of coordinate values and
their errors, and a magnetic field value, we need a constructor that looks the following:

EXHit::EXHit(const EXMeasLayer &ms, // measurement layer
Double_t *x, // coordinate array
Double_t *dx, // coordinate error array
Double_t b, // magnetic field
Int_t m) // dimension of meas. vector

: TVTrackHit(ms, x, dx, b, m)
{
}

EXHit::~EXHit()
{
}

5.3.4 Coordinate Projector: XvToMv()

Then we need to implement the coordinate projector, which projects the input hit point vector xv to the
coordinate axes to get the expected measurement vector:

TKalMatrix EXHit::XvToMv(const TVector3 &xv, Double_t /*t0*/) const
{

const EXMeasLayer &ms
= dynamic_cast<const EXMeasLayer &>(GetMeasLayer());

TKalMatrix h = ms.XvToMv(xv);
Double_t r = ms.GetR();
Double_t phih = h(0,0) / r;
Double_t phim = (*this)(0,0) / r;
Double_t dphi = phih - phim;

static Double_t kPi = TMath::Pi();
static Double_t kTwoPi = 2 * kPi;

while (dphi < -kPi) dphi += kTwoPi;
while (dphi > kPi) dphi -= kTwoPi;

h(0,0) = r * (phim + dphi);
h(1,0) += 0.;

return h;
}
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where t0 is not used in this simple example. Notice that the function of this XvToMv() method is to avoid
the wrap-around problem at the 2π boundary and to choose the correct φ that matches the measurement
vector stored in the EXHit object.

5.3.5 Debugging Method: DebugPrint()

The DebugPrint() function is another pure virtual function in the base class, TVTrackHit, that must be
implemented to facilitate debugging:

void EXHit::DebugPrint(Option_t *) const
{

cerr << "------------------- Site Info -------------------------" << endl;

for (Int_t i=0; i<GetDimension(); i++) {
Double_t x = (*this)(i,0);
Double_t dx = (*this)(i,1);
cerr << " x[" << i << "] = " << setw(8) << setprecision(5) << x

<< " "
<< "dx[" << i << "] = " << setw(6) << setprecision(2) << dx
<< setprecision(7)
<< resetiosflags(ios::showpoint)
<< endl;

}
cerr << "-------------------------------------------------------" << endl;

}

where GetDimension() is a method of ROOT’s TMatrixD.

5.4 EXKalTest: Main Program

Now that we have the measurement layer class, EXMeasLayer, the tracking detector class, EXKalDetector,
and the hit class, EXHit, we can now perform Kalman-filter-based track fitting. The following is a sample
main program to do it:

#include "TKalDetCradle.h" // from KalTrackLib
#include "TKalTrackState.h" // from KalTrackLib
#include "TKalTrackSite.h" // from KalTrackLib
#include "TKalTrack.h" // from KalTrackLib

#include "EXKalTest.h"
#include "EXKalDetector.h"
#include "EXEventGen.h"
#include "EXHit.h"

#include "TNtupleD.h" // from ROOT
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#include "TFile.h" // from ROOT

#include <iostream>

static const Bool_t gkDir = kIterBackward;

int main (Int_t argc, Char_t **argv)
{

// ===================================================================
// Initialize ROOT
// ===================================================================

gROOT->SetBatch();
TApplication app("EXKalTest", &argc, argv, 0, 0);

// ===================================================================
// Open a ROOT file and define an ntuple to store fit results
// ===================================================================
TFile hfile("h.root","RECREATE","KalTest");
TNtupleD *hTrackMonitor = new TNtupleD("track", "", "ndf:chi2:cl:cpa");

// ===================================================================
// Prepare a detector
// ===================================================================

TKalDetCradle cradle; // detctor system
EXKalDetector detector; // CT detector

cradle.Install(detector); // install detector into its cradle
#ifdef __MS_OFF__

cradle.SwitchOffMS(); // switch off multiple scattering
#endif

// ===================================================================
// Loop over events
// ===================================================================

Int_t nevents = 100;
for (Int_t eventno = 0; eventno < nevents; eventno++) {

cerr << "------ Event " << eventno << " ------" << endl;

TObjArray kalhits; // hit buffer

// ============================================================
// Generate an event, create EXHit’s on EXMeasLayer’s, and
// store them in kalhits.
// ============================================================
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// ..........
// code not shown
// ..........

// ============================================================
// Do Kalman Filter
// ============================================================
// ---------------------------
// Prepare hit iterrator
// ---------------------------
TIter next(&kalhits, gkDir);

// ---------------------------
// Create a dummy site: sited
// ---------------------------

EXHit &hitd = *static_cast<EXHit *>(next());
hitd(0,1) = 1.e6; // give a huge error to d
hitd(1,1) = 1.e6; // give a huge error to z
next.Reset(); // rewind iterator

TKalTrackSite &sited = *new TKalTrackSite(hitd);
sited.SetOwner(); // site owns states

// ---------------------------
// Create an initial helix
// ---------------------------

Int_t i1, i2, i3;
if (gkDir == kIterBackward) {

i3 = 0;
i1 = kalhits.GetEntries() - 1;
i2 = i1 / 2;

} else {
i1 = 0;
i3 = kalhits.GetEntries() - 1;
i2 = i3 / 2;

}
EXHit &h1 = *dynamic_cast<EXHit *>(kalhits.At(i1)); // first hit
EXHit &h2 = *dynamic_cast<EXHit *>(kalhits.At(i2)); // last hit
EXHit &h3 = *dynamic_cast<EXHit *>(kalhits.At(i3)); // middle hit
TVector3 x1 = h1.GetMeasLayer().HitToXv(h1);
TVector3 x2 = h2.GetMeasLayer().HitToXv(h2);
TVector3 x3 = h3.GetMeasLayer().HitToXv(h3);
THelicalTrack helstart(x1, x2, x3, h1.GetBfield()); // initial helix
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// ---------------------------
// Set dummy state to sited
// ---------------------------

static TKalMatrix svd(kSdim,1);
svd(0,0) = 0.;
svd(1,0) = helstart.GetPhi0();
svd(2,0) = helstart.GetKappa();
svd(3,0) = 0.;
svd(4,0) = helstart.GetTanLambda();
if (kSdim == 6) svd(5,0) = 0.;

static TKalMatrix C(kSdim,kSdim);
for (Int_t i=0; i<kSdim; i++) {

C(i,i) = 1.e4; // dummy error matrix
}

sited.Add(new TKalTrackState(svd,C,sited,TVKalSite::kPredicted));
sited.Add(new TKalTrackState(svd,C,sited,TVKalSite::kFiltered));

// ---------------------------
// Add sited to the kaltrack
// ---------------------------

TKalTrack kaltrack; // a track is a kal system
kaltrack.SetOwner(); // kaltrack owns sites
kaltrack.Add(&sited); // add the dummy site to the track

// ---------------------------
// Start Kalman Filter
// ---------------------------

EXHit *hitp = 0;
while ((hitp = dynamic_cast<EXHit *>(next()))) { // loop over hits

TKalTrackSite &site = *new TKalTrackSite(*hitp); // create a site
if (!kaltrack.AddAndFilter(site)) { // add and filter it

cerr << " site discarded!" << endl;
delete &site; // delete it, if failed

}
}
//kaltrack.SmoothBackTo(3); // smooth back.

// ============================================================
// Monitor Fit Results (ndf, chi2, confidence level, kappa)
// ============================================================

Int_t ndf = kaltrack.GetNDF();
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Double_t chi2 = kaltrack.GetChi2();
Double_t cl = TMath::Prob(chi2, ndf);
Double_t cpa = kaltrack.GetState(TVKalSite::kFiltered)(2, 0);
hTrackMonitor->Fill(ndf, chi2, cl, cpa);

}

// ============================================================
// Write the ntuple to the output ROOT file
// ============================================================
hfile.Write();

return 0;
}

where the event generation and the hit point making part of the program is omitted.
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[2] R. Frühwirth, Nucl. Instr. and Meth. A262 (1987) 444.

[3] E. J. Wolin and L. L. Ho, Nucl. Instr. and Meth. A219 (1993) 493.

[4] P. Astier et al., Nucl. Instr. and Meth. A450 (2000) 138.

[5] Helix Manipulation, the JLC Group, internal circulation (1998).

55


