Luminosity Monitor and Active Mask

(1) Luminosity monitor

geometrical acceptance:

163 < z < 178 cm and $0.05 < \theta < 0.15$ rad. made of tungsten only in this study segmentation:

r	32 divisions	$\Delta r \sim 5 mm$
φ	16 divisions	∆ ∮ ~ 3.2 - 9.7 cm
Ζ	128 divisions	∆z ~ 1.17mm

(2) Active mask (front part of conical mask)

geometrical acceptance:

30 < z < 37.5 cm and $0.15 < \theta < 0.20 \text{ rad.}$ made of tungsten(W) and silicon pad(Si,200µm^t) $5mm^tW/Si/(1cm^tW/Si)^7$ 8 layers segmentation:

- r 8-10 divisions $\Delta r = 2mm$
- ϕ 32 divisions $\Delta \phi \sim 0.9$ 1.2 cm

Generated events

(1) e⁺e⁻ pairs by cain21d
parameter A at Ecm=500GeV
100 bunch crossings

correspond to 1 train crossing

(2) an electron/ muon into luminosity monitor and active mask

50 GeV and 250 GeV electrons

250 GeV muons

Simulation results

(1) Energy deposits in total volume

Conclusions

(1) Lumonisity monitor

Among the total energy deposit of 152 (46.7) GeV/train due to e^+e^- pairs, only 54*(14*)GeV comes from the front at B=2(3)T, while most comes from the inner-back.

(* sum of incomming energies)

φ segmentation (16 div.) is very important, r segmentation is desired to dertermine θ with δθ~a few m radian.

So, a fine-segmented W/Silicon calorimeter seems to be ideal. Thickness of tungsten must be optimized in terms of energy-resolution.

(2) Active Mask

First layer (5mm^t W) has ~ 50% energy deposit for e⁺e⁻ pairs.

 ϕ segmentation (32 div.) is very important.

8 layers of W/Si-pad calorimeter works very well for vetoing high energy electrons.